Statistics Topics for Particle Physics

1) Combining results

2) Understanding Neural Networks

Louis Lyons
Imperial College \& Oxford

Combining uncorrelated exptl results

Different uncorrelated measurements $\mathrm{x}_{\mathrm{i}} \pm \sigma_{\mathrm{i}}$
$x_{\text {best }}=\left\{\sum \mathbf{x}_{i} / \sigma_{i}{ }^{2}\right\} /\left\{\Sigma 1 / \sigma_{i}{ }^{2}\right\} \quad$ [1]
$1 / \sigma^{2}=\Sigma\left(1 / \sigma_{i}{ }^{2}\right)$
\{This comes from minimising (wrt $\left.\mathrm{X}_{\text {best }}\right) \quad \mathrm{S}=\sum\left\{\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\text {best }}\right)^{2} / \sigma_{\mathrm{i}}{ }^{2}\right\}$
Commonly know as χ^{2}
Define $w_{i}=1 / \sigma_{i}{ }^{2}=$ weight \sim 'information content'
Eqns [1] and [2] become:
$\mathbf{x}_{\text {best }}=\Sigma \mathbf{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} / \Sigma \mathrm{w}_{\mathrm{i}} \quad\left[1^{\prime}\right]$
$=$ weighted average of x_{i}
$\mathrm{w}=\Sigma \mathrm{w}_{\mathrm{i}}$
[2']
Example: All σ_{i} equal

$$
\begin{aligned}
x_{\text {best }} & =\text { simple average of } x_{i} \\
\sigma & =\sigma_{i} / \sqrt{ } n
\end{aligned}
$$

BLUE is equivalent to χ^{2}, but also outputs weights. Useful for assessing statistical and systematic uncertainties on $\mathrm{x}_{\text {best }}$.
N. B. Better to combine data

Difference between weighted and standard averaging

Isolated island with conservative inhabitants
How many married people ?

Number of married men $=100 \pm 5 \mathrm{~K}$
Number of married women $=80 \pm 30 \mathrm{~K}$

GENERAL POINT: Adding (uncontroversial) theoretical input can improve precision of answer
Compare "kinematic fitting"

Combining: oddities

- 1 variable :

Best combination of 2 correlated measurements
can be outside range of measurements
Peelle's Pertinent Puzzle

- 2 parameters, $\alpha \beta$

Uncertainties on $\alpha_{\text {best }}$ and $\beta_{\text {best }}$ much smaller than individual uncertainties.

- 2 parameters, $\alpha \beta$ $\alpha_{\text {best }}>\alpha_{1}$ and $\alpha_{2} \quad \beta_{\text {best }}>\beta_{1}$ and β_{2} Yule-Simpson Paradox

COMBINING RESULTS

- Better to combine data than combine results (Problems with non-Gaussian estimates dealing with correlations uncertainty estimates)
- BEWARE of uncertainty estimates that depend on parameter estimate e.g. $n \pm \sqrt{ } n \quad 100 \pm 10$ and 80 ± 9 or $\tau \pm \tau / \sqrt{ } N \quad 1.00 \pm 0.10$ and $1.20 \pm 0.12 \quad(N=100)$

Likelihood works better

BEWARE:

Counting experiment, records in 2 separate days: 100 ± 10 and 80 ± 9 counts
Standard formulae $\rightarrow 88.8 \pm 6.7$ [1] Biassed
Sensible (and correct) approach $\rightarrow(180 \pm 13.4) / 2=90.0 \pm 6.7$ [2]
(Part of reason why PDG average b-lifetime used to be $\sim 1 \mathrm{ps}$, rather than current 1.5ps)

Solution 1:
Needs $w=1 / \sigma^{2}$ to be real accuracies, not estimated accuracy.
If counting for 2 equal periods with equal efficiency, etc, then expected accuracies are equal \rightarrow equal weights \rightarrow solution [2]

See LL, A. J. Martin and D. H. Saxon, Phys. Rev. D 41 (1990) 982 Deals with B lifetime example, and recalculates (essentially iteratively) what each experiment's uncertainties would have been as a function of lifetime i.e. What part of the uncertainty scales with τ, and what is independent of τ.

Solution 2:
Use likelihood approach.

Combining correlated exptl results

Different uncorrelated measurements $\mathrm{x}_{\mathrm{i}} \pm \sigma_{\mathrm{i}}$
$x_{\text {best }}=\left\{\Sigma \mathrm{X}_{\mathrm{i}} / \sigma_{\mathrm{i}}^{2}\right\} /\left\{\Sigma 1 / \sigma_{i}^{2}\right\}$
$1 / \sigma^{2}=\Sigma\left(1 / \sigma_{i}^{2}\right)$
$\left\{\right.$ This comes from minimising (wrt $x_{\text {best }}$) $S=\sum\left\{\left(X_{i}-X_{b e s t}\right)^{2} / \sigma_{i}^{2}\right\}$
For correlated variables, minimise

$$
S^{\prime}=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\text {best }}\right) \mathrm{M}_{\mathrm{ij}}\left(\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\text {best }}\right)
$$

where M is the inverse of the covariance matrix $C=\left(\begin{array}{cc}\sigma_{i}^{2} & \operatorname{Cov} \\ \operatorname{Cov} & \sigma_{j}{ }^{2}\end{array}\right)$
$x_{\text {best }}$ outside range of x_{1} and x_{2} when Cov> smaller σ^{2}
or $\rho>\sigma_{\text {small }} / \sigma_{\text {large }}$
So if 2 similar analyses on same data, don't combine but instead use 'better' result, and use other as confirmatory. Highly correlated combination \rightarrow extrapolation. Sensitive to exact values of σs and ρ.

Nice example of $\rho=\sigma_{1} / \sigma_{2} \rightarrow w_{2}=0$
Sample 2 is subsample of Sample 1
Sensible that sample $\mathbf{2}$ is ignored in 'combination'.

Peelle's Pertinent Puzzle

Combination outside range of individual measurements

- Oak Ridge Nat Lab Memorandum, 1987
- Combining neutron + nuclei cross-sections
- Sometimes reasonable
- Sometimes unreasonable e.g. luminosity systematic for cross-sections
- Numerous solutions to Puzzle
- Again using estimated uncertainties

Combined uncertainty very small: Danger of combining profile $\mathcal{L} s$

Experiments quote \mathcal{L} ikelihood, profiled over nuisance parameters, so that combinations can be performed.

Very simple 'tracking' example:

* No magnetic field
* 2-D fit of straight line $y=a+b x$
$a=$ parameter of interest, $b=$ nuisance param
* Track hits in 2 subdetectors, each of 3 planes

Straight line fit to red points has large uncertainties on intercept and on gradient
Straight line fit to blue points has large uncertainties on intercept and on gradient
Combined straight line fit to red and blue points has much smaller uncertainties on intercept and on gradient

2 sub-detectors each of 3 planes.
(a) Straight line fits for L1, L2 and combination.
(b) Covariance ellipses, large for L1 and L2, small for combination

Covariance of gradient and intercept proportional to minus weighted mean x Uncertainties from different subdetectors are uncorrelated

Uncertainty on $\Omega_{\text {dark energy }}$

When combining pairs of variables, the uncertainties on the combined parameters can be much smaller than any of the individual uncertainties e.g. $\Omega_{\text {dark energy }}$

Plot of dark energy fraction versus dark matter fraction by various methods. Each determines dark energy fraction poorly, but combination is fine, because of different correlations

Combining Profile Likelihoods would give very large uncertainty on dark energy fraction

Best values of params a and b outside range of individual values (Remember PPP)

Best values of params a and b outside range of individual values

Example where best values of a and b are outside ranges of individual values.
(a) Hits in sub-detectors
(b) Covariance ellipses
(c) $\ln \mathcal{L}_{\text {prof }}$ as function of a
(d) $b_{\text {best }}$ as a function of a

BEWARE: Combining profile \mathcal{L}_{s} will give poor result

Reminder of Profile \mathcal{L}

Stat uncertainty on s from width of \boldsymbol{L} fixed at $v_{\text {best }}$

Total uncertainty on s from width of $\mathcal{L}\left(\mathrm{s}, \mathrm{v}_{\text {prof(s) }}\right)=\mathcal{L}_{\text {prof }}$
$v_{\text {prof(s) }}$ is best value of v at that s $v_{\text {prof(s) }}$ as fn of s lies on green line

Contours of $\ln \mathcal{L}(s, v)$
$\mathrm{s}=$ physics param
$v=$ nuisance param

Simpler example of PPP, without correlations (Yule-Simpson paradox)

Results of studies on effectiveness of drug, depending on whether patient had asthma in childhood. The outcome for each patient is assigned a 'mark'. Higher mark means that the drug is more effective. Numbers in 'table' below are: total 'marks for drug' divided by number of patients = average.

	No Asthma	With Asthma	Combined
Drug A	$80 / 2=40$	$640 / 8=80$	$720 / 10=72$
Drug B	$400 / 8=50$	$180 / 2=90$	$580 / 10=58$

(In both cases, the combined result lies between the separate results for the different asthma histories, as required for uncorrelated measurements.
It's just that the weighting of the two histories is different for the two drugs)
For people who have asthma in their childhood, Drug B is better than Drug A in treating this disease For people who did not have asthma in their childhood, Drug B is better than Drug A in treating this disease
But overall, Drug A is better than Drug B in treating this disease.
Then the doctor's dilemma is:
For people who have asthma in their childhood, prescribe Drug B
For people who did not have asthma in their childhood, prescribe Drug B
For people who did not know whether they had asthma in their childhood, prescribe Drug A (even though they either had asthma or they didn't. In either case, the doctor would have prescribed, Drug A)

Medical tests

For each class of patients, drug B is better
For combined set of patients, drug A is better
Doctor's Dilema?

Comments on Drug Test example

The dilemma arises even though here there are no correlations.

Also combined values are within ranges on individual values i.e. no PPP

Common feature with tracking: In both cases, major axes of covariance ellipses not parallel Rotation of axes is even sensible in medical case.

Unknown ρ

- What to do if correlations are unknown? e.g. Old neutrino cross-section data

New archive note by Lukas Koch (Oxford) "Robust test statistics for data with missing correlation information" https://arxiv.org/abs/2102.06172 (Feb 2021)

Summary of Combination Oddities

- Including theory can help
- Estimated uncertainties: 100 ± 10 and 80 ± 9
- PPP: Combination outside range of individual σ
- Extrapolation can be correct
- Combined σ can be << individual σ
- Profile Likelihood loses information
- Extrapolation can occur without correlations (e.g. doctor's dilemma)

Combining p-values

For comparing hypothesis H with data, $\mathrm{p}=$ probability of obtaining result = data, or more extreme.
p is NOT probability that $\mathrm{H}=$ true, given the data
Much better to combine data e.g.

1) Small p-values from different analyses could result from very different discrepancies.
2) Correlated systematics
3) Bob Cousins: Combination method is ambiguous:
p_{i} are supposedly uniformly distributed and independent.
How to construct $p_{\text {comb }}\left(p_{i}\right)$ such that it is uniformly distributed over hyper-cube?
Optimal method depends on other information, e.g.
Data set 1. Histogram of 100 bins. $\mathrm{H}=$ constant
Weighted sum of squares $S=90, p_{1}=0.4$
Data set 2. One measurement. H predicts 49 events. Observe 84 events. $p_{2}=310^{-6}$
$\mathrm{p}_{\text {comb }}$ likely to be small. But $\mathrm{S}_{\text {comb }}=115 \rightarrow \mathrm{p}_{\text {comb }}=0.16$

Combination method for p-values

1) Don't combine p-values
2) Select smallest p_{i} (and calculate prob)
3) Use $\Pi=$ product of p_{i}, and calculate $p_{\text {comb }}=$ prob that $\Pi<\Pi_{\text {obs }}$
e.g. For 2 p -values, $\mathrm{p}_{\text {comb }}=\mathrm{p}_{1} \mathrm{p}_{2}\left(1-\ln \left(\mathrm{p}_{1} \mathrm{p}_{2}\right)\right)>=\mathrm{p}_{1} \mathrm{p}_{2}$
4) Stouffer: $z_{\text {comb }}=\Sigma z_{i} / \sqrt{ } N$,
where z_{i} is z -score corresponding to p_{i}
(e.g. $z_{i}=5$ for $p_{i}=3 \quad 10^{-7}$)

For longer list, see Heard \& Rubin-Delanchy (2017)
"Choosing Between Methods of Combining p-values" https://core.ac.uk/download/pdf/146459765.pdf

MULTIVARIATE ANALYSIS

Example: Aim to separate signal from background
Neyman-Pearson Lemma:
Imagine all possible contours that select signal with efficiency ε (Loss $=$ Error of $1^{\text {st }}$ Kind)
Best is one containing minimal amount of background (Contamination $=$ Error of $2^{\text {nd }}$ Kind $)$

Equivalent to ordering data by

$$
\mathcal{L} \text {-ratio }=\mathcal{L}_{s}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . . .\right) / \mathcal{L}_{\mathrm{b}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right)
$$

IF variables are independent

$$
\mathcal{L} \text {-ratio }=\left\{\mathcal{L}_{s}\left(v_{1}\right) / \mathcal{L}_{b}\left\{\mathrm{v}_{1}\right)\right\} \times\left\{\mathcal{L}_{s}\left(\mathrm{v}_{2}\right) / \mathcal{L}_{\mathrm{b}}\left(\mathrm{v}_{2}\right)\right\} \times \ldots . .
$$

PROBLEM:

Don't know \mathcal{L}-ratio exactly because:

1) Signal \& bdg generated by M.C. with finite statistics
2) Nuisance params (systematics) and signal params
3) Neglected sources of bgd
4) Hard to implement in many dimensions

METHODS TO DEAL WITH THIS

Cuts
Kernel Density Estimation
Fisher Discriminant
Principal Component Analysis
Boosted Decision Trees
Support Vector Machines
Neural Nets) T
Deep Nets

NEURAL NETWORKS

Typical application: Classify events as signal or bgd

- Learning process:

Input = Known signal \& bgd (e.g M.C.)
Adjust params \rightarrow 'Best' output

- Testing process

Make sure not 'overtraining'

- Use trained network on actual data

Bgd Signal

Classify events as signal if output > cut

HOW DOES IT WORK?

For each hidden or output node j
Output $=\mathrm{F}\left[\Sigma\right.$ Input $\left._{\mathrm{i}}{ }^{*} \mathrm{~W}_{\mathrm{ij}}+\mathrm{T}_{\mathrm{j}}\right]$
(W and $\mathrm{T}=$ network params)
Typical $\mathrm{F}(\mathrm{x})=1 /\left(1+\mathrm{e}^{-\beta \mathrm{x}}\right) \quad$ Sigmoid
For large β, output of node j is 'ON' if $\Sigma \mathrm{I}_{\mathrm{i}} \mathrm{W}_{\mathrm{ij}}+\mathrm{T}_{\mathrm{j}}>0$, and 'OFF' otherwise

Dividing contour is 'hyper-plane' in I space

HOW DOES IT WORK?

For First hidden node

Straight line is

$$
\mathrm{w}_{11}{ }^{*} \mathrm{v}_{1}+\mathrm{w}_{21} * \mathrm{v}_{2}+\mathrm{T}_{10}=0
$$

where
w_{ij} is weight from i^{t} input node to $\mathrm{j}^{\text {th }}$ hidden node
$T_{k 0}$ is threshold for $\mathrm{k}^{\text {th }}$ hidden node

HOW DOES IT WORK?

For second hidden node

HOW DOES IT WORK?

For third hidden node

HOW DOES IT WORK?

Output $=\operatorname{Sigmoid}\left\{0.4 \mathrm{H}_{1}+0.4 \mathrm{H}_{2}+0.4 \mathrm{H}_{3}-1.0\right\}$ Output is 'On' only if $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$ all are 'On'

N.B.

* Complexity of final region depends on number of hidden nodes. * Finite $\beta \rightarrow$ rounded edges for selected region; and contours of constant output in $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ plane.

When do we need more than one Hidden Layer?

Input nodes connected to all $1^{\text {st }}$ hidden layer nodes
$1^{\text {st }}$ hidden layer nodes connected to $2^{\text {nd }}$ hidden layer nodes in same rectangle

Output $=\operatorname{Sigmoid}\left\{\mathrm{H}_{7}+\mathrm{H}_{8}-0.5\right\}$
 i.e. Output is ON if either or both of H 4 and H 5 are ON (logical OR)

BEWARE

- Training sets are reliable
- Don't train with variable you want to measure
- Data does not extend outside range of training samples (in multi-dimensions)
- Don't overtrain
- Approx equal numbers of signal and bgd

Is NN better* than simple cuts?

In principle, NO
Can cut on complicated variable e.g. NN output

In practice: YES

But:
Better NN performance \rightarrow more work by 'Cuts' analysis to improve performance

* Better = improved efficiency v mistag rate

SIMPLE EXAMPLE

Try to separate π and proton using E and p
$\pi: E^{2}=p^{2}+m^{2}$
$P: E^{2}=p^{2}+m^{2}$

Easy: $\quad \mathrm{p}=0 \rightarrow 2 \mathrm{GeV}$

Harder: $p=-4 \rightarrow 4 \mathrm{GeV}$
p
Hardest: $p_{x}, p_{y}, p_{z}=-4 \rightarrow 4 \mathrm{GeV}$
More realistic: Add expt scatter of data wrt curves

PHYSICS EXAMPLE

Separate b-jets from light flavour, gluons, W, Z:
Input variables: Track IPs, SV mass, distance, quality, etc.
Output: $0 \rightarrow 1$

Issues:
Pre NN cuts
Training and testing samples (Where from? How many events? Ratios of different bgds,....)
How many inputs?
Network structure
How many networks?
Single output or several
Systematics (use different sets of testing events\}
Stability wrt NN cut

NN Summary

- ADVANTAGES:

Very flexible
Correlations OK
Tunable cut

- DISADVANTAGES

Training takes time
Tendency to include too many variables
Treat as black box

* Past attitude: Need to convince colleagues NN is sensible More recently: Why aren't you using NN?
Now/future: Why aren't you using a Deep Network?

Conclusions

Resources:

Software exists: e.g. RooStats, Combine Books exist: Barlow, Cowan, James, Lista, Lyons, Roe,..... `Data Analysis in HEP: A Practical Guide to Statistical Methods' , Behnke et al.
PDG sections on Prob, Statistics, Monte Carlo
CMS, ATLAS and LHCb have Statistics Committees (and BaBar and CDF earlier) - see their websites.
PHYSTAT Workshops: LHC, Neutrino, Dark Matter, Flavour Physics

Before re-inventing the wheel, try to see if Statisticians have already found a solution to your statistics analysis problem.
Don't use your square wheel if a circular one already exists.

"Good luck"

