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Statistics Topics for Particle Physics 
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Combining uncorrelated exptl results      
 

Different uncorrelated measurements   xi  σi 

xbest = {∑xi/σi
2} / {∑1/σi

2}    [1] 

1/σ2 = ∑(1/σi
2)                        [2] 

{This comes from minimising (wrt xbest )   S= ∑{(xi – xbest)
2/σi

2 } 

                                                                         Commonly know as 2 

Define wi = 1/σi
2 = weight  ~ ‘information content’ 

Eqns [1] and [2] become: 

 

xbest = ∑wi xi/ ∑wi           [1’]    
     = weighted average of xi     
w= ∑wi                         [2’] 
Example: All σi equal 

                     xbest = simple average of xi 

                          σ = σi/n 

BLUE is equivalent to 2, but also outputs  weights. Useful for assessing 

statistical and systematic uncertainties on xbest.    

 

N. B. Better to combine data  
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Difference between weighted and standard averaging  

Isolated island with conservative inhabitants 

How many married people ? 

 

Number of married men      = 100 ±  5 K 

Number of married women =   80 ± 30 K 

 

              Total   = 180 ± 30 K 

  Wtd average =   99 ±   5 K                           CONTRAST 

              Total   = 198 ± 10 K 

 

 

GENERAL POINT: Adding (uncontroversial) theoretical input can improve 
precision of answer 

     Compare “kinematic fitting” 



Combining: oddities 

• 1 variable :  

     Best combination of 2 correlated measurements  

     can be outside range of measurements 

     Peelle’s Pertinent Puzzle 

 

• 2 parameters,     

    Uncertainties on best and best much      

    smaller than individual uncertainties. 

 

• 2 parameters,   

    best  > 1 and  2            best > 1 and 2  

    Yule-Simpson Paradox    
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xtrue    x1   x2             



COMBINING RESULTS 
• Better to combine data than combine results 

    (Problems with non-Gaussian estimates 

                             dealing with correlations 

                             uncertainty estimates) 

 

•  BEWARE  of uncertainty estimates that depend on 
parameter estimate 

   e.g. n  n     100  10  and  80  9    

    or /N      1.00  0.10  and 1.20  0.12   (N=100) 

           Likelihood works better 
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BEWARE: 

Counting experiment, records in 2 separate days: 10010 and 809 counts 

Standard formulae  88.86.7   [1]     Biassed 

Sensible (and correct) approach  (18013.4)/2 = 90.06.7  [2] 

    (Part of reason why PDG average b-lifetime used to be ~1ps, rather than  

     current 1.5ps) 

 

Solution 1:  

Needs w = 1/2 to be real accuracies, not estimated accuracy. 

If counting for 2 equal periods with equal efficiency, etc, then expected 

accuracies are equal  equal weights  solution [2] 

 

See LL, A. J. Martin and D. H. Saxon, Phys. Rev. D 41 (1990) 982 

Deals with B lifetime example, and recalculates (essentially iteratively) what 

each experiment’s uncertainties would have been as a function of lifetime  
i.e. What part of the uncertainty scales with , and what is independent of . 

 

Solution 2: 

Use likelihood approach. 
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               Combining correlated  exptl  results      

Different uncorrelated measurements   xi  σi 

xbest = {∑xi/σi
2} / {∑1/σi

2}    [1] 

1/σ2 = ∑(1/σi
2)                        [2] 

{This comes from minimising (wrt xbest )   S= ∑{(xi – xbest)
2/σi

2 } 

For correlated variables, minimise  

                                                S’ = ∑i∑j (xi - xbest) M ij (xj - xbest) 
where M is the inverse of the covariance matrix  C  =       σi

2     Cov 

                                                                                                       Cov      σj
2               

xbest outside range of x1 and x2 when  Cov> smaller σ2  

or ρ > σsmall/σlarge 

So if 2 similar analyses on same data, don’t combine but instead use 

‘better’ result, and use other as confirmatory. Highly correlated 
combination  extrapolation. Sensitive to exact values of s and ρ.  
 

Nice example of ρ =  σ1/σ2   w2 = 0 

Sample 2 is subsample of Sample 1 

Sensible that sample 2 is ignored in ‘combination’.  



Peelle’s Pertinent Puzzle 

• Oak Ridge Nat Lab Memorandum, 1987  

• Combining neutron + nuclei cross-sections 

• Sometimes reasonable 

• Sometimes unreasonable e.g. luminosity 

systematic for cross-sections 

• Numerous solutions to Puzzle 

• Again using estimated uncertainties   
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Combination outside range of individual measurements 



Combined uncertainty very small: 

 Danger of combining profile Ls 

Experiments quote Likelihood, profiled over 
nuisance parameters, so that combinations can 
be performed. 

 

Very simple ‘tracking’ example: 
* No magnetic field 

* 2-D fit of straight line y = a + bx 
             a = parameter of interest,  b = nuisance param 

* Track hits in 2 subdetectors, each of 3 planes 
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a 

b 

x 

y 

Straight line fit to red  points has large uncertainties on intercept 

and on gradient 

Straight line fit to blue points has large uncertainties on intercept 

and on gradient 

Combined straight line fit to red and blue points has much 

smaller uncertainties on intercept and on gradient 
 
2 sub-detectors each of 3 planes.  

(a) Straight line fits for L1, L2                    Covariance of gradient and intercept  

and combination.                                         proportional to minus weighted mean x  

(b) Covariance ellipses, large for L1           Uncertainties from different subdetectors  

and L2, small for combination                    are uncorrelated 



Uncertainty on Ωdark energy 
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When combining pairs of 

variables, the uncertainties on the 

combined parameters can be 

much smaller than any of the 

individual uncertainties   
e.g. Ωdark energy 

Plot of dark energy fraction versus  

dark matter fraction by various 

methods. Each determines  dark 

energy fraction poorly, but 

combination is fine, because of 

different correlations 

 

Combining Profile Likelihoods 

would  give very large uncertainty 

on dark energy fraction  



Best values of params  a and b  

outside range of individual values 

(Remember PPP) 
 

                                             y = a + bx 

 

                y 

 

 

                                                                 x                             
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Best values of params  a and b  

outside range of individual values 

                                                   y = a + bx 

 

 

 

                                                                Combined 
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HT version: Data sets 1  and 2 each favour  H1 over H2, 

but combination favours H2 over H1 (e.g. sign of gradient). 

Relevant for Nova and T2K on neutrino mass hierarchy? 



 y 

x 

L2 

L1 

Lcomb 

a 

b 

a 

lnLprof 

(a)              y = a + bx (b) 

(c) 

L2 L1 

L1 L2 

Example where best values of a and b are 

outside ranges of individual values.  

(a) Hits in sub-detectors  

(b) Covariance ellipses  

(c) lnLprof as function of a 

(d) bbest as a function of a 

 

BEWARE: Combining profile Ls will give 

poor result 

bbest 

a 

(d) 

L1 L2 



Reminder of Profile L 
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Contours of lnL(s,υ) 

s = physics param 

υ = nuisance param 

υ 

s 

Stat  uncertainty on s from width 

of L  fixed at υbest 

 

Total uncertainty on s from width 

of L(s,υprof(s)) = Lprof 

υprof(s) is best value of υ at that s 

υprof(s) as fn of s lies on green line 

 

Total uncert ≥ stat uncertainty 
 

 

 

 

 



Simpler example of PPP, without correlations 

(Yule-Simpson paradox) 
Results of studies on effectiveness of drug, depending on whether patient had asthma  in childhood. 

The outcome for each patient is  assigned  a ‘mark’. Higher mark means that the drug is more effective.  

Numbers in 'table' below are:  total  ‘marks for drug’ divided by number of  patients = average. 

                       No Asthma       With Asthma            Combined 

     Drug  A      80/2 = 40          640/8 = 80              720/10 = 72 

     Drug  B    400/8 = 50         180/2 = 90               580/10 = 58 

(In both cases, the combined result lies between the separate results for the different asthma histories , 
as required for uncorrelated measurements.      

It's just that the weighting of the two histories is different for the two drugs) 

 

For people who have asthma in their childhood, Drug B is better than Drug A in treating this  disease   

For people who did not have asthma in their childhood, Drug B is better than Drug A in treating this 
disease 

But overall, Drug A is better than Drug B in treating this disease.  
 

Then the doctor's dilemma is: 

For people who have asthma in their childhood, prescribe Drug B 

For people who did not have asthma in their childhood, prescribe Drug B  

For people who did not know whether they had asthma in their childhood, prescribe Drug A  

(even though they either had asthma or they didn't. In either case, the doctor would have prescribed 
Drug A)  
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Medical tests 

                                     Asthma 

                                                           Drug A better 

       Drug B         No Asthma                             below diagonal 
                                                                   Combined 

 

 

                                                                   Drug A 

 

For each class of patients, drug B is better 

For combined set of patients, drug A is better 

Doctor’s Dilema? 
18 

  



Comments on Drug Test example 

The dilemma arises even though here there are 

no correlations.   

Also combined values are within ranges on 

individual values i.e. no PPP 

Common feature with tracking:  In both cases, 

major axes of covariance ellipses not parallel 

Rotation of axes is even sensible in medical case.  
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Unknown ρ 

• What to do if correlations are unknown? 

    e.g. Old neutrino cross-section data 

 

New archive note by Lukas Koch (Oxford) 

“Robust test statistics for data with missing 
correlation information” 

https://arxiv.org/abs/2102.06172 (Feb 2021) 
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https://arxiv.org/abs/2102.06172
https://arxiv.org/abs/2102.06172


Summary of Combination Oddities 

• Including theory can help 

• Estimated uncertainties: 100  10  and  80   9 

• PPP: Combination outside range of individual  

• Extrapolation can be correct 

• Combined σ can be << individual σ 

• Profile Likelihood loses information 

• Extrapolation can occur without correlations (e.g. 

doctor’s dilemma)  
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Combining p-values 

For comparing hypothesis H with data, p = probability of obtaining result = data, 
or more extreme. 

p is NOT  probability that H = true, given the data  
 

Much better to combine data e.g.  

1) Small p-values from different analyses could result from very different 
discrepancies. 

2) Correlated systematics  

3)      Bob Cousins: Combination method is ambiguous: 

pi are supposedly  uniformly distributed and independent.  

How to construct pcomb(pi) such that it is uniformly distributed  over hyper-cube? 

Optimal method depends on other information, e.g. 

Data set 1. Histogram of 100 bins. H = constant 

Weighted sum of squares  S =  90,  p1=0.4 

Data set 2. One measurement.  H predicts 49 events. Observe 84 events. p2 = 3 10-6 

pcomb likely to be small. But Scomb =115  pcomb= 0.16 
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Combination method for p-values 
1) Don’t combine p-values 

 

2)    Select smallest pi (and calculate prob) 
 

3)    Use Π = product of pi, and calculate  

        pcomb = prob that Π < Πobs 

e.g. For 2 p-values, pcomb = p1p2(1 – ln(p1p2)) >= p1p2 

 

4) Stouffer: zcomb  = ∑zi/N, 
where zi is z-score corresponding to pi 

(e.g. zi = 5 for pi = 3 10-7) 

      

For longer list, see Heard & Rubin-Delanchy (2017)  

“Choosing Between Methods of Combining p-values” 
https://core.ac.uk/download/pdf/146459765.pdf  
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MULTIVARIATE ANALYSIS 

v1 
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Example: Aim to separate signal from background 

 

Neyman-Pearson Lemma: 

Imagine all possible contours that select signal with 

efficiency      (Loss = Error of 1st Kind) 

Best is one containing minimal amount of background 

(Contamination = Error of 2nd Kind) 

 

Equivalent to ordering data by  

         L-ratio  = Ls(v1, v2, …….) / Lb(v1, v2, …) 
 

IF variables are independent 

        L-ratio = {Ls(v1)/Lb{v1)} x {Ls(v2)/Lb(v2)} x  ….. 

 v2 
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                     PROBLEM: 
 Don’t know L-ratio exactly because: 

1) Signal & bdg generated by M.C. with finite statistics 

2) Nuisance params (systematics) and signal params 

3) Neglected sources of bgd 

4) Hard to implement in many dimensions 

 

METHODS TO DEAL WITH THIS 

Cuts 

Kernel Density Estimation 

Fisher Discriminant 

Principal Component Analysis 

Boosted Decision Trees 

Support Vector Machines 

Neural Nets       

Deep Nets 
 



NEURAL NETWORKS 
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Typical application: Classify events as signal or bgd 

 

 

      Inputs                                      Output (1 for signal 

                                                                       0 for bgd) 

 

 

 

                     Adjustable params                                      

                Weights and Thresholds                                   Bgd                 Signal 

 

• Learning process: 

      Input = Known signal & bgd (e.g M.C.) 

      Adjust params  ‘Best’ output 
• Testing process 

      Make sure not ‘overtraining’ 
• Use trained network on actual data                    0     NN output                  1  

      Classify events as signal if output > cut   



HOW DOES IT WORK? 
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Input   Hidden   Output 

Layer   Layer(s)  Layer 

For each hidden or output node j                                                         
Outputj= F [∑ Inputi * Wij   + Tj]                                                 Higher β 
                  (W and T = network params) 
 
Typical F(x) = 1/(1+ e-βx)     Sigmoid 

 

 For large β, output of node j  is ‘ON’  if            Low β 
        ∑ Ii wij +Tj > 0 , and ‘OFF’ otherwise 

 
Dividing contour is ‘hyper-plane’ in I space 



HOW DOES IT WORK? 
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Input   Hidden   Output 

Layer   Layer(s)  Layer 

v1 

 

v2 
v2 

v1 For First hidden node 

Straight line is  

       w11*v1 + w21*v2 +T10  =  0 

where   

wij is weight from ith input node to jth hidden node 

Tk0 is threshold for kth hidden node  



HOW DOES IT WORK? 
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Input   Hidden   Output 

Layer   Layer(s)  Layer 

v1 

 

v2 
v2 

v1 For second hidden node 



HOW DOES IT WORK? 
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Input   Hidden   Output 

Layer   Layer(s)  Layer 

v1 

 

v2 
v2 

v1 
For third hidden node 



HOW DOES IT WORK? 
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Input   Hidden   Output 

Layer   Layer(s)  Layer 

v1 

 

v2 
v2 

v1 
Output = Sigmoid{0.4H1 + 0.4H2 + 0.4H3 – 1.0} 

Output is ‘On’ only if H1 H2 H3 all are ‘On’ 
 

N.B.  

* Complexity of final region depends on number of hidden nodes. 

* Finite β  rounded edges for  selected region; and contours of  

constant output in (v1, v2) plane. 



When do we need more than one Hidden Layer? 

 
 

 

 

 

 
 

 

 

 

.  
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v1 

v2 

v1 

v2 

Output 

Output = Sigmoid{H7 + H8 – 0.5} 

i.e. Output is ON if either or both 

of H4 and H5 are ON (logical OR) 

H7 

H8 

Input nodes connected to all 

1st hidden layer nodes 

 

1st hidden layer nodes 

connected to 2nd hidden layer 

nodes in same rectangle 



BEWARE 

• Training sets are reliable 

• Don’t train with variable you want to measure 

• Data does not extend outside range of training 

samples (in multi-dimensions) 

• Don’t overtrain 

• Approx equal numbers of signal and bgd  
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Is NN better* than simple cuts? 

In principle, NO 

Can cut on complicated variable e.g. NN output 

 

In practice: YES 

 

But: 

Better NN performance  more work by ‘Cuts’ 
analysis to improve performance 

 

* Better = improved efficiency  v  mistag rate 
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SIMPLE EXAMPLE  

Try to separate π and proton using E and p 

π: E2 = p2 + mπ
2 

P: E2 =  p2 + mp
2                                                              E 

 

Easy:       p = 0  2 GeV 

Harder:   p = -4  4 GeV                                        p 

Hardest: px, py, pz = -4  4 GeV 

More realistic: Add expt scatter of data wrt curves 
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PHYSICS EXAMPLE 

Separate b-jets from light flavour, gluons, W, Z: 

Input variables:  Track IPs, SV mass, distance, quality, etc. 

Output: 0  1 

 

Issues: 

Pre NN cuts 

Training and testing samples (Where from? How many events? Ratios of 

different bgds,….)  
How many inputs? 

Network structure 

How many networks? 

Single output or several  

Systematics (use different sets of testing events} 

Stability wrt NN cut 
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NN Summary 

• ADVANTAGES: 

        Very flexible 

        Correlations OK  

        Tunable cut 

• DISADVANTAGES 

        Training takes time 

        Tendency to include too many variables 

        Treat as black box 

 

*   Past attitude: Need to convince colleagues NN  is sensible 

     More recently: Why aren’t you using NN? 

     Now/future: Why aren’t you using a Deep Network? 
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Conclusions 

                               Resources: 

Software exists:     e.g. RooStats, Combine 

Books exist: Barlow, Cowan, James, Lista, Lyons, Roe,….. 
                     `Data Analysis in HEP: A Practical Guide to    

                      Statistical Methods’ , Behnke et al.  

PDG sections on Prob, Statistics, Monte Carlo 

CMS, ATLAS and LHCb have Statistics Committees (and BaBar and CDF 
earlier) – see their websites.  

PHYSTAT Workshops: LHC, Neutrino, Dark Matter, Flavour Physics 

 

 

Before re-inventing the wheel, try to see if Statisticians have already found 
a solution to your statistics analysis problem.  

Don’t use your square wheel if a circular one already exists. 
 

                          “Good luck” 
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