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« What is the goal of this lecture

~ To introduce you to Machine Learning

~ In one lecture you can’t learn everything so the goal here 1s to summarise
some main points

o The i1dea 1s for there to be a tutorial to follow (tomorrow) so you can implement
and run Machine Learning models on a computer. Learn by doing!

— There will be little to no implementation details in this lecture. This will be
saved for the tutorial



« What is Machine Learning
o Challenges with data

o Loss function

o Training data

o Mult1 Layer Perceptrons

o Recurrent Neural Nets

o Convolutional Neural Nets



o Al (Artificial Intelligence) 1s a broad term that includes machine learning. Al 1s the
1dea that a machine can be similar to the human brain. Machine Learning (ML) 1s a
product of AI’s evolution

o Machine learning 1s the science of enabling machines to learn algorithms which are
not explicitly programmed

» Examples of ML use: face recognition, speech to text, internet search engines, spam filters, web
browser personal recommendations, voice recognition. The list goes on ..

o This talk focuses on machine learning!

« Machine learning has been around for decades. So why 1is it taking off now?



o Feasibility and accessibility

e Data

* Data 1s at the core of machine learning. Recent advances 1n data capture, data
management and data storage have resulted in an exponential increase in
data. Also disks are becoming faster, cheaper with larger capacities

* Hardware

* Once you have the data you still need a large amount of computing power to
do the number crunching. For a long time the required computing power was
unavailable.

* Enter the GPU (Graphics Processing Unit). Invented by Nvidia in 1999,

GPUs can speed up significantly the training of neural nets (more about
this 1n later slides)

* Algorithms

* With the hardware and data we are now seeing rapid development of
sophisticated algorithms



« Consider the types of Machine Learning

* Supervised v Unsupervised

* Supervised: the data you train your algorithm with also contains the
solutions, called labels

* Examples:k-Nearest Neighbors, Linear Regression, Logistic Regression,
Decision Trees, ...

* Unsupervised: the data you train your algorithm on is unlabeled
* Examples: K-Means, DBSCAN, t-SNE, ...
« Batch v Online Learning

« Batch: your algorithm 1s incapable of learning incrementally. All the data
1s used. If more data i1s acquired updating the algorithm requires

retraining and then relaunching. This is offline learning.

« Online: your algorithm is capable of learning incrementally. It can learn
on the fly using new data. Online learning 1s great for systems that need
to adapt or change rapidly eg. stock price modeling



o Instance v Model-based Learning

« Instance: the system learns the examples by heart and then generalises to new cases

eg. t-SNE

o Model-based: build a model of these examples and the use that model to make

predictions eg. Linear Regression, etc.

Model-based learning: Data of life
expectancy v GDP. Fit a function to
the data. Function can be used to
make predictions

Neural nets are model based

Let’s look at the architecture of Deep
Neural Nets (DNNs) by taking
Multilayered Perceptrons (MLPs) and
Convolutional Neural Nets (CNNs) and
Recurrent Neural Nets (RNNs) as
examples

90

Life Expectancy at Birth - years
o (=] ~J (o]
o o o o

'
o

W
o

n=184

HongKong

—

« Qatar

N y = 6.0406In(x)+ 16.132
° R* = 0.6455

SierralLeone

0 20,000 40,000 60,000 80,000 100,000

Per Capita GDP (PPP) - international $



« Insufficient training data

—~ Humans require little data in order to learn. This 1s not the case for Machine
Learning. For example object recognition in images

« Solution: Sorry, you just need more data

« Non representative data

- You have to be careful that the training data is a good representation of the
application data

« Solution: ensure it 1s representative, eg. train on a subsample of the
application data, compare test and run data

« Poor quality data
- Significant errors, outliers, noise etc

« Solution: Clean data. eg. remove outliers. Be careful not to bias data!



o Overfitting the data

- A complex model that describes the training data very well but describes general
cases poorly

 Solution: simplify model, use regularisation, use dropout for DNN, the list
goes on ...

o Underfitting the data

—- Model 1s too simple. Consequently doesn’t describe the data well

 Solution: Make the model more descriptive. Add more features (variables that
describe the data), add more layers/nodes in the case of DNNs, more and
larger features for CNNSs, smaller feature strides for CNNs, the list goes on ....



« How do you know how well your model will perform on new cases?
- Test 1t out!
o One can split the data into a test set and a training set.
o Train with the training data and use the test set to see how the model will perform
o One risks overfitting to the training sample

— We can do better than that

o Split the data into three samples, a training sample, a validation sample and a test
sample

~ Train on the training sample but pick model parameters based on the best
validation sample performance. Then run on the test sample to get an indication
of performance in the real world

« How do we measure performance!



o The Loss (Cost) function measures the performance of a Machine Learning model for
given data

o The Loss function quantifies the error between the model’s predicted values and the
data’s true values in the form of a single number

e You can define the error!



o Lets take an extremely simple example
« We model some data with a straight line through the origin y = mx
« We try and find m for data x0 =0, x1=1, x2 =2, x3 =3 such that y0 =0, yl =3,y2=6,y3 =9

« We take an initial guess of m = 6 followed by a guess of m = 2. We see disagreement. How do we express the
disagreement mathematically, resulting in a single value? Mean Absolute Error (MAE)?

y = mx, [m=6.0] y = mx, [m=2]

o Lets try Mean Absolute Error (MAE)? MAE = 1 Z ly; — ]
n —1
. The smaller the value the better! MAE is 1.5 and 4.5 for m = 2 and 6 respectively. Consistent with observations!

« The ‘Absolute’ is necessary otherwise you can have negative values or even large positive and negative differences
resulting in a small loss



What about other Loss functions. For example Mean Squared Error? MSE = - 2 (yi — 5,2
n

i=1

Lets compare the Loss between MAE and MSE for data and model in the previous example.

MAE MSE

0- 0-

The loss 1s minimal at m = 3 in both cases which is comforting
MAE the loss contribution is linear compared to the error

MSE the loss contribution from the error is quadratic. Data points with large errors can dominate the loss. Be careful
when using MSE if you don’t want modeling of the error tails to dominate

Pick a loss function, that best minimises errors of the data as a whole

One critical condition! The loss function must be differentiable everywhere!



In the previous model we saw that the correct answer for m has
the smallest loss. How do we obtain the smallest (minimum)
loss

One option 1s to use Gradient Decent. Take the local loss
gradient with respect to the parameter vector (in the previous
case m) and step (learning rate) in the direction of the negative
gradient. Repeat until the gradient is 0. You are at the
minimum, best parameter. Same procedure is followed with a

Cost

Learning step

Minimum

Random

initial value

D>

> 0

multi parameter space. This 1s how we train the multiple

parameters of a neural net

Things to consider
Learning rate too small. Learning rate too large and
Takes a long time to get to you will jump around the
the minimum minimum

Be careful settling at local
rather than global minima
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Batch Gradient Decent calculates the partial derivative of the cost function using all the data at each step

— For large datasets this 1s slow but you converge at a more precise minimum

Stochastic Gradient Decent calculates the partial derivative using a random instance at each step

—~ Much quicker but the gradients are more erratic. Once it gets to the minimum it will bounce around with the

final value not being optimal

— Good for getting out of local minima

Mini batch Gradient Decent calculates the partial derivative based on a small random batch of events.

— Fast and reasonable accurate
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The Perceptron inspired by the biological neuron is the simplest Artificial Neural Network (ANN)
It consists of

— Inputs

—- Weights and bias

— Summed weights

~ Activation function (Step function)

Weights
Constant

Weighted
Sum

inputs — )
Step Function

1177




The Perceptron could be used to solve simple problems such as simple linear binary classification

However the Perceptron does struggle with some trivial problems

What about having layers of neurons and stacking them (like in a biological neural network)?

Input Hidden Layer Output

Layer Layer
N\
\Y

This 1s a Multi-Layered Perceptron which is more sophisticated than the perceptron

The MLP consists of an input layer, one or more layers of nodes (hidden layer) and an output layer. When a
Neural Network consists of many hidden layers it 1s referred to as a Deep Neural Network (DNN)



o In order to train an MLP Gradient Decent 1s used where error calculations are propagated forward through the Neural
Net and then back again.

« In order to use Gradient Decent the step activation function has to be replaced with something that doesn’t have a zero

gradient everywhere. You then have a powerful Neural Network!

. Below are some differentiable activation functions used to replace the step function

— Classification: Sigmoid and tanh

- Regression: ReLU
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o Regression with DNN

- Typically use ReLLU or Leaky ReLU activation function for the nodes in the
hidden layers

— One or more outputs depending on the number values you want to estimate

~ The output node typically doesn’t have an activation function so the output 1s
free to output any range. You can use activation functions on the output if you
want to restrict the output value



o Classification with DNN

~ The output node typically uses a sigmoid/logistic activation function
constraining the output to a range between 0 and 1 which can be interpreted as
a probability.

~ Can have multiple output nodes for multi classification tasks



One of the criticisms of Neural Nets is that they are a black box. “We have no idea what they are doing inside”

This of course is not true

They can be complex, but complexity is not obscurity!
fun = 0(by + Wr0(by + Wix))

Activation (classification): o(x) = tanh(x), Sigmoid (1/,, ,-x)

Activation (regression):RELU

b
X . P —
Input: x = [x;ﬂ Weight: W, = [ Bias: b, = [

fan = 03 <b2[1,1] + W1 Wapinlog ([

Equation for a classification NN
with one layer of two nodes and an
output

If we so wished we could train this
NN and output its weights. Plug the
weights into the adjacent equation
and use the equation instead. They
should behave the same!



Control

Arithmetic Logic Unit (ALU)

ALU ALV

ALU ALV

CPU

Small number of compute cores

MIMD (Multiple Instruction
Multiple Data)

Optimised for serial operations

Low latency
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Large number of compute cores

SIMD (Single Instruction
Multiple Data)

Built for parallel operations
High throughput

Let’s look at an MLP to demonstrate the high throughput of a GPU!



Input layer Output layer

A simple neural network

X
1
w,ow, W, w, N b WX, + WX, +woxy+w,x, +b a,
2
wow, w, w, +| b =] wx+wx,+wx,+w o x, +0 —> a,
x3 b activation
wow, W, w, N WX, WX, Xy X, D a,
4

* Consider this output layer of the neural net

* Qutput is a vector calculated from the matrix equation on the LHS

* Each element of the vector can be calculated on a computing core

* In this simple case this can be done easily on a CPU

* However repeating this process sequentially over many data points is very slow on a CPU

* Because we want to run the same instruction, it is much faster to run in parallel on the many GPU cores



« Vanishing/Exploding Gradients

— When training calculated gradients can get smaller and smaller so the movement across the loss function and
the training doesn’t converge. This is the vanishing gradients problem

— In some cases the opposite can happen and the gradient can get so large and the algorithm diverges. This is
the exploding gradients problem

« Vanishing/Exploding Gradient aids

— The weight initialisation (normal, mean 0, sigma of 1) was seen to be a problem. Variance of weights keeps
increasing from layer to layer until the activation saturates at the top layers. Different initialisations are used
with specific activation functions to help with the problem

— Batch Normalisation, before or after the activation function, inputs are zero centred and normalised, then
scaled and shifted

— Choice of activation function. Activation functions that saturate with 0 derivatives can cause problems. Use
alternative activation functions with this in mind such as Leaky ReLU instead of ReLU



Generate a data sample with two categories (we will walk
through this in the tutorial)

~ Signal: Gaussian distributed with a mean x,y value of 1
and sigma of 1. Label events 1

- Background: Gaussian distributed with a mean x,y value
of -1 and sigma of 1. Label events 0

Build a DNN
- 2 mputs (x,y)
~ 1 hidden layer of 10 nodes. ReLU activation for each node

~ 1 output (1,0), signal or background. Sigmoid activation at node
Train DNN

—- Run over data sample. Batch gradient decent 100 epochs
Test!

~ Use trained DNN on a new data sample of signal
and background. Can identify correct label 92%
of the time

Test Data

Background




The MNIST (Modified National Institute of Standard and Technology ) database is a large database of handwritten digits that is
commonly used for training various image processing systems
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Even though these are images we can still train a DNN to be able to identify them (tutorial walkthrough)

Each image is 28x28 pixels so we just assign an input for each pixel
For example we can construct a DNN as follows

—  Number of inputs = 28 x 28
— Two hidden layers; 1st hidden layer = 300 nodes, 2nd = 100 nodes
— Ten outputs (one for each number), sigmoid activation function

With a training sample of 44000 events running over a large test sample the DNN has an accuracy > 90%

Not bad! But we can do better!



o A Neural Net with just a single hidden layer can model complex
functions as long as you have enough neurons in a layer

« However for really complex functions deep networks have a higher
parameter efficiency

— For the same number of parameters, deeper networks are more
powerful

« Prefer deeper rather than wider NNs!



In a MLP the operations flow in a forward direction, from input to output
A Recurrent Neural Net (RNN) looks the same but also has connections that feed back from the output to the input

Lets look at a simple RNN composed of one neuron

0

O O 0,

| |

I+

1
' i |14 t-1 t t+1
S - +
O » m—)—0—>0—>0—~
Unfold T T
U U U U
X * s Xl

At each time step (also called a frame) the neuron receives the inputs as well as the inputs from the previous step.
Obviously there 1s no previous step initially

The above image shows the RNN unfolded through time
We have a network where each data output is related to the previous input

—-  We have some information/memory of the past output



« A RNN can take a sequence of inputs and produce a sequence of outputs. This 1s known as a sequence-to-
sequence network (top left). Useful for predicting time series such as stock prices

« Can feed in a sequence and ignore all outputs except the last one. This 1s a sequence-to vector network (top right).
For example a book review. Was it a good or bad review

« Conversely you can input a vector and output a sequence (bottom left). This can be an image that is input and the
output 1s a caption

« Also you can have a sequence-to-vector network followed by a vector-to-sequence network (bottom left). An
example of this is translating one language to another. This is an Encoder-Decoder




o Lets use an RNN to look at previous outputs to predict the next output

« Generate a batch of time series data using the equation

x(t) = 0.5 x sin((t — a) x (p *x 10 + 10)) # wave 1
2 x np.sin((t — b) * (g x 20 + 20)) # wave 2
1 *x (r — 0.5) # noise

+ 0.
+ 0.

o The parameters, a,b,p,q and r are constants randomly set between 0 and 1 for
cach time series

- Consequently each time series looks different

o Lets take a look at a few samples
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st
o Data 1s a series of 50 points. Lets yse an RNN to predict the next data point (51 ).

We have training data with the 51 point. Legs use the training data to train an
RNN using the 50 data points against the 51 . This 1s a vector-to-vector network

« We can construct an RNN that looks like:
— One input (x(t))
— 2 layers, each with 20 nodes
— One output (x(t+1))

« Whilst the RNN has an output at each point we only train against the last output.
That 1s what we are interested 1n!
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o We can’t rely on looks alone. We compare the loss along with other test for

st
o Lets take 3 previously unseen time series and predict the 51 data point
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« Ok, what about predicting the next 10 points
o We can construct an RNN that looks like:

— One mnput (x(t))

- 2 layers, each with 20 nodes

— Ten outputs (x(t+1), x(t+2), ....., x(t+10))

o We train against outputs 51 to 60 . That 1s what we are interested 1n!



o Lets look at a time series from our test data and predict the 51 to 60 data

points

- Looks good
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« We can do better! Rather than training to predict the next 10 steps at the very last

step we can train the model to predict the next 10 steps after every step. This 1s
then a sequence-to-vector network

o There 1s more information and we should see a more accurate prediction

« Lets not worry about the implementation here. Just note we now look at all steps
and train against the next 10 values

o Lets look at the results
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o Look at the test time series again and predict the 51 to 60 data points

— You can see this looks better and trust me so 1s the loss!



« RNNs are great for learning patterns and making predictions
— Time series, NPL (talk about this another time) ...

« Even though they are not designed for this RNNs are also used for training against
data that varies in size (number of steps)

« However for really long data series the RNN forgets about the early input by the end
and breaks down

— Don’t have time here but rather than simple RNN cells discussed here one can
use memory cells such as Long Short-Term Memory (LSTM) cell and Gated
Recurrent Unit (GRU) cell to prevent the break down

— Convolutional layers can also be used to to improve the long term memory



« A Convolutional Neural Net 1s a class of Neural Network mainly applied to analysing visual images

« We may be familiar with their use with

. Face recognition

Classification

| ification izati
Classificatio + Localization

Object Detection

o Object detection

 Identifying numbers/text
In 1mages




« How do CNNs work?

Convolutional
layer 2

Convolutional
layer 1

Input layer

« An n dimension filter (n=2 for the image above) scans across your data/image taking the product. The output
forms the first convolutional layer. This process is repeated with different filters on the first convolutional

layer to output a second convolutional layer. We can proceed producing as many convolutional layers as we
see fit

« What is the point of this?

—- Reducing the model’s complexity



How do filters work?

~ Converting low level feature into higher level features
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Smaller filter 1s a larger approximation of the data

With zero padding (adding zeros around the layer) and a step size of
1 the next convolutional layer will same size. Without zero padding
the next convolutional layer is reduced in size

You can also specify the step size (stride) of the scan. Increasing the
step size will reduce the size the next convolutional layer

The filters are the weights and the contents of the convolutional
layers are referred to as the neurons. Unlike in a MLP you have a set
of weights (filter) that 1s applied to all neurons in the layer. The filter
values are set during training

You can work with a less weights compared to a MLP



« You can reduce the load even further by pooling

— This reduces the computational load, memory usage

— The principle 1s the same as a filter. You specify a field and scan over the layer applying pooling and output the
result to another layer

— There no weights for pooling. For example you have:

« Max pooling: Output the maximum value

« Ave pool: Output the average value

Max pooling example




« The last layer 1s then fed to a MLP and trained on data where the output can be used for regression or classification
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st
« Apply filters to the RGB components of the image to produce the 1 convolutional layer
st
« Apply pooling to the 1 convolutional layer to reduce the layer size
nd
« Apply filters to the pooling output to produce the 2 convolutional layer

« Apply pooling and then feed the output to a DNN with outputs for classification



Lets look at the MNIST database again (tutorial walkthrough)
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This time we will feed the images to a convolutional net that looks like:

Two convolutional layers of 32 and 64 feature maps respectively

nd

Max pooling of the 2 layer with a field size of 2x2

The pooling output is fed to a MLP hidden layer with 64 nodes with relu activation

The output has ten nodes with a logistic activation function

A reasonable straightforward CNN!

After training and testing this simple CNN has an accuracy of 99%



o Seen many of the components of a CNN before: deep neural nets and
their activation functions.

« The most important building block 1s the convolutional layer

« Neurons in the first convolutional layer are not connected to every
single pixel in the input image but only connected to the receptive
field (filter). Unlike when compared to a DNN. Results 1n less

weilghts!

 In return each neuron 1n the second convolutional layer is connected
only to neurons in the receptive field of the first layer

o This architecture allow low level features 1n the input to be built into
successively higher level features as you add convolutional layers



o Machine Learning 1s a huge, expanding, exciting field

o Lots of other exciting topics, Decision trees, Support Vector
Machines, Autoencoders, Graph Neural Networks .....

« Using Machine Learning we can build some powerful models for
regression and classification

- We looked at different methods (MLP, RNN, CNN) to perform
classification and regression tasks

o Machine Learning 1s having a large impact on our lives today and I
don’t think 1t 1s going anywhere soon!



