PID — time-of-flight detectors

Photon and Particle Identification Detectors STFC PPTAP meeting

4th of June 2021 **T. Blake**

Charged hadron identification

- Charged hadron identification $(\pi/K/p)$ separation) is essential for a broad flavour physics programme.
 - Importance of this programme is underlined in the update for the European Strategy for particle physics.
 - Charged hadron ID is a strength of the LHCb and Belle 2 detectors and important ingredient of the proposed phase-II LHCb upgrade.
- Increased focus on flavour with the recent evidence of lepton flavour non-universality in rare *B* meson decays
 [LHCb, LHCb-PAPER-2021-004].

Ring-imaging Cherenkov detectors

- In 10 can achieve excellent separation using gaseous ring-imaging Cherenkov detectors. ¹⁰⁰⁰
 - Below 10 GeV/c kaons and protons are not above the Cherenkov threshold.
 - Above 100 GeV/ $c \beta n$ saturates.

10

• See talk by M. McCann.

Ring-imaging Cherenkov detectors

- At smaller momentum can use radiators with higher refractive indices, e.g. silica aerogel.
 - Challenge in high-occupancy environments due to large backgrounds and small signal.
- Aim to improve PID in this momentum range using a TOF detector in the phase II LHCb upgrade.

LHCb RICH 1 detector in Run 1

¹¹²_p HGb, <u>NIM A 639 (2011) 234-237</u>]

 At low momentum, can exploit dE/dx in tracking detectors to separate pions, kaons and protons.

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = K z_{506}^2 \frac{Z}{\beta^2} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 E_{\mathrm{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

1

• e.g. in ATLAS pixel detectors.

[ATLAS-CONF-2011-016]

10

 p^{10^2} [GeV/c]

10

Time-of-flight

- Measure the arrival time of a charged particle at two planes to determine $\beta = v/c$.
- Combine with a momentum estimate from tracking detectors to determine the mass.
- At higher energies β saturates, need excellent time precision (~15ps per track over a flight distance of 10m at 10 GeV/c).

Fast timing

- Fast timing will be a feature of many of the detectors at the HL-LHC (driven by pile-up suppression)
 - Challenge to associate particles with the correct *pp* collision.

e.g.

- ATLAS HGTD, CMS ETL, LHCb timing VELO using fast-timing in silicon.
- CMS BTL using fast scintillators (LYSO) and SiPMs.
- Typically target 30-50ps per MIP.

Moderator/ Inner part

CO2 coolin manifolds

Front cover

Moderator/ Outer part

Back cover

Gaseous timing

- Multi-gap RPCs are a well esta technology for fast-timing, e.g. in ALICE TOF system.
 - ALICE achieved a time resolution of 56ps achieved in LHC Run 2 [ALICE, arXiv:1806.03825].

. ್ಲೆ 10²

10 H

- Faster timing possible by increasing the number of gaps.
- MRPCs are also used widely in other existing and proposed TOF systems (e.g. the SHiP proposal).
- **RD51 PICOSEC collaboration has** • developed micromegas with time resolutions of 24ps per MIP [F. Brunbauer, INSTR-2020].

ALICE TOF system is ALI-PERF-10 located 3.7m from the beam axis.

TORCH

- Large area time-of-2
 - UK-CERN R&D effort 5. Photographs of (left) the scaled-down TORCH module channel electronics readout system; anticlockwise from top right, the
 - Aiming for installation as part of bdd b's phase II upgrade programme [CERN-LHCC-2017-003]
- Exploit prompt production of Cherenkov light in an array of quartz bars to determine
 - Require a time resolution of 70 ps p
 ps per track.
- Transport photons to detector pla internal-reflection from the quartz
- Cylindrical focusing block focuse 2D (in the y-z plane).
 - Used to correct for chromatic dispersion.

Figure 6. The optics of the focussing block showing the angular geometry and the examples of the photon paths for the range of beam impact points and angles.

0.4= 0.85 rad

Track

Focusing

Radiator plate

Focal plane to

10M

Photodetecto

66cm

6 m

 $\theta_z = 0.45 \,\mathrm{rad}$

Figure 6. The optics of the focussing bloc

the photon paths for the range of beam imp

Focus

plane

 \sim

Focusing

/block

channel electronics readout system; anticlock backplane and readout board.

channel electronics readout system; anticlock backplane and readout board.

TORCH concept

- Large area time-of-flight detector designed to cover 2 [NIM A 639 (1) (2011) 173]
 - Aiming for installation as part of LHCb's phase II upgrade programme [CERN-LHCC-2017-003]

- Start time provided by fast timing VELO detector (or by comblining information from block the photon paths for the range of beam imp multiple tracks in TORCH).
 - 200 ps spread in pp collisions times.

 Positioned between downstream tracking system and RICH 2 (9.5m from *pp* interaction region).

DIRC EVOLUTION ECFA European Committee for Future Accelerators

- TORCH design is conceptually similar to a DIRC detector.
- Belle 2 employs a time-ofpropagation DIRC counter for PID.
 - Signal-propagation time differs between π and K due to different paths in detector.
- Belle 2 obtains high-precision timing using Hamamatsu MCP-PMT detectors (~50ps per photon).

• Key innovation of TORCH is the measurement of the Cherenkov angle to correct for Chromatic dispersion.

TORCH half-scale demonstrator

- TORCH concept has been demonstrated using a half-scale prototype detector in a beam test at the CERN PS.
- Detector instrumented with two 512 channel MCP-PMTs.
- Quartz required to have high clarity and polishing to sub-nm surface roughness.

Assembly with holding mechanics (light weight system will

be needed for needed for the LHCb upgrade) Focusing

Fast timing photon detectors

- Need fast photon detectors with picosecond timing and fine granularity (obvious candidates are SiPMs and MCP-PMTs).
 - R&D programme with Photek to produce MCP-PMTs for the TORCH with 8-by-64 pixels and long-lifetimes (> 5 C cm⁻²) [JINST 10 (2015) C05003].
- Challenge for LHCb upgrade/future kaon experiments is the development of detectors with long-lifetimes, high-rate capabilities and highradiation tolerance.
 - R&D needed to improve the rate capabilities of existing devices to ~10MHz/cm².
 - Strong synergies between LHCb RICH, TORCH and NA62.
- See talk by S. Gambetta for more details.

[J. Milnes, IEEE NSS/MIC 2020]

Readout electronics

- TORCH prototype readout is based on the NINO & HPTDC chipsets developed for ALICE TOF (designed for MRPC signals)
 [R. Gao et. al., JINST 11 (2016) 04 C04012].
 - HPTDC operated with 32 channels and 100 ps time bins.
- Successors are the FastIC & PicoTDC [R. Ballabriga, J. Christiansen et al. <u>Users meeting</u>].
 - FastIC offers better linearity for signals from SiPM, PMTs, MCP-PMTs.
 - PicoTDC has 64 channels with 12 or 3ps binning.
- Need careful calibration/synchronisation to maintain intrinsic time-resolution (time-walk, integral non-linearities).
- Common development possible for LHCb TORCH and RICH applications.

TORCH beam test at CERN PS

F2/T2

F1/T1

pair

TORCH image reconstruction

• Image reconstructed in 3D (space and time).

TORCH single photon resolution

- Compare expected and true arrival time of photons.
 - Correct for the resolution on the time reference and the resolution due to the beam spread (angular divergence).
- Time resolution is close to the design goal of 70ps per photon.

TORCH photon yield

- Determine the photon yield by cluster counting.
- Good agreement found between the data and simulation.

Simulated TORCH performance

 Simulate TORCH performance in LHCb at instantaneous luminosity of 1.4x10³⁴ cm⁻²s⁻¹.

- Good π -*K* and *p*-*K* separation for 2 .
 - R&D ongoing to improve detector performance.

Future e^+e^- colliders — FCC-ee

- Detector concepts for future e⁺e⁻colliders do not currently feature dedicated PID systems.
- Can obtain good particle identification capabilities across part of the momentum range through dE/dx (or cluster counting, dN/dx).
 - IDEA detector concept for the FCC-ee features a high precision drift-chamber.
 - Poor PID performance in the dE/dx cross-over region around 1-2 GeV/c.

Future e^+e^- colliders — ILC

- Detector concepts for future e⁺e⁻colliders do not currently feature dedicated PID systems.
- Can obtain good particle identification capabilities across part of the momentum range through dE/dx (or cluster counting, dN/dx).
 - ILD detector design uses dE/dx from TPC.
 - Can improve PID performance using time-offlight information at low momentum, e.g. using timing from calorimeter in VLD design.

[ILD interim design report]

Cherenkov based TOF at FCC-ee

- A Cherenkov based time-of-flight detector (e.g. the TORCH) could improve the PID in the GeV/c momentum range at a future e⁺e⁻ collider.
- Thin-detector volume placed between the tracking detectors and ECAL (at ~1.8m).
 - 1cm of quartz introduces 8% X₀
 (plus light weight support structure).
- Barrel geometry (with endcap modules) to cover the full acceptance.
- Detector measures TOF and TOP.
 - Smaller TOF than LHCb TORCH proposal puts stricter requirements on timing (and granularity).

Summary

- Charged hadron ID is essential for a broad flavour physics programme.
- Time-of-flight detectors can provide PID coverage up-to 10 GeV/c in LHCb and future e^+e^- colliders.
 - Requires 10ps per-MIP time resolution. Achieved in TORCH by combining timing information from ~30 Cherenkov photons.
- Time-of-flight detectors are also useful for background rejection in fixed-target/beam dump experiments at the CERN SPS (future kaon experiments, TauFV, ...).
- Photon detector development for TORCH has synergy with the LHCb RICH and NA62 KTAG (driven by fast-timing and rate capabilities).
- Long term goal should be to reach picosecond timing (similar to TOF-PET goals).

TORCH MCP-PMTs

- Three phase R&D programme to develop MCP-PMTs for TORCH.
- Phase-III tube is a square tube with a 53-by-53 mm active area.
- ALD coated photocathode to improve lifetime.
- AC-coupled anode so that the quartz window can be grounded.
- Readout connectors are mounted on a PCB and are connected by ACF (anisotropic conductive film).
- Granularity of 64-by-64 pixels per tube, ganged to 8-by-64 pixels for TORCH.
 - Provides a 1 mrad angular precision.

Bare tube

Opportunities at an e^+e^- collider

• e.g. study $B^0 \to K^{*0} \tau^+ \tau^-$

Kaon tagging at NA62

SHiP spectrometer timing detector

- Reduce backgrounds from random combinations of muons using fast timing.
 - Targeting resolutions <100ps.
- Two technologies considered:
 - MRPC detectors.
 - Fast scintillators (inspired by the NA61/SHINE detector).

[CERN-SPSC-2015-016]

Cherenkov based TOF at TauFV

 Cherenkov based TOF also discussed in the context of the proposed TauFV experiment, a fixed target *τ* factory at the CERN beam dump facility.

