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The HL-LHC schedule

Not possible to
increase luminosity
without increasing
PU.

Enormous
challenges to
detector upgrade
programs.

Two scenarios

Scenario L < PU > Vertex Density
∫
L/year

Baseline 5× 1034 cm−2s−1 140 0.8 / mm 250 fb−1

Ultimate 7.5× 1034 cm−2s−1 200 1.2 / mm > 300 fb−1
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The upgrade of the CMS detector

High PU⇒ High Occupancy
⇒ High Radiation

Current detector unable to sustain
such levels whilst keeping similar
performance as of now, particularly
in the end-cap regions.

CMS upgrade design driven by the
need to sustain radiation damage
and separate hard scattering from
PU vertices.
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The CMS approach

Pattern recognition

high granularity: "imaging calorimeter"

particle-flow detector by design

Charged hadrons 60% Tracker p reso
Photons 30% EM reso
Neutral hadrons 10% Hadronic reso

End game: minimize confusion, from source
of calo deposit and overlapping of particles.

Additional complexity: identify and remove
energy from PU⇒ "Denoising"....

Pile-up mitigation

Addition of timing
information

Discrimination of PU
vertices

Bunches within 25 ns.

Vertices within 200 ps.

At v = c, 100 mm = 330 ps.
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The HGCAL project

Lots of valuable input from the CALICE
collaboration !
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HGCAL is an imaging calorimeter

Real showers from 2018 test beam at CERN

Clustering of cells in 2D and 3D, using spatial+energy information.

Considering adding time information too with O(30) ps resolution, with external
time reference from MTD layers.

⇒ importance of calibration for the energy measurement, and feasibility of timing to
reject deposits from PU vertices⇒ both UK contributions.

A.-M. Magnan CMS HGCAL 04/06/2021 6 / 15



◦

The CMS HGCAL detector Calibration Timing Conclusion

Calibration requirements

Targets

Two types of sensors: Si and scint tiles + SiPM

After irradiation: lower Signal from sensitive material + higher Noise from readout
electronics.

At end-of-life, target is MIP-S/N ' 2.5 in Si, ' 5 in Scint. tiles.

May have to go even lower, worst affected cells of both Si and scint tiles have
MIP-S/N ' 2.

"Absolute calibration"⇒ given by physics candles like Z/γ.

What matters: intercalibration of the cells, to accuracy driven by impact on
energy resolution: 3% in CE-E, O(15%) in CE-H.

Challenges

Isolate MIP deposits to perform regular calibration.

Need to be able to see MIPs, and reject noise even at end-of-life.

Need the triggers + acceptable rate to have required precision.

Need selection with good enough purity + efficiency.
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Options available

MIPs from non-interacting pions, within showers

X high rate in minimum bias collisions

X "not-quite" MIPS: mixture of momentum and particle
type

⇒ for EM calibration ?

MIPs from muons, using tracks

X proper MIPs

X low rate

⇒ for hadronic calibration ?

Special calibration pads: 1 per readout chip

X higher MIP-S/N, charged injection system for linearity
measurement.

⇒ independant verification of MIP calibration at startup +
monitor charge collection efficiency vs time.

htemp
Entries  1108812

Mean    1.674

RMS    0.9159

 / ndf 2χ   2071 / 21

Prob       0

Constant  6.230e+02± 3.801e+05 

MPV       0.00±  1.07 
Sigma     0.0002± 0.1392 

 (MIPS)depE
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
E

-E
 h

its

0

10000

20000

30000

40000

50000

60000

70000
htemp

Entries  1108812

Mean    1.674

RMS    0.9159

 / ndf 2χ   2071 / 21

Prob       0

Constant  6.230e+02± 3.801e+05 

MPV       0.00±  1.07 
Sigma     0.0002± 0.1392 

HGCAL G4 standalone

A.-M. Magnan CMS HGCAL 04/06/2021 8 / 15



◦

The CMS HGCAL detector Calibration Timing Conclusion

MIPs in standard minimum bias collisions

The only advantage of high PU: high rate of
(non-interacting) hadrons⇒ MIP tracklets.

Check performance with simple mip-tracking
algorithms: 3- or 5-layer tracklets.

Estimated rate to obtain 3% accuracy, assuming
negligible systematic effects: 50M events for
MIP-S/N> 2.5 (> 120 M for smaller MIP-S/N).
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Issues to address: systematics

Minimum bias tracklets = mixture of "not-quite MIPs"
MPV variations theoretically well-known, from Bethe-Block.
With <200> PU simulation: found layer-to-layer variations O(6%)⇒ too large !
Three major effects identified: Xreduce systematics to O(1)%.

1 Correction for particle local direction: cosθ ' 0.9(0.99)@η = 1.5(2.5)
2 Tightening of the selection to reject e/γ contributions: increase lever arm.
3 Rejection of proton contribution: more elaborate tracker-driven selection of π±

and µ± tracklets.
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Issues to address: availability of the data

Impact on readout electronics and data volume

Visibility of the peak: digitisation not lower than 10 ADC/MIP.

Fitting of the noise+signal component using rising left edge: readout threshold
not lower than 0.5 MIP.
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Choice of data-taking mode

Minimum bias trigger rate: on-the-fly using full L1 bandwitdh: 500 (750) kHz for
baseline (ultimate) scenarios ?

Single muon rate in 5kHz HLT menu for CE-H calibration ?
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How timing can help for PU mitigation

Cleaning of "time-displaced" energy deposits.

Cleaning of PV candidates using measurement of time of tracks from the chosen
hard-scattering PV: rejection of charged hadrons associated to time-displaced
PU vertices.

Questions: what is the time precision we can expect from the detector ? What is
the typical time distribution of a photon/pion shower ?
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Precision timing

Intrinsic timing capability of Si sensor with ideal electronics: resolution ' 10 ps
for high S/N.
Complemented by timing layer to be placed in front of the ECAL.
Adds a dimension to assist in PU rejection, and identification of primary vertex.
Simple algo tested, to select hits (highest density time interval, reject tails): time
resolution of showers < 30 ps, also with PU.
But, significant tails from signal showers in particular for hadrons: further studies
needed.
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Timing performance in beam test

TB prototype with full readout achieving 80 ps single-cell resolution: not the final
chip yet (targeting ' 20 ps, or say < 50 ps).
First exploration of time shower developement!
Important setup to benchmark the simulation against real data.
Still lots to do for the full HGCAL setup: time calibration, correlation effects,
implementation in PF reco.
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Outlook

The HGCAL for HL-LHC is an ideal guinea
pig for high-granularity detectors with timing
precision at future colliders.

Calibration issues to be understood early on.

Timing as a 5th dimension, complementing
3D position and energy, is being explored.

Future detectors: even more challenging
conditions !

... and vice versa...
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Backups

BACKUPS
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Aim for the impact on energy resolution

Sampling calorimeter:

σ/E = c ⊕ s/
√

E ⊕ n/E

High-energy photon showers:
requirement to keep the constant
term c below 1%⇒ intercalibration
of CE-E cells within 3%.

Hadronic energy resolution: affecting
"only" 10% of full jet energy,
accepting intercalibration at the level
of 15 to 20%.
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Final accuracy required

In CE-E: < 3% up to
MIP-S/N' 2.5 in Si.

In CE-H: < 20% up to
MIP-S/N' 2.5 in Si and 5 in
Scint.
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