Imperial College London

R&D ON PHOTODETECTORS FOR NOBLE LIQUID APPLICATIONS

Henrique Araújo Imperial College London

PPTAP Detectors Workshop, 2—4 June 2021 https://indico.stfc.ac.uk/event/316/

OUTLINE

- **Requirements** for LXe (DM, $0\nu\beta\beta$) and LAr experiments (DM, ν)
- VUV photon detection strategies
- VUV devices: vacuum and silicon photomultipliers (PMTs, SiPMs)
- VUV materials
- Integration
- Radiogenic backgrounds

Focus on PMT and SiPM readout in LXe experiments – see A. Szelc's talk on SiPM R&D for LAr

See also ECFA Detector R&d Roadmap Symposium

- Giuliana Fiorillo TF2 Liquid Detectors
- Samo Korpar TF4 Photon Detectors

Henrique Araújo

LUX-ZEPLIN (LZ) photomultiplier arrays

SCINTILLATION PROPERTIES

Dual-phase LXe/LAr-TPCs

NOBLE LIQUIDS: PHOTON DETECTION REQUIREMENTS

DM searches

with dual-phase detectors (LAr, LXe)

Light collection Photon detection efficiency Photon counting capability Dark count rate, correlated noise Backgrounds Cryogenic operation, resilience, power dissipation Liquid poisoning Cost

Giant LAr-TPCs

Light collection Photon detection efficiency Cryogenic operation, resilience Cost

$0\nu\beta\beta$ searches

with single-/dual-phase detectors (LXe)

Backgrounds, backgrounds, backgrounds... Photon detection efficiency Dark count rate, correlated noise Cryogenic operation, resilience, power dissipation Liquid poisoning Cost

Other applications: TOF-PET, Cherenkov, ...

More diverse requirements Timing performance Size etc.

SCINTILLATION DETECTION STRATEGIES

- Detect VUV photon detection
 - LXe: quartz-window PMTs or VUV SiPMs (optimised p-on-n)

10

0.1

0.01

absorption length, µm

LAr

SiO₂

++-Substrate

- LAr: MgF₂-window PMTs, VUV SiPMs but low PDE
- Hybrid devices: QUPID, ABALONE, SIGHT, ...
- Wavelength shifting (LAr)
 - LAr: SiPMs a better choice
 - WLS (TPB, PEN): SiPM (RGB, NUV)
 - Xe-doping: SiPM (VUV), PMTs
- Light collection/shifting/concentrators/...
 - LXe: PTFE
 - LAr: WLS, reflectors, dichroics, light traps, ...

VUV devices and WLS

UK not major producer of VUV devices but has capabilities (e.g. testing, WLS, integration,...) Henrique Araújo

Optimise ARC/passivation

Hamamatsu R11410

Comparison for liquid xenon readout

DAAT

CIDA/

Daramotor

Falameter		SIFIN	
QE/PDE <mark>(</mark> 175 nm)	25%-40%	25%	
Gain	5-10M	1-5M	
Dark rate, Hz/mm ²	0.006	0.1-1	
SPE resolution	35%	3-5%	
Afterpulse rate	1%	10%	
Crosstalk	-	4%-20%	
Single photon timing, ns	0.2-10	0.1-5	
Size	+	+++	
Cabling	+++	+/+++	
Magnetic fields	+	+++	
Electric fields	++	+++	
Bias voltage	+++	+	
Backgrounds	++	++/+++	
Cost	++	++/+++	

"Skin" region readout requires compact and low background, operating near high electric fields: SiPMs more natural here

It depends on the science (DM and/or $\partial \nu \beta \beta$), and the answer may be "both" – need to engage with both technologies

DEVICE CHARACTERISATION

VUV PMTs

- Cryogenic performance
 - Response and resilience in detector conditions
- PMT QE for pulsed operation in the VUV
 - New photocathodes show substantial dual-photoelectron (DPE) emission
 - Not taken into account by manufacturers...

VUV SiPMs

- Discrepancy for pulsed PDE also for SiPMs!
- Calibration against PMTs at 175 nm must also take their DPE into account...
- ARCs: performance in vacuum vs in liquid

⁷ This discrepancy could be related to the different technique used by Hamamatsu to evaluate the VUV4 PDE. Accordingly to an internal meeting with Hamamatsu the PDE reported in [33] was not assessed by pulse counting, but reading out instead the MPPC current under illumination. However, as shown in [38], the MPPC current is affected by CA noise and it is therefore easier to overestimate the PDE if the CA noise contribution is not accounted properly.

VUV MATERIAL CHARACTERISATION

- Scarcity of high-quality data for key materials in the VUV range
- Detailed data needed for design and simulation models (analysis)
- Reflectors
 - VUV reflectivity <-> sensor coverage
 - Different reflectivity of liquid-X and vacuum-X interfaces
 - Surface quality, contamination, temperature, ...
 - The role of fluorescence
 - Metals: e.g. electrode grids can dominate photon extinction
- Absorbers
 - Need VUV-black materials to tune spatial resolution
 - Very little data for these (PEEK, Kapton, etc.)
 - The role of fluorescence

These energies destroy chemistry... Impact on stability of optical surfaces, detachment of volatile species, ...

	<u>Neves 2017</u>	•	PTFE/LXe hemispherical reflectivity				
	Diffuse model (D)		Diffuse + Specular model (DS)				
	A	$\lambda (\mathrm{mm})$	A	n_{PTFE}	$\lambda (\mathrm{mm})$	BHR	
807NX	0.972	4800	0.961	1.73	4600	0.961	
	(> 0.97)		(> 0.955)			(> 0.955)	
NXT85	0.986	3600	0.975	1.8	4600	0.975	
	(> 0.984)		(> 0.973)			(> 0.973)	
LUX	0.987	4200	0.978	1.79	3000	0.978	
	(> 0.985)		(> 0.975)			(> 0.975)	

INTEGRATION

- SiPM arrays
- Lenses / collimators / concentrators
- Low-bk interconnects
- Ganging (passive, active)
- Cold electronics
- Feedthroughs

Integration at low-background

- Xenon Futures R&D project
- DarkSide-20k project

Arneodo 2019

Tahirovich 2019

nEXO prototype staves

MEG-II calorimeter

DS-20k PDM

Henrique Araújo

FULL INTEGRATION: "PHOTON-TO-DIGITAL CONVERSION"

3D-dSiPM

- Tier1: SPAD
- Tier2: Electronics
- Tier3: Data aggregator & trigger

CMOS SPAD arrays

- SPADs + RO on single chip
- No readout ASIC
- Ultra low power
- Proof of principle

PHOTOMULTIPLIERS: THE RADIOACTIVITY JOURNEY

2005

ZEPLIN-III FSR ETEL D730Q **1.4** γ/s/PMT Araujo 2012 2010

ZEPLIN-III SSR / ETEL D766Q 0.044 γ/s/PMT Araujo 2012 2015

NEXT-GEN

Goal ~0.001 γ/s/PMT

LUX / Hamamatsu R8778 **0.040** γ**/s/PMT** <u>Akerib 2015</u> LZ Hamamatsu R11410 **0.007 γ/s/PMT** <u>Akerib 2020</u>

 \sim 1000-fold reduction

THE PMT RADIOACTIVITY JOURNEY

- Radioactivity of existing PMTs already good enough for LXe-G3 dark matter experiment
 - Neutrons from LZ PMT-systems: 40% of NR background from materials, <3% of total NR background
- Need further x3-x5-fold reduction for $0\nu\beta\beta$ decay search in Xe-136 at G3 (natural Xe)
 - Bi-214 (U-238 chain) and Tl-208 (Th-232 chain) close to $Q_{\beta\beta}$ = 2,458 keV
 - Some improvements already achieved by Hamamatsu/XMASS
- Commensurate decrease in radioactivity from PMT bases

ONBB background	Bi-214	TI-208			
Measured	Ra-226	Ra-228			
Contaminant	U-238_l	Th-232_l	К-40	Co-60	[mBq/PMT]
R11410-22 LZ	0.6	0.3	12	1.9	Akerib 2020
R11410-21 X1T	0.5	0.4	12	0.7	Aprile 2015
R13111 XMASS	0.41	0.25	2	0.2	Abe 2020
G3 ONBB (R11410/5)	0.11	0.07	2	0.2	
LZ PMT BASES	0.39	0.17	0.26	0.01	Akerib 2020
G3 0NBB (LZ/5)	0.08	0.03	0.26	0.01	

R13111 <u>Abe 2020</u>

SIPM RADIOACTIVITY

- SiPM materials are intrinsically clean: comparable to or better than PMT activities
- However, this does not include interconnects or cold electronics that is the critical part

Table 2. SiPM radioassay results from gamma-ray spectroscopy for the uranium and thorium decay chains, as well as for the ⁴⁰K single isotopes in mBq/cm². Results are given at 90% confidence level for upper limits of the silicon and quartz samples. Upper limits for the resin samples are given at 68% confidence level. The ICP-MS results (indicated by *) were obtained with a 90% recovery efficiency. Detections for both SiPM samples and PMTs [22] are given with uncertainties of $\pm 1\sigma$.

Sample type	²³⁸ U	²²⁶ Ra	228 Ra (232 Th*)	²²⁸ Th	⁴⁰ K
Silicon chips	< 0.002*	< 0.0003	$< 0.00007^{*}$	0.0004(1)	< 0.0014
Bonding resin, type C	< 0.299	0.0043(9)	< 0.003	< 0.003	0.02(1)
Bonding resin, type D	< 0.588	< 0.0027	< 0.006	0.003(1)	< 0.00004
Quartz window	< 0.013	0.00009(3)	< 0.00001	0.0001(3)	0.004(2)
Quartz packaging	< 0.006	0.00011(1)	0.00011(2)	0.0001(2)	< 0.0001
Total SiPM	< 0.908	< 0.0075	< 0.0092	< 0.0066	< 0.026
Total R11410 PMT	< 0.4	0.016(3)	0.016(4)	0.012(3)	0.37(6)

Baudis 2018

CONCLUSION

The UK is well engaged in this area, not so much by developing new devices but by working closely with manufacturers – on requirements, backgrounds, device testing, etc.

- A lot of R&D comes under the radar, mostly unfunded low "entry cost"
- My view: this (un)funding model has ensured the UK is not truly leading/innovating here

Key synergy areas

- Low-background development/radioassay: both PMTs and SiPMs can meet requirements for rare-event searches, but further development needed; long-standing UK involvement; exploit UK assets (Boulby, etc.)
- Device characterisation: more work is needed esp. in VUV collaborate with industry and each other
- More work needed to characterise VUV materials in detector conditions
- Major synergies on integration/interconnects at low background / high cleanliness

Future

• More ambitious programmes where the UK gains IP – requires well-funded and sustained R&D