

ELUCIDATING THE NATURE OF NEUTRINOS WITH GERDA & LEGEND

LAURA BAUDIS UNIVERSITY OF ZURICH

RAL PPD SEMINAR JULY 7, 2021

WHAT DO WE KNOW ABOUT NEUTRINOS?

> When they propagate over macroscopic distances, they oscillate between flavours

- Well-studied effect in quantum mechanics
- Flavour is not conserved over macroscopic distances: v states with different flavours u_{α} mix with v states with different masses u_i

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,j=1}^{3} U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \exp\left(-i\frac{m_{\nu_i}^2 - m_{\nu_j}^2}{2E}x\right)$$

• the effect of the mass is to generate flavour oscillations as a function of distance

Unitary neutrino mixing matrix (PMNS matrix)

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

WHAT DO WE KNOW ABOUT NEUTRINOS?

From oscillation experiments: non-zero masses and non-trivial mixing

Nobel Prize 2015: Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

WHAT DO WE KNOW ABOUT NEUTRINOS?

- From oscillation experiments: we know the mixing angles (or the $U_{\alpha i}$) and the Δm^2
- However: 2 possible mass orderings and no information on the mass scale

SOME OPEN QUESTIONS IN NEUTRINO PHYSICS

- What are the absolute values of neutrino masses, and the mass ordering?
- What is the nature of neutrinos? Are they Dirac or Majorana particles?
- What is the origin of small neutrino masses? $\frac{m_{\nu_j}}{m_{l,q}} \le 10^{-6}$ for $m_{\nu_j} \le 0.5 \,\mathrm{eV}$
- What are the precise values of the mixing angles, and the origin of the large v mixing?
- Is the standard three-neutrino picture correct, or do other, sterile neutrinos exist?
- What is the precise value of the CP violating phase δ ?

- Some of these open questions can be addressed with an extremely rare nuclear decay process
 - What are the absolute values of neutrino masses, and the mass ordering?
 - What is the nature of neutrinos? Are they Dirac or Majorana particles?
 - What is the origin of small neutrino masses?

- If simple β^- or β^+ -decay is forbidden on energetic grounds
- Predicted by Maria-Goeppert Mayer in 1935
- The probability for a decay is very small, the mean lifetime of a nucleus is much larger than the age of the universe ($\tau_U \sim 1.4 \times 10^{10}$ a)

$$\tau_{2\nu} \approx 10^{20} y$$

- Thus: a very rare process
- However, if a large amount of nuclei is used, the process can be observed experimentally

Ruben Saakyan, Annu. Rev. Nucl. Part. Sci. 63 (2013)

Nobel Prize in physics, 1963 for her discoveries concerning the nuclear shell structure

- The Standard Model decay, with 2 neutrinos, was observed in a number of nuclei
- T_{1/2} > 10¹⁸ y: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

¹⁰⁰Mo: $T_{1/2}=7.15 \times 10^{18}$ y

The decay rate Γ²^ν depends on the matrix element M²^ν and on the phase space factor G²^ν (which determines the energy spectrum):

$$\Gamma^{2\nu} = \frac{\ln 2}{T_{1/2}^{2\nu}} = G^{2\nu}(Q, Z) |M^{2\nu}|^2$$

The phase space factor (Z= charge of daughter nucleus) from the leptonic degrees of freedom:

$$G^{2\nu} \propto (G_F \cos \theta_C)^4 Q^7 \cdot \left(\frac{Q^4}{1980} + \frac{Q^3}{90} + \frac{Q^2}{9} + \frac{Q}{2} + 1\right) \propto (G_F \cos \theta_C)^4 \cdot Q^{11}$$

• The decay rate scales with $Q^{11} \times (G_F)^4 \implies$ we expect indeed very long $T_{1/2}$ of ~10²⁰ y

THE NEUTRINOLESS DOUBLE BETA DECAY

• More interesting: the decay *without* emission of neutrinos $\implies \Delta L = 2$

 $T_{1/2}^{0\nu\beta\beta} > 10^{24} \,\mathrm{y}$

Expected signature: *sharp peak at the Q-value of the decay*

$$Q = E_{e1} + E_{e2} - 2m_e$$

The double beta decay without neutrinos: first discussed by Wendell H. Fury in 1939

Ettore Majorana had proposed in 1937 that neutrinos could be their own antiparticles

Sum energy of the two electrons

THE NEUTRINOLESS DOUBLE BETA DECAY

> In this decay, a light virtual neutrino could be exchanged

Charge conjugate spinor

$$\psi^c = C\bar{\psi}^T$$

A Majorana field

$$\psi = \psi^c$$

 $\psi = \psi_L + \psi_L^c$

- The neutron decays under emission of a right handed 'anti-neutrino' ν_L^c
 - \bullet the ν_L^c has to be absorbed at the second vertex as left handed 'neutrino' u_L
 - for the decay to happen: neutrinos and anti-neutrinos must be identical, thus Majorana particles
 - & the helicity must change

MAJORANA AND DIRAC NEUTRINOS

Most general Lagrangian: both type of neutrinos masses

$$\mathcal{L}_{\mathcal{M}_{\nu}} = -\frac{1}{2} \left[m_D(\bar{\psi}_R^c \psi_L^c + \bar{\psi}_R \psi_L) + M \bar{\psi}_L^c \psi_L \right] + h.c.$$

- Dirac term: generated after SSB from Yukawa interactions; Majorana term: singlet of the SM gauge group and can appear as bare mass term
- Masses of physical neutrinos: from the eigenvalues of the mass matrix. In the "see saw" mechanism: $M \gg m_D \Rightarrow$ a very light neutrinos state v and a heavy state N with masses:

$$m_{\nu} \approx \frac{m_D^2}{M} \quad m_N \approx M \qquad \qquad N$$

If Dirac mass term m_D: of similar size as of other fermions & M at the GUT scale (~10¹⁴ GeV)
 ⇒ explanation of the smallness of neutrino masses

THE NEUTRINOLESS DOUBLE BETA DECAY

The expected rate can be calculated as:

with the phase space integral (now spanned only by 2 electrons):

$$G^{0\nu} \propto (G_F \cos \theta_C)^4 \cdot \left(\frac{Q^5}{30} - \frac{2Q^2}{3} + Q - \frac{2}{5}\right) \propto (G_F \cos \theta_C)^4 \cdot Q^5$$

THE EFFECTIVE MAJORANA NEUTRINO MASS

The effective Majorana neutrino mass parameter: embeds all the dependance on neutrino quantities

$$|m_{\beta\beta}| = |m_1 U_{e1}^2 + m_2 U_{e2}^2 e^{2\phi_1} + m_3 U_{e3}^2 e^{2i(\phi_2 - \delta)}|$$

A mixture of m_1 , m_2 , $m_3 \propto$ to the U_{ei}^2 (the complex entries in the PMNS matrix)

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \times \begin{pmatrix} e^{i\phi_{1}} & 0 & 0 \\ 0 & e^{i\phi_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- φ_1, φ_2 = Majorana phases and $|U_{e1}|^2$ is for instance the probability that v_e has the mass m_1
- fewer phases can be removed by redefining the fields

THE EFFECTIVE MAJORANA NEUTRINO MASS

- The value of m_{ββ} depends critically on the neutrino mass spectrum and on the values of the two Majorana phases in the PMNS matrix
- One can express $m_{\beta\beta}$ as a function of the lightest (m_{min}) mass state for the two mass orderings and obtain the allowed ranges

Data from PDG Review: PTEP 8, August 2020

EMPLOYED NUCLEI IN SEARCHES

- Even-even nuclei
- Natural abundance is low (except ¹³⁰Te)
- Must use enriched material

Candidate*	Q [MeV]	Abund [%]	
⁴⁸ Ca -> ⁴⁸ Ti	4.271	0.187	
⁷⁶ Ge -> ⁷⁶ Se	2.039	7.8	
⁸² Se -> ⁸² Kr	2.995	9.2	
⁹⁶ Zr -> ⁹⁶ Mo	3.350	2.8	
¹⁰⁰ Mo -> ¹⁰⁰ Ru	3.034	9.6	
¹¹⁰ Pd -> ¹¹⁰ Cd	2.013	11.8	
¹¹⁶ Cd -> ¹¹⁶ Sn	2.802	7.5	
¹²⁴ Sn -> ¹²⁴ Te	2.228	5.64	
¹³⁰ Te -> ¹³⁰ Xe	2.530	34.5	
¹³⁶ Xe -> ¹³⁶ Ba	2.479	8.9	
¹⁵⁰ Nd -> ¹⁵⁰ Sm	3.367	5.6	

* Q-value > 2 MeV

TRAJE JFALE AND MAIRIX ELEMENTJ

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{\text{Matrix elements}}^{0\nu} \left| M_{e}^{0\nu} \right|^{2} \left(\frac{\left\langle m_{\nu} \right\rangle}{m_{e}} \right)^{2} \text{ factor of 2-3 for a given A}$$

$$\Gamma^{0\nu} = \frac{\ln 2}{T_{1/2}^{0\nu}} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2}$$

$$\Gamma^{0\nu} = \frac{\ln 2}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z)|M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2}$$

Jonathan Engel and Javier Menéndes atope Rep. Prog. Phys. 80 046301

Vergados, Ejiri, Simkovoc, Int. Journal of Modern Physics E, Vol 25 (2016)

SOME TIME SCALES

- ▶ ¹⁴C: T_{1/2} ~ 5.7 x 10⁴ y
- ▶ ⁴⁰K: T_{1/2} ~ 1.3 x 10⁹ y
- ²³²Th: T_{1/2} ~ 1.4 x 10¹⁰ y, ²³⁸U: T_{1/2} ~ 4.5 x 10⁹ y
- Age of the universe: ~ 1.4 x 10¹⁰ y
- ▶ 2vββ: T_{1/2}~ 10²⁰ y
- $0v\beta\beta: T_{1/2} > 10^{26} y$
- Proton decay > 10³⁴ y

EXPRIMENTAL REQUIREMENTS

Experiments measure the half-life, with a sensitivity (for non-zero background)

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

$$\langle m_{\beta\beta} \rangle \propto \frac{1}{\sqrt{T_{1/2}^{0\nu}}}$$

Minimal requirements:

high isotopic abundance (a) high efficiency (ε) large detector masses (M) ultra-low background noise (B) good energy resolution (ΔE)

Additional tools to distinguish signal from background:

-

event topology pulse shape discrimination particle identification

EXPERIMENTS: MAIN APPROACHES

Source ≠ Detector

Source as thin foil Electrons detected with: scintillator, TPC, drift chamber, semiconductor detectors Event topology

Low energy resolution and detection efficiency

Source = Detector (calorimeters)

The sum of the energy of the two electrons is measured Signature: peak at the Q-value of the decay Scintillators, semiconductors, bolometers High resolution + detection efficiency No event topology

Source = Detector = Tracker

Source is the (high-pressure) gas of a TPC Charge and light detected with electron multipliers and/or photosensors

recorded primarily by the array of PMTs located at the TPC cathode. If also produces ionization determined and generate EL light (or secondary scintillation), when t topology very helpful in reducing the background and entering the region of interventies field ($E/P \approx 3 \text{ kV/cm.bar}$) between the transparent EL grids. This light is recorded by an array of silicon photomy (hippiers (SiPM) located right behind the EL grids and used for tracking measurement. It is also recorded in the PMT plane behind the cathode for

DOUBLE BETA DECAY: EXPERIMENTAL TECHNIQUES*

MAIN EXPERIMENTAL CHALLENGES

- Energy resolution (ultimate background from 2vββ-decay)
- Backgrounds
 - cosmic rays & cosmogenic activation (including in situ, e.g., ⁷⁷Ge, ¹³⁷Xe)
 - radioactivity of detector materials (²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co, etc: α, β, γ-radiation)
 - anthropogenic (e.g., ¹³⁷Cs, ^{110m}Ag)
 - neutrinos (e.g., ⁸B from the Sun): $u + e^- \rightarrow \nu + e^-$

BACKGROUND REDUCTION

• Go deep underground

Cheng J-P, et al. 2017. Annu. Rev. Nucl. Part. Sci. 67:231–51

• Avoid cosmic activation

• Use active shields

VERY BRIEF STATUS OF THE FIELD

- No observation of this extremely rare nuclear decay (so far)
- ▶ Best lower limits on T_{1/2}: 1.07x10²⁶ y (¹³⁶Xe), 1.8x10²⁶ y (⁷⁶Ge), 3.2x10²⁵ y (¹³⁰Te)

 $m_{\beta\beta} < (0.08 - 0.18) \,\mathrm{eV} \,(90\% \,\mathrm{C.L.})$

- Running and upcoming experiments (a selection)
 - ¹³⁰Te: CUORE, SNO+
 - ¹³⁶Xe: KAMLAND-Zen, KAMLAND2-Zen, EXO-200, nEXO, NEXT, DARWIN, PandaX-III
 - ⁷⁶Ge: GERDA Phase-II, Majorana, LEGEND (GERDA & Majorana + new groups)
 - ⁸²Se: CUPID (= CUORE with light read-out)
 - ⁸²Se (¹⁵⁰Nd, ⁴⁸Ca): SuperNEMO
 - ¹⁰⁰Mo: NEMO-3, AMoRE, CUPID-Mo

GERMANIUM EXPERIMENTS

$^{76}\text{Ge} \longrightarrow ^{76}\text{Se} + 2e^{-1}$

GERMANIUM IONISATION DETECTORS

- ► HPGe detectors enriched in ⁷⁶Ge
 - Source = detector: high detection efficiency
 - High-purity material: no intrinsic backgrounds
 - Semiconductor: $\sigma/E < 0.1\%$ at $Q_{\beta\beta} = 2039.061 \pm 0.007$ keV

RECENT GERMANIUM EXPERIMENTS

MAJORANA at SURF

GERDA at LNGS

- 35.6 kg of 86% enriched ⁷⁶Ge crystals in LAr
- 3.0 keV FWHM at 2039 keV
- 127.2 kg y exposure; PRL 125, 2020
- T_{1/2} > 1.8 x 10²⁶ y (90% CL)

THE HEIDELBERG-MOSCOW EXPERIMENT

- > Detectors in conventional shield: five ⁷⁶Ge detectors, mass 10.96 kg
- Concept to operate directly in cryogenic liquid:
 - \odot GENIUS \rightarrow now GERDA \rightarrow upcoming LEGEND

A first "bare" HPGe detector

GENIUS background and technical studies: L. Baudis et al, NIM A 426 (1999)

Heidelberg-Moscow HPGe detector in conventional shield

Limits on the Majorana neutrino mass in the 0.1 eV range, L. Baudis et al., Phys. Rev. Lett. 83, 1999

 $T_{1/2} > 1.6 \times 10^{25} \text{ y } 90\% \text{ C.L.}$

Sensitivity

THE GERDA EXPERIMENT

GERDA collaboration, EPJ-C 78 (2018) 5

- LNGS at ~ 3600 mwe
- Liquid Ar (64 m³) as cooling medium and shielding
- Surrounded by 590 m³ of ultra-pure water as muon Cherenkov veto
- U/Th in LAr < $7x10^{-4} \mu Bq/kg$
- A minimal amount of surrounding material
- Data taking: 2011-2019

THE GERDA EXPERIMENT

- Seven string with 40 detectors (30 BEGe, 7 coaxial, 3 natural coaxial \rightarrow enriched IC)
- Liquid argon veto, equipped with optical fibres and SiPMs, plus 2 arrays of 3-inch PMTs
 - Science run (phase II) started in December 2015
 - Summer 2018: central string replaced with enriched, inverted coaxial (IC) detectors

GERDA collaboration, Characterisation of 30 ⁷⁶Ge enriched Broad Energy Ge detectors for GERDA Phase II, EPJ-C 79, 2019; Characterisation of inverted coaxial ⁷⁶Ge detectors in GERDA for future double beta decay experiments, EPJ-C 81, 2021

- p+ electrodes:
 - \bullet 0.3 μm boron implantation
- n+ electrodes:
 - 1-2 mm lithium layer (biased to +4.5 kV)
- Low-mass holders (Si, Cu, PTFE)

BACKGROUND SUPPRESSION

- Several handles:
 - Event topology + anti-coincidence between HPGe detectors + pulse shape discrimination + liquid argon veto

ENERGY CALIBRATION

- ▶ Three low neutron-emission ²²⁸Th sources in source insertion system, deployed once every week
- FWHM at $Q_{\beta\beta}$: (2.8 ± 0.3) keV for BEGe, (4.0 ± 1.3) keV for coaxial, (2.9 ± 0.1) keV for IC detectors

Custom-made ²²⁸Th sources encapsulated in stainless steel, on Ta holders, two position determination systems

GERDA collaboration, arXiv:2103.13777 [physics.ins-det], accepted in EPJ-C

L. Baudis et al., JINST 10 (2015) no. 12

BACKGROUND MODEL IN GERDA

• Intrinsic $2v\beta\beta$ -events, ³⁹Ar (T_{1/2} = 269 y), ⁴²Ar (T_{1/2} = 33 y) and ⁸⁵Kr (T_{1/2} = 11 y) in liquid argon

▶ ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U in materials, α-decays (²¹⁰Po) on the thin p⁺ contact

GERDA collaboration, JHEP 03 (2020)

PULSE SHAPE DISCRIMINATION

- Cut based on 1 parameter: max of current pulse (A) normalised to total energy (E) (BEGe)
- ▶ Tuned on calibration data (90% ²⁰⁸Tl double escape peak acceptance)
- Acceptance at 0vββ: (87.6±2.5)%

PSD parameter: $(A/E - 1)/\sigma_{A/E}$ Mean and resolution corrected for E-dependance A/E normalised to 1 Accept events around $(A/E - 1)/\sigma_{A/E} = 0$

LIQUID ARGON VETO

- Anti-coincidence with signals in PMTs and SiPMs (0.5 p.e. threshold)
- Acceptance at 0vββ: (97.7±0.1)%

DOUBLE BETA DECAY FINAL RESULTS

- Analysis cuts: liquid argon veto, pulse shape discrimination
- Background at low energies: dominated by 2vββ decay of ⁷⁶Ge
- $Q_{\beta\beta} \pm 25$ keV for blind analysis

DOUBLE BETA DECAY FINAL RESULTS

- Measured T_{1/2} of the $2v\beta\beta$ -decay: (1.926±0.094) x 10²¹ y
- Background level: 5.2 x 10⁻⁴ events/(keV kg y) in 230 keV window around Q-value

Constraints on the $^{76}Ge~0\nu\beta\beta$ decay

$$T_{1/2} > 1.8 \times 10^{26} \text{ y}$$
 (90% CL); $m_{\beta\beta} < 80 - 182 \text{ meV}$

THE FUTURE: LEGEND

- Large enriched germanium
 experiment for 0vββ decay
- GERDA + Majorana + new groups
 - LEGEND-200: 200 kg in existing (upgraded) GERDA infrastructure at LNGS
 - Background goal: 0.6 events/(FWHM t y)
 - LEGEND-1000: 1000 kg, staged, 4 modules
 - Background goal: 0.025 events/(FWHM t y)

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

LEGEND-200 at LNGS

STATUS OF LEGEND-200

- Under construction at LNGS in modified
 GERDA infrastructure
- 70 kg from GERDA & Majorana, plus 130 kg newly produced ICPC detectors
- Fist run to start in late 2021 or early 2022

New calibration systems

In situ TPB evaporation on the WLSR

41

EXPECTED SENSITIVITY

- ► LEGEND-200: T_{1/2} ~ 10²⁷y
- ▶ LEGEND-1000: T_{1/2} ~ 10²⁸ y
- $m_{\beta\beta} \sim 17 \text{ meV}$ (for worst case NME)

Conceptual design of LEGEND-1000

4 independent 250 kg modules (130 kg from LEGEND-200 + 870 kg new detectors)

Background

GERDA:	3 events/(FWHM t y)
LEGEND-200:	0.6 events/(FWHM t y)
LEGEND-1000:	0.025 events/(FWHM t y)

MASS OBSERVABLES AND GLOBAL SENSITIVITY

- \blacktriangleright Constraints in the $m_{\beta\beta}$ parameters space in the 3 light v scenario
- Global sensitivity from 0vββ-experiments & constraints from direct searches & cosmology

GERDA collaboration, Science 365, Sept 2019

SUMMARY AND OUTLOOK

- > Ninety years after Pauli postulated his "silly child": many open questions in neutrino physics
- > 0vββ-decay: excellent tool to test LNV and the nature of neutrinos (Dirac vs Majorana)
- Existing experiments probe $T_{1/2}$ up to ~ 1.8 x 10²⁶ years, with $T_{1/2} \sim (0.1 \text{ eV/m}_v)^2 \times 10^{26} \text{ y}$
- > Ton-scale experiments are required to cover the inverted mass ordering scenario
 - Several technologies move into this direction
- > Much larger experiments needed to probe the normal mass ordering

THANK YOU

OTHER MECHANISMS FOR DOUBLE BETA DECAY

- LNV processes in extensions of the Standard Model generically contribute to 0vββ-decay (light or heavy sterile neutrinos, LR symmetric models, R-parity violating SUSY, leptoquarks, etc)
- Often classified as short- and long range processes, depending on the mass of the particles mediating the process (whether lighter or heavier than the momentum exchange scale ~ O(100 MeV))
- In the effective Lagrangian picture, the effects at low energies can be summarised in terms of higher order operators, added to the SM Lagrangian

Examples from F. Deppisch, A modern introduction to neutrino physics: the lowest-order contributions beyond the standard mechanism

ISOTOPES AND SENSITIVITY TO DOUBLE BETA DECAY

Isotopes have comparable sensitivities in terms of rates per unit mass

BACKGROUND EXPECTATION IN LEGEND-200

Monte Carlo simulations based on experimental data and material assays. Background rate after anticoin., PSD, LAr veto cuts.

Assay limits correspond to the 90% CL upper limit. Grey bands indicate uncertainties in overall background rejection efficiency

 $Q_{\beta\beta}$ BI \leq (0.7-2.)x10⁻⁴ events/(keV kg yr) = 0.2-0.5 events/(FWHM t yr)

GERDA PULSE SHAPE DISCRIMINATION

- A/E: amplitude of the current pulse over energy
- Multiple energy depositions: multiple peaks in current pulse => decreasing A/E
- p+ surface events: shorter signals => higher A/E

EPJC 73 (2013) 2583

GERDA BACKGROUND MODEL

- Intrinsic $2v\beta\beta$ -events, ³⁹Ar, ⁴²Ar (T_{1/2} = 33 y) and ⁸⁵Kr in liquid argon
- ▶ ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U in materials, α-decays (²¹⁰Po) on the thin p⁺ contact

INVERTED COAXIAL DETECTORS

- Large point-contact detectors with ~ 3 kg mass, excellent PSD performance
- First 5 enriched IC detectors installed in GERDA spring 2018; baseline for LEGEND

TIME SCALE FOR GERDA, MAJORANA AND LEGEND

Earliest LEGEND-1000 Data Start: 2025/6

LEADING RESULTS: OVERVIEW

Experiment	lsotope	FWHM [keV]	T _{1/2} [10 ²⁶ y]	m _{ββ} [meV]
CUORE	¹³⁰ Te	7.4	0.15	162-757
CUPID-0	⁸² Se	23	0.024	394-810
EXO-200	¹³⁶ Xe	71	0.18	93-287
KamLAND-Zen	¹³⁶ Xe	270	1.1	76-234
GERDA	⁷⁶ Ge	3.3	1.8	80-182
Majorana	⁷⁶ Ge	2.5	0.27	157-346

FUTURE PROJECTS: A SELECTION

Experiment	lsotope	lso mass [kg]	FWHM [keV]	T _{1/2} [10 ²⁷ y]	$m_{\beta\beta}$ [meV]
CUPID	¹³⁰ Te	543	5	2.1	13-31
CUPID	⁸² Se	336	5	2.6	8-38
nEXO	¹³⁶ Xe	4500	59	9	7-21
KamLAND2-Zen	¹³⁶ Xe	1000	141	0.6	25-70
DARWIN	¹³⁶ Xe	1068	20	2.4	11-46
PandaX-III	¹³⁶ Xe	901	24	1.0	20-55
LEGEND-200	⁷⁶ Ge	175	3	1	34-74
LEGEND-1000	⁷⁶ Ge	873	3	6	11-28
SuperNEMO	⁸² Se	100	120	0.1	58-144

 $|m_{\beta\beta}| \propto \left(\frac{B \cdot \Delta E}{M \cdot t}\right)^{\frac{1}{4}}$

- Reminder
 - Large exposures: 10 tonne x year, low background rates < 1 event/(FWHM tonne x year)
 - Good energy resolution, large Q-value, high efficiency, demonstrated technology, etc
- Essential to use multiple isotopes to make a convincing case for LNV

THE EFFECTIVE MAJORANA NEUTRINO MASS

- Probability distribution of $m_{\beta\beta}$ via random sampling from the distributions of mixing angles and Δm^2
- Flat priors for the Majorana phases

Agostini, Benato, Detwiler, PRD 96, 2017

NEUTRINO MASSES

- > Three main methods: direct mass measurements, 0vββ-decay, cosmology
 - > the observation of flavour oscillations imply a lower bound on the mass of the heavier neutrino
 - depending on the mass ordering, this lower bound is $\approx 0.05 \text{ eV}$
 - $\ensuremath{\circ}$ The most direct probe: precision measurements of β -decays

$$^{3}_{1}\mathrm{H} \longrightarrow^{3}_{2}\mathrm{He} + e^{-} + \bar{\nu}_{e}$$

 $m_{\nu_e}^2 = \sum |U_{ei}|^2 m_i^2$

- The effect of a non-zero neutrino masses is observed kinematically: when a v is produced, some of the energy exchanged in the process is spent by the non-zero neutrino mass
- The effects are however very small & difficult to observe
- ${\scriptstyle \odot}$ KATRIN will probe the eff. $v_{\rm e}$ mass down to 0.2 eV

 Eur. Phys. J. C
 (2020) 80:264

 https://doi.org/10.1140/epic/s10052-020-7718-z

 Regular Article - Experimental Physics

First operation of the KATRIN experiment with tritium

$$E_{0} = 18.6 \text{ keV}, T_{1/2} = 12.3 \text{ y}$$

$$E_{0} = 18.6 \text{ keV}, T_{1/2} = 12.3 \text{ y}$$

$$E_{0} = 18.6 \text{ keV}, T_{1/2} = 12.3 \text{ y}$$

$$m_{v} = 0 \text{ eV}$$

$$m_{v} = 0 \text{ eV}$$

$$m_{v} = 1 \text{ eV}$$

$$E_{0} = 18.6 \text{ keV}, T_{1/2} = 12.3 \text{ y}$$

NEUTRINO MASSES

> Three main methods: direct mass measurements, 0vββ-decay, cosmology

- > the observation of flavour oscillations imply a lower bound on the mass of the heavier neutrino
- depending on the mass ordering, this lower bound is $\approx 0.05 \text{ eV}$
- Cosmology: neutrinos influence the LSS and the CMB (with the v density ratio):

$$\frac{\rho_{\nu}}{\rho_{\gamma}} = \frac{7}{8} N_{eff} \left(\frac{4}{11}\right)^{4/3} \qquad \text{N}_{eff} = 3 \sim \text{number of active neutrinos}$$

• The constraints are on the sum of neutrino masses

$$\sum_{i} m_{i}$$

• Dependent on the parameters of the cosmological model (ACDM)

• In general, depending on which data is included (see e.g., review in PDG2020)

$$\sum_{i} m_i < (0.11 - 0.54) \,\mathrm{eV}$$