

Gaseous Detector R&D

Ioannis Katsioulas

School of Physics and Astronomy University of Birmingham

> PPTAP Detectors Workshop 03/06/2021

i.katsioulas@bham.ac.uk

Brief history of Gaseous Detectors

Micro-Pattern Gaseous Detectors (MPGDs)

- High rate capability \rightarrow Up MHz/mm² (MIPs)
- High gain \rightarrow Up to $\sim 10^6$
- High spatial resolution \rightarrow < 100µm
- Good time resolution $\rightarrow \sim$ ns in general
 - Excellent in cases \rightarrow < 100 ps
- Excellent radiation hardness
- Good ageing properties
- Ion backflow reduction
 - Photon feedback reduction
 - Large volume/area \rightarrow tenths of L / m²
 - Low material budget
 - Low cost

Adapted from E.Oliveri ECFA Detector R&D 2021

Application of MPGDs in physics and beyond

LHC

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
ATLAS Muon System Upgrade: Start: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) - 2-3 m ²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: ~10 ns Rad. Hard.: ~0.5C/cm ³	- Redundant tracking and triggering: Challenging constr. in mechanical precision:
ATLAS Muon Tagger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	µ-PIC	Total area: - 2m ²	Max.rate:100kHz/cm ² Spatial res.: < 100µm	
CMS Muon System Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: - 143 m ² Single unit detect: 0.3-0.4m ²	Max.rate:10kHz/cm ² Spatial res.: -100µm Time res.: - 5-7 ns Rad. Hard.: - 0.5 C/cm ²	- Redundant tracking and triggering
CMS Calorimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: - 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: - mm	Not main option: could be used with HGCAL (BE part)
ALICE Time Projection Chamber: Start > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM.w/ TPC	Total area: - 32 m ² Single unit detect: up to 0.3m ²	Max.rate.100kH2/cm ² Spatial res.: -300µm Time res.: - 100 ns dE/dx: 12 % (Fe55) Rad. Hand.: 50 mC/cm ²	- 50 kHz Pb-Pb rate: - Continues TPC readout - Low IBF and good energy resolution
TOTEM: Run: 2009-now	High Energy/ Forward Physics (5.351eta156.5)	GEM (semicircular shape)	Total area: ~ 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ³ Spatial res: ~120µm Time res: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp. pA and AA collisions.
LHCb Muon System Run: 2010 - now	High Energy / 8-flavor physics (muon triggening)	GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500kHz/cm ² Spatial res.: - cm Time res.: - 3 rs Rad. Hard.: - C/cm ²	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM,THGEM Micromegas, p-PIC,InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate 100kHz/cm ² Spatial res.: <100µm Time res.: <1 ns	Maintenance free for decades

Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: 3.5m ² 4 cylindrical layers L(length) – 700mm R (radius) – 130, 155, 180, 205 mm	Spatial res.(r phi) – 250um Spat. res.(z) – 350um	- Mat. budget 2% X0 - Operation in 0.5 T
BESIII Upgrade @ Beijing Run: 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R - 20 cm	Max. rate: 10 kHz/cm ² Spatial res:(xy) = 130um Spat. res.(z) = 1 mm	- Material ≤ 1.5% of X ₀ for all layers - Operation in 1T
CLAS12 @ JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planar (forward) & Cylindrical (barrel) Micromegas	Total area: Forward - 0.6 m ² Barrel - 3.7 m ² 2 cylindrical layers R - 20 cm	Max. rate: - 30 MHz Spatial res.: < 200µm Time res.: - 20 ns	- Low material budget : 0.4 % X0 - Remote electronics
ASACUSA @ CERN Run: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max. trigger rate: kHz Spatial res.: -200µm Time res.: - 10 ns Rad. Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area
MINOS Run: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to ~1 KHz	- Low material budget
CMD-3 Upgrade @ BINP Start: > -2019?	Particle physics (z-chamber, tracking)	Cylindrical GEM	Total arear: - 3m ² 2 cylindrical layers	Spatial res.: -100µm	
					0

MPGD Technologies for the International Linear Collider

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
ILC Time Projection Chamber for ILD: Start: > 2030	High Energy Physics (tracking)	Micromegas GEM (pads) InGrid (powls)	Total area: - 20 m ² Single unit detect: - 400 cm ² (pads) - 130 cm ² (pixels)	Max, rate: <1 kHz Spatial res.: <150µm Time res.: <15 ns dE/dx: 5 % (Fe55) Rad. Hard.: no	Si + TPC Momentum resolution : dp/p < 9*10-5 1/GeV Power-pulsing
LC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	GEM, THGEM RPWELL, Micromegas	Total area: - 4000 m² Single unit detect: 0.5 • 1 m²	Max.rate:1kHz/cm ² Spatial res.: - 1cm Time res.: - 300 ns Rad. Hard.: no	Jet Energy resolution: 3-4 % Power-pulsing, self- triggering readout

MPGD Tracking for Heavy Ion / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
STAR Forward GEM Tracker @ RHIC Run: 2012-present	Heavy Ion Physics (tracking)	GEM	Total area: - 3 m ² Single unit detect: - 0.4 x 0.4 m ²	Spatial res.: 60-100 µm	Low material budget:: < 1% X0 per tracking layer
Nuclotron BM@N @ NICA/JINR Start > 2017	Heavy Ions Physics (tracking)	GEM	Total area: - 12 m ² Single unit detect: - 0.9 m ²	Max.rate: - 300 MHz Spatial res.: - 200µm	Magnetic field 0.5T orthogonal to electric field
SuperFRS @ FAIR Run: 2018-2022	Start > 2017 SuperFRS @ FAIR Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator) PANDA @FAIR Nuclear physics Start > 2020		Total area:- few m ² Single unit detect: Type I : 30 x 9 cm ² Type II: 50 x 16 cm ²	Max.rate:~10*7Hz/spill Spatial res::< 1 mm	High dynamic range Particle detection from p to Utanium Continuous-wave operation: 10 ¹¹ interaction/s
PANDA @FAIR Start > 2020			Total area: - 50 m ² Single unit detect: ~ 1.5 m ²	Max.rate < 140kHz/cm ¹ Spatial res.: ~ 150µm	
CBM @ FAIR: Nuclear Physics (Muon System) Start: > 2020		GEM	Total area: 9m² Single unit detect: 0.8x0.5m²-0.4m²	Spatial res.: <1 mm Max. rate: 0.4 MHz/cm ² Time res.: - 15ns Rad hardz: 10 ¹⁰ n.eq./cm ² /year	Self-triggered electronics
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout Large area GEM planar tracking detectors	Total area: - 3 m ² Total area: - 28 m ²	Spatial res.: - 100 um (r#) Luminosity (e-p): 10 ¹⁰ Spatial res.: - 50-100 um Max.rate: - MHz/cm ²	Low material budget

MPGD Tracking Concepts for Hadron / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
COMPASS © CERN Run: 2002 - now	Hadron Physics (Tracking)	GEM Micromegas w/ GEM preampl.	Total area: 2.6 m ² Single unit detect: 0.31x0.31 m ² Total area: - 2 m ² Single unit detect: 0.4x0.4 m ²	Max.rate:10°7 Hz (-100kHz/mm²) Spatial res.: -70-100 µm (strip)120µm (pose) Time res.: - 8 ns Rad. Hard:: 2500 mC/cm²	Required beam tracking (pixelized central / beam area)
KEDR @ BINP Run: 2010-now	Particle Physics (Tracking)	GEM	Toral area: -0.1 m ²	Max. rate: 1 MHz/mm ² Spatial res.: -70µm	
SBS in Hall A @ JLAB Start: > 2017	Nuclear Physics (Tracking) nucleon form factors/struct.	GEM	Total area: 14 m ² Single unit detect. 0.6a0.5m ²	Max. rate:400 kHz/cm ² Spatial res.: ~70µm Time res.: ~15 ns Rad. Hard.: 0.1-1 kGy/y.	
pRad in Hall B @ JLAB Start: 2017	Nuclear Physics (Tracking) precision meas. of proton radius	GEM	Total area: 1.5m ² Single unit detect. 1.2s0.6 m2	Max. rate:5kHz/cm ² Spatial res:=-70µm Time res:=-15 ns Rad. Hard::10 kGy/y.	
SoLID in Hall A@ JLAB Start: - > 2020	Nuclear Physics (Tracking)	GEM	Total area: 40m ² Single unit detect. 1.2x0.6 m2	Max. rate:600 kHz/cm ² Spatial res:=-100µm Time res::=-15 ns Rad. Hard::0.8-1 kGy/y.	
E42 and E45 #JPARC Start: -2020	Hadron Physics (Tracking)	TPC w/ GEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(drift length)	Max, rate:10 ⁶ kHz/cm ² Spatial res.: 0.2-0.4 mm	Gating grid operation - 1kHz
ACTAR TPC Start: -2020 for 10 y.	Nuclear physics Nuclear structure Reaction processes	TPC w/ Micromegas (amp. gap -220 µm)	2 detectors: 25*25 cm2 and 12.5*50cm2	Counting rate < 10°4 nuclei but higher if some beam masks are used.	Work with various gas (He mixture, iC4H10, D2)

MPGD Technologies for Photon Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM + CsI and MM)	Total area: ~ 1.4 m ² Single unit detect: ~ 0.6 x 0.6 m ²	Max.rate:100 Hz/cm ² Spatial res.: <- 2.5 mm Time res.: - 10 ns	Production of large area THGEM of sufficient quality
PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH - e/h separation)	GEM+CsI detectors	Total area: ~ 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate: low Spatial res.: - 5 mm (r#) Single el. eff.: - 90 %	Single el. eff. depends from hadron rejection factor
SPHENEX Run: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: - 3 m ²	Multiplicity: dNch/dy - 600 Spatial res.: - 100 um (rø)	Runs with Heavy Ions and comparison to pp operation
Electron-Ion Collider (EIC) Start: > 2025	Electron-Ion Collider (EIC) Start: > 2025	TPC w/GEM readout + Cherenkov	Total area: - 3 m ²	Spatial res.: - 100 um (rø) Luminosity (e-p): 10 ¹⁰	Low material budget
		RICH with GEM readout	Total area: - 10 m ²	Spatial res.: - few mm	High single electron efficiency

Method with a second se							
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics/ Performance	Special Requirements / Remarks		
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd converter	Total area: ~ 1 m ² Single unit detect: 60x60 cm ²	Max.rate: 100 kHz/mm ² Spatial res.: -500µm Time res.: -10 us neff: - 20% efficient - v rejection of 100	Localise the secondary particle from neutron conversion in Gd with < 500um precision		
ESS LOKI- SANS: Small Angle Neutron Scattering (Low Q) Start: > 2020(for 10 y.)	Neutron scattering: Small Angle	GEM w/ borated cathode	Total area: ~ 1 m ⁷ Single unit detect: 33x40 cm ² trapezoid	Max.rate: 40 kHz/mm ² Spatial res.: -4 mm Time res.: -100 us neff. >60% (at λ- 4 Å) - γ rejection of 10 ⁵ -7	Measure TOF of neutron interaction in a 3D borated cathode		
SPIDER: ITER NBI PROTOTYPE Start: - 2017(for 10 y.)	CNESM diagnostic: Characterization of neutral deuterium beam for ITER plasma heating using neutron emission	GEMs w/ Al-converter (Directionality - angular) capability)	Single unit detect: 20x35 cm ²	Max.rate: 100 kHz/mm ² Spatial res.: - 10 mm Time res.: - 10 ms n.eff: >10^5 y rejection of 10^7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters		
n_TOF beam monitoring/ beam profiler	Neutron Beam Monitors	MicroMegas µbulk and GEM w/ converters	Total area: - 100cm ²	Max.rate:10 kHz Spatial res.: .: -300µm Time res.: - 5 ns Rad. Hard.: no			

MPGD Technologies for Dark Matter Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements Remarks
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: -30m ² Single unit detect. -20 x20 cm ²	Max.rate: 100 Hz/cm ² Spatial res.: - 1cm Time res.: - few ns Rad. Hard.: no	Operation at -180k radiopure materials dark count rate -1 Hz/cm ²
PANDAX III © China Start: > 2017	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: - 1-3% @ 2 MeV Spatial res.: - 1 mm	High radiopurity High-pressure (10b Xe)
NEWAGE@ Kamioka Run: 2004-now	Dark Matter Detection	TPC w/ GEM+µPIC	Single unit det. - 30x30x41(cm ³)	Angular resolution: 40° ⊕ 50keV	
Run: 2002-now Run: 2002-now Run: 2002-now Run: 2002-now		Micromegas µbulk and InGrid (coupled to X- ray focusing device)	Total area: 3 MM µbulks of 7x 7cm ² Total area: 1 InGrid of 2cm ²	Spatial res.: -100μm Energy Res: 14% (FWHM) @ 6keV Low bkg, levels (2-7 keV): μMM: 10-6 cts s-1keV-1cm-2 InGrid: 10-5 cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays
IAXO Start: > 2023 ?	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas ubulk, CCD, InGrid (+ X- ray focusing device)	Total area: 8 µbulks of 7 x 7cm2	Energy Res: 12% (FWHM) © 6keV Low bkg, Levels (1-7 keV): pbulk: 10-7cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays
State 3 2023?	detection	ray focusing device)		Low bkg. Levels (1-7 keV): µbulk 10-7ctss-1keV-1cm-2	X-rays

MPGD Technologies for Neutrino Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements / Remarks
T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: - 9 m² Single unit detect: 0.36x0.34m²-0.1m²	Spatial res.: 0.6 mm dE/dx: 7.8% (MIP) Rad. Hard.: no Moment. res.:9% at 1 GeV	The first large TPC using MPGD
SHIP @ CERN Start: 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWELL	Total area: - 26 m ² Single unit detect: 2 x 1 m ² - 2m ²	Max. rate: < low Spatial res.: < 150 µm Rad. Hard.: no	Provide time stamp of the neutrino interaction in brick"
LBNO-DEMO (WA105@CERN): Start: > 2016	Neutrino physics (Tracking+ Calorimetry)	LAr TPC w/ THGEM double phase readout	Total area: 3 m² (WA105-3x1x1) 36 m² (WA105-6x6x6) Single unit detect. (0.5x0.5 m2) -0.25 m²	WA1053x1x1 and 6x6x6: Max.rate:150Hz/m ² Spatial res.: 1 mm Time res.: - 10 ns Rad. Hard.: no	Detector is above ground (max. rate is determined by muon flux for calibration)
DUNE Dual Phase Far Detector Start: > 2023?		LAr TPC w/ THGEM double phase readout	Total area: 720 m ² Single unit detect. (0.5x0.5 m2) - 0.25 m ²	Max. rate: 4*107 Hz/m² Spatial res.: 1 mm Rad. Hard.: no	Detector is underground (rate is neutrino flux)

MPGD Technologies for X-Ray Detection and y-Ray Polarimetry

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requirements/ Remarks
KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEM GEMPIX	Total area: 100 cm ² Total area: 10-20 cm ²	Spat. res.: - 8x8 mm*2 2 ms frames; 500 frames/sec Spat. res.: - 50x50 µm*2 1 ms frames;5 frames/sec	
PRAXyS Future Satellite Mission (US-Japan): Start 2020 - for 2years	Astrophysics (X-ray polarimeter for relativistic astrophysical X-rays	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x 50cm ²) ~400cm ²	Max.rate: -11cps Spatial res.: - 100 um Time res.: - few ns Rad. Hard.: 1000 krad	Reliability for space mission under severe thermal and vibration conditions
HARPO Balloon start>2017?	Astroparticle physics Gamma-ray polarimetry (Tracking/Triggering)	Micromegas + GEM	Total area: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 = 64 HARPO size mod.	Max.rate: - 20 kHz Spatial res.: < 500 um Time res.: - 30 ns samp	AGET development for balloon & self triggered
SMILE-II: Run: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)	Total area: 30 x 30 x 30 cm ³	Point Spread Function for gamma-ray: 1*	
ETCC camera Run: 2012-2014	Environmental gamma-ray monitoring (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)	Total area: 10x10x10 cm ³	Point Spread Function for gamma-ray: 1'	

Maksym Titov, Conference Summary, 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), Temple University, Philadelphia

Adapted from E.Oliveri ECFA Detector R&D 2021

MPGDs in CERN experiments

03-06-2021

6

RD51 collaboration Development of Micro-Pattern Gas Detectors Technologies

https://rd51-public.web.cern.ch/welcome

The RD51 collaboration - CERN

~ 450 authors, 75 Universities and Research Laboratories from 25 countries in Europe, America, Asia and Africa

Members from the UK 10 members, 3 institutes

Alexander DEISTING	Royal Holloway College
Pawel MAJEWSKI	Science and Technology Facilities Council STFC
Timothy David MARLEY	Science and Technology Facilities Council STFC
Mohammad NAKHOSTIN	Science and Technology Facilities Council STFC
Konstantinos NIKOLOPOULOS	University of Birmingham
Ioannis KATSIOULAS	University of Birmingham
Tom Neep	University of Birmingham
Ioannis MANTHOS	University of Birmingham
Robert James WARD	University of Birmingham
Jack Paul MATTHEWS	University of Birmingham

https://indico.cern.ch/event/999799/

Gaseous Detectors don't stop with MPGDs

ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors

Thursday 29 Apr 2021, 09:00 → 19:40 Europe/Zurich

🚹 Anna Colaleo (Universita e INFN, Bari (IT)) , Anna Colaleo (Universita e INFN, Bari (IT)) , Leszek Ropelewski (CERN)

R&D in the UK

High pressure TPC with optical readout for v-physics

Towards a neutrino-nucleus cross section experiments I All Hyper-K

PRD 19, 2521 (1979), H₂, D PRD 25, 1161 (1982), H₂, D

DUNE

T2K

Far Detector

(H_O)

T2K Near Detecto

Simplest interaction

rate

event

Gas is the target for vs to scatter and the detection medium for the interaction's final state particles

A neutrino-nucleus scattering experiment in its own right at a strong neutrino source

A powerful component of a near detector at a long baseline neutrino oscillation facility

Different gas mixture can be used for different physics experiment. Example: Hydrogen rich targets for new data of v-H scattering.

Advantages:

- Coverage of the full solid angle and low momentum threshold for particle detection.
- Threshold in gas is lower than in liquid, which makes a gas TPC better suited to measure low-momentum final state particles produced in interactions of a v-beam with the gas atoms / molecules
- A gas TPC can be easier magnetised than a liquid one
- Exchanging the gas and thus the target inside a TPC allows for a rich physics program measuring scattering on gas atoms

NOvA

DRIFT (part of the global CYGNUS effort for directional Dark Matter detection)

MIGDAL O-TPC and Glass-GEM applications

Not only application in Physics research !

3D alpha track reconstruction (schematic)

<u>H. Takahashi, Nucl.Instrum.Meth.A 724 (2013) 1-4</u>

- X-ray imaging
- Medical imaging
- Neutron detection

T.Fujiwara's

presentation

PEG3 G-GEM

03-06-2021

NEWS-G and the Spherical Proportional Counter

03-06-2021

Spherical Proportional Counter - Spin offs

NEWS-G G3 Starting 2022

SPC for CEvNS physics in reactors

- Beyond Standard Model:
 - Measurement of a non-zero neutrino magnetic moment
 - Search for sterile neutrinos.
- Monitoring reactor neutrino fluxes
- Study of reactor anti-neutrino energy spectrum, below the Q-value of the inverse beta decay process

R2D2 (Rare Decays with a Radial Detector)

An R&D project investigating the use of a Xenon filled SPC to search for $0\nu\beta\beta$ JINST 13 (2018) P01009 JINST 16 (2021) 03, P03012

Goal: demonstration of the required energy resolution to search for $0\nu\beta\beta$ can be achieved (1% FWHW at $Q\beta\beta$ of 2.458 MeV)

Fast neutron detection with a N₂-filled SPC

Blue: Thermal neutrons

4000

Red: Fast neutrons

10⁻² [Hz] 10⁻³

1000

2000

3000

Amplitude (ADU

- Alternative to 3He for fast neutrons
- Simple Safe Robust
- Measurements started at UoB and Boulby UG lab
- Principle proved

<u>Nucl.Instrum.Meth.A 847 (2017) 10-14</u> <u>NSS/MIC 2019, 1-3</u>

PICOSEC Micromegas for precise timing

03-06-2021

Synergies

Synergies successfully explored with MPGD technologies. Specially within RD51 collaboration with common facilities (lab/beam/workshop) and tools (modelling/electronics) To be fostered as well between different technologies (facilities, modelling, electronics,...) ...

Sharing of facilities/instrumentation: Timing/RD50 on RD51 timing telescope in beam @ H4/SPS

Sharing of tools (modelling): LGAD (Si) & MicroMegas (gas) almost identical concept/signal formation

Summary

- Gaseous detectors are a very versatile with numerous advantages, behind numerous great discoveries in Physics
- Gaseous detector development capabilities opens up numerous physics applications in a very diverse set fields
- Gaseous detectors greatly complement other detector technologies developed in the UK
- Gaseous detectors can bring down the cost of physics projects in many cases
- R&D on gaseous detectors is relatively low cost
- Funding opportunities at the level of 10-100k£ would have a major impact

tate Gas Scintillator Noble liquid Cherenkov

Vertex / Tracker Challenges: high spatial resolution, high rate/occupancy, fast/precise timing, radiation hardness, low mass, 4D tracking.

Planar, 3D, (D)MAPS ¹ , LGAD ² , (HV-HR) CMOS ³	TPC ⁴ , DC ⁵	SciFi ⁶ + SiPM ⁷		
--	---------------------------------------	---	--	--

Calorimeter

challenges: high granularity, radiation hardness, large volume, excellent hit timing, PFA/dual-readout capability, 5D imaging.

Si sensors sampling	RPC ⁸ or MPGD ⁹ sampling	Tile/fibers + SiPM sampl., homogeneous crystals (e.g. LYSO)	LAr sampling	Quartz fibers sampling in dual-readout
------------------------	--	---	-----------------	--

Muon detector

Challenges: large area, low cost, spatial resolution, high rate.

MPGD,	Scint+		
RPC, DT 9	WLS fibers		
MWPC ¹⁰	+ SiPM		

PID / TOF

Challenges: high photon detection efficiency, large area photodetectors, thinner radiator, timing resolution ≤ 10 ps, radiation hardness.

Neutrino / O Dark Matter r

Challenges: high photon detection efficiency, very large volume, radio purity, cryogenic temperature, large area photodetectors,

Si, Ge	TPC	liquid scint., scint. tiles / bars	single/dual- phase TPC	water/ice + mPMT ¹⁶
--------	-----	--	---------------------------	--------------------------------

18

Extra slides

Challenges for MPGD Technologies: Experimental Opportunities

