The CMS HGCAL detector	Calibration	Timing	Cor

Calibration and timing for the HGCAL detector

A.-M. Magnan Imperial College London on behalf of the CMS-HGCAL collaboration

CMS HGCAL

clusion

- Not possible to increase luminosity without increasing PU.
- Enormous challenges to detector upgrade programs.

Two scenarios

Scenario	${\cal L}$	$<$ PU $>$	Vertex Density	$\int \mathcal{L}/\text{year}$
Baseline	$5 imes 10^{34}~{ m cm}^{-2}{ m s}^{-1}$	140	0.8 / mm	250 fb ⁻¹
Ultimate	$7.5 imes 10^{34} m \ cm^{-2} s^{-1}$	200	1.2 / mm	$> 300 \text{ fb}^{-1}$

A.-M. Magnan

CMS HGCAL

04/06/2021 3 / 15

The CMS HGCAL detector ○○●○○	Calibration	Tir	ming bo	Conclusion o
The CMS approach				Imperial College London
Pattern recognition high granularity: "image 	aging calorimeter"	Pile-up	mitigation	
particle-flow detector	by design	A ir C	Addition of timing nformation Discrimination of	PU
$E_{jet} = E_{track} + E_{\gamma} + E_{n}$		0.6 0.4 0.2 E 0.0	Base	aline (end) 3.0 2.5 2.0 1.5 15
Charged hadrons60Photons30Neutral hadrons10	0%Tracker p reso0%EM reso0%Hadronic reso	-0.2 -0.4 -0.6 -20 -	15 -10 -5 0 5 10 z [cm]	1.0 v ^o 0.5 15 20
End game: minimize of calo deposit and control	confusion, from source overlapping of particles.	● E ● V	Bunches within 29 /ertices within 20	5 ns. 10 ps.
 Additional complexity energy from PU ⇒ " 	r: identify and remove Denoising"	a A	At <i>v</i> = <i>c</i> , 100 mm	n = 330 ps.

The CMS HGCAL detector	Calibration	Timing	Conclusion
○○○●○	00000	000	o
The HGCAL project			Imperial College London

Both endcaps	Silicon	Scintillators
Area	~620 m²	~400 m²
Channel size	0.5 - 1 cm ²	4 - 30 cm ²
#Modules		~4'000
#Channels	~6 M	240 k
Op. temp.		-30 °C

A.-M. Magnan

- Clustering of cells in 2D and 3D, using spatial+energy information.
- Considering adding time information too with O(30) ps resolution, with external time reference from MTD layers.
- ⇒ importance of calibration for the energy measurement, and feasibility of timing to reject deposits from PU vertices⇒ both UK contributions.

Calibration requirem	ents		Imperial College
The CMS HGCAL detector	Calibration	Timing	Conclusion
	●0000	000	o

Targets

- Two types of sensors: Si and scint tiles + SiPM
- After irradiation: lower Signal from sensitive material + higher Noise from readout electronics.
- At end-of-life, target is MIP-S/N \simeq 2.5 in Si, \simeq 5 in Scint. tiles.
- May have to go even lower, worst affected cells of both Si and scint tiles have MIP-S/N \simeq 2.
- "Absolute calibration" \Rightarrow given by physics candles like Z/ γ .
- What matters: intercalibration of the cells, to accuracy driven by impact on energy resolution: 3% in CE-E, O(15%) in CE-H.

Challenges

- Isolate MIP deposits to perform regular calibration.
- Need to be able to see MIPs, and reject noise even at end-of-life.
- Need the triggers + acceptable rate to have required precision.
- Need selection with good enough purity + efficiency.

Options available		g	Imperial College
The CMS HGCAL detector	Calibration	Timing	Conclusion
	○●○○○	000	o

HGCAL G4 standalone

MIPs from non-interacting pions, within showers

- high rate in minimum bias collisions
- X "not-quite" MIPS: mixture of momentum and particle type
- \Rightarrow for EM calibration ?

MIPs from muons, using tracks

- ✓ proper MIPs
- X low rate
- ⇒ for hadronic calibration ?

Special calibration pads: 1 per readout chip

- higher MIP-S/N, charged injection system for linearity measurement.
- ⇒ independant verification of MIP calibration at startup + monitor charge collection efficiency vs time.

A.-M. Magnan

- Minimum bias tracklets = mixture of "not-quite MIPs"
- MPV variations theoretically well-known, from Bethe-Block.
- With <200> PU simulation: found layer-to-layer variations O(6%) ⇒ too large !
- Three major effects identified: √ reduce systematics to O(1)%.
- Correction for particle local direction: $\cos\theta \simeq 0.9(0.99)$ @ $\eta = 1.5(2.5)$
- Tightening of the selection to reject e/γ contributions: increase lever arm.

Rejection of proton contribution: more elaborate tracker-driven selection of π[±] and μ[±] tracklets.

G4 tracks matched to 3-lay tracklets

Choice of data-taking mode

- Minimum bias trigger rate: on-the-fly using full L1 bandwitdh: 500 (750) kHz for baseline (ultimate) scenarios ?
- Single muon rate in 5kHz HLT menu for CE-H calibration ?

- Cleaning of "time-displaced" energy deposits.
- Cleaning of PV candidates using measurement of time of tracks from the chosen hard-scattering PV: rejection of charged hadrons associated to time-displaced PU vertices.
- Questions: what is the time precision we can expect from the detector ? What is the typical time distribution of a photon/pion shower ?

Precision timing			Imperial College
The CMS HGCAL detector	Calibration	Timing	Conclusion
	00000	○●○	o

- Intrinsic timing capability of Si sensor with ideal electronics: resolution

 ² 10 ps for high S/N.
- Complemented by timing layer to be placed in front of the ECAL.
- Adds a dimension to assist in PU rejection, and identification of primary vertex.
- Simple algo tested, to select hits (highest density time interval, reject tails): time resolution of showers < 30 ps, also with PU.
- But, significant tails from signal showers in particular for hadrons: further studies needed.

CMS HGCAL

hit time (ns)

- TB prototype with full readout achieving 80 ps single-cell resolution: not the final chip yet (targeting ≃ 20 ps, or say < 50 ps).
- First exploration of time shower development!
- Important setup to benchmark the simulation against real data.
- Still lots to do for the full HGCAL setup: time calibration, correlation effects, implementation in PF reco.

Outlook		C.	Imperial College
00000	00000	000	•
			0

- The HGCAL for HL-LHC is an ideal guinea pig for high-granularity detectors with timing precision at future colliders.
- Calibration issues to be understood early on.
- Timing as a 5th dimension, complementing 3D position and energy, is being explored.
- Future detectors: even more challenging conditions !

Parameter		Unit		LHC	HL-I	HC	HE-LHC	FCC-hh	
Ecm		TeV		14	1.	4	27	100	•
Circumference		km		26.7	26	.7	26.7	97.8	
Peak L, nominal (ultimate)		1034 cm-2	s ⁻¹	1(2)	5 (7	.5)	16	30	•
Bunch spacing		ns		25	2	5	25	25	
Number of bunches				2808	27	50	2808	10600	
Goal ∫ L		ab ⁻¹		0.3	3		10	30	
σ _{inel} [331]		mb		80	- 8	0	86	103	
σ _{tot} [331]		mb		108	10	18	120	150	•
BC rate		MHz		31.6	31	.0	31.6	32.5	
Peak pp collision rate		GHz		0.8	4		_14_	31	+
Peak av. PU events/BC, nominal (altimate)			25 (50)	130 (200)	435	950	+
		ıc	_		сцс				
							_		
Parameter	250 GeV	500 GeV	3	80 ieV	1.5 TeV	3 Te\	,		
Parameter Luminosity & (10 ¹⁴ cm ⁻² sec ⁻¹)	250 GeV 1.35	500 GeV 1.8	3 G	80 ieV	1.5 TeV	3 Te\ 5.9	,		
Parameter Luminosity & (10 ¹⁴ cm ⁻² sec ⁻¹) & above 99% of vs (10 ¹⁴ cm ⁻² sec ⁻¹)	250 GeV 1.35 1.0	500 GeV 1.8 1.0	3 G 1.5 0.9	180 ieV	1.5 TeV	3 Te\ 5.9 2.0	,		
Parameter Luminosity & (10 ¹⁴ cm ² sec ⁻¹) & above 99% of Vs (10 ¹⁴ cm ² sec ⁻¹) Repetition frequency (Hz)	250 GeV 1.35 1.0 5	500 GeV 1.8 1.0 5	3 G 1.5 0.9 50	80 jeV 1	1.5 TeV .7 4	3 TeV 5.9 2.0 50	,	Drives timi	ng
Parameter Luminosity & (10 ¹⁴ cm ² sec ²) & above 99% of Vs (10 ¹⁴ cm ² sec ¹) Repetition frequency (Hz) Bunch separation (ns)	250 GeV 1.35 1.0 5 554	500 GeV 1.8 1.0 5 554	3 G 1.5 0.9 50 0.5	130 ieV 1 1 5	1.5 TeV 4	3 TeV 5.9 2.0 50 0.5		Drives timi requiremen	ng
Parameter Luminosity z" (10 ¹⁴ cm ³ sec ⁻¹) z" above 99% of v's (10 ¹⁴ cm ³ sec ⁻¹) Repetition frequency (Hz) Bunch separation (ni) Number of bunches per train	250 GeV 1.35 1.0 5 554 1312	500 GeV 1.8 1.0 5 554 1312	3 6 1.5 0.9 50 0.5 352	80 ieV 3 1 5 0	1.5 TeV 1.7 4 0 1.5	3 Te\ 5.9 2.0 50 0.5 312	-	Drives timi requiremen CLIC detect	ng nts tor
Parameter Luminosity & (10 ¹⁴ cm ³ sec ⁻¹) & above 99% of vs (10 ¹⁴ cm ³ sec ⁻¹) Repetition frequency (Hz) Bunch sparation (ms) Number of bunches per train Beam size at IP o ₄ /a ₄ (nm)	250 GeV 1.35 1.0 5 554 1312 515/7.7	500 GeV 1.8 1.0 5 554 1312 474/5.9	3 6 1.5 0.9 50 0.5 352 150	10000000000000000000000000000000000000	1.5 TeV .7 .4 .0 .5 .12 .60/1.5	3 TeV 5.9 2.0 50 0.5 312 ~40/	1	Drives timi requireme CLIC detect	ng nts tor

Shadok's Mottos

with stairs designed for going up, one often manages to go up lower than going down stairs designed for going down.

... and vice versa ...

A.-M. Magnan

BACKUPS

CMS HGCAL

.

Aim for the impact on energy resolution

Sampling calorimeter:

 $\sigma/E = c \oplus s/\sqrt{E} \oplus n/E$

- High-energy photon showers: requirement to keep the constant term c below 1% ⇒ intercalibration of CE-E cells within 3%.
- Hadronic energy resolution: affecting "only" 10% of full jet energy, accepting intercalibration at the level of 15 to 20%.

Backups oo●oo

5

TICL: Pattern Recognition (I)

- Pattern recognition based on "Cellular Automaton"
- Doublets creation:
 - For each LC, open a search window in bins in η - ϕ space in the following layers
 - Bin size: 0.05
 - Search window: 3x3 or 5x5 bins depending on η
 - A layer cluster in the search window will make a doublet with original layer cluster
- Doublets linking:
 - Doublets are linked if two angular requirements are satisfied
 - Requirement on the direction of each doublets w.r.t. the vertex (α)
 - Requirement on the angle between doublets (β)
 - · Requirements differ in each iteration
 - Timing capability

ICHEP 2020

Jingyu Zhang