Improvements 0000000 Problems 000000 Summary 00000

The Edge of Precision in Simulations for the LHC

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

RAL, 31.32021

- why precision tools?
- current precision
- improving parton showers
- persistent problems
- summary & outlook

why precision

(carrying coal to Newcastle)

▲ロト▲母ト▲目ト▲目ト 目 のへの

F. Krauss The Edge of Precisionin Simulations for the LHC IPPP

F. Krauss

100% Comparison Match No Match

・ロト ・同ト ・ヨト ・ヨ

CSI LHC: need precise & accurate tools for precision physics

systematic exp. uncertainties decrease -

- push into precision tests of the Standard Model -
- hope for "simple" discoveries is waning -(don't expect anything glaringly obvious)

to date no discovery of new physics (BSM)

- statistical uncertainties approach zero -(because of fantastic work of accelerator, DAQ, etc.)
- theoretical uncertainties are or become dominant (obstacle to full explication of LHC) -

(find it or constrain "subtle"!)

(because of ingenious experimental work)

Improvements 0000000 Problems 000000 Summary 00000

how to build an event generator

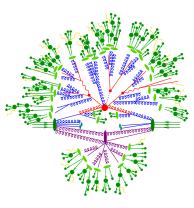
- paradigm: "divide et impera"
- divide simulation in distinct phases, with (logarithmically) separated scales
- start with signal event

(fixed order perturbation theory)

• dress partons with parton shower

(resummed perturbatkon theory)

add underlying event


(phenomenological models)

hadronize partons

(phenomenological models)

decay hadrons

(effective theories, simple symmetries & data)

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● の Q @

F. Krauss

current precision

(where we are)

Status	Improvements	Problems	Summary
0●00000000000000	0000000	000000	00000

virtual 2 $\rightarrow \geq$ 3 amplitudes

(1511.05409, 1511.09404, 1604.06631, 1712.02229, 1811.11699, ...)

relative size argument: $\alpha_s^2 \approx \alpha_W$: must include NLO EW corrections for $\mathcal{O}(1 - 10\%)$ accuracy \implies automated in OPENLOOPS, RECOLA, aMC@NLO _ MADGRAPH

SM precision simulation in a nutshell: Drell-Yan

- current "accuracy standard(s)":
 - fixed-order: N³LO for inclusive, NNLO for Vj
 - matching: NNLOPS for inclusive V
 - merging: MEPs@NLO for $V + \leq 2$ jets at NLO $V + \geq 3$ jets at LO
- dominating QCD effects: $\mathcal{O}(10-30\%)$
 - low- p_{\perp} region dominated by parton shower
 - high- p_{\perp} region dominated by (multi-) jet topologies
 - higher accuracy in rate (and some shapes) through NNLO matching
- must add EW corrections for %-level precision
 - EW correction at large scales $\mathcal{O}(10\%)$
 - QED FSR + EW for V line shapes at $\mathcal{O}(1\%)$

イロト イヨト イヨト イヨト

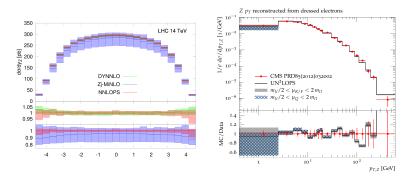
・ロト ・雪ト ・ヨト ・ヨト

matching at NLO and NNLO

- avoid double-counting of emissions
- two schemes at NLO: MC@NLO and POWHEG
- two schemes at NNLO: MINLO & UNNLOPS (singlets S only)

• MINLO:

- use POWHEG for S+j with $p_T^{(S)} \to 0$,
- capture divergences by reweighting with analytic Sudakov form factor
- NNLO accuracy by reweighting with full NNLO calculation
- UNNLOPS:
 - subtract and add parton shower terms at FO from S + j contributions
 - maintaining unitarity using zero- p_{\perp} bin
- both available for two simple processes only
- common limitiation: accuracy of parton showers


Improvements 0000000 Problems 000000

<ロト < 団ト < 団ト < 団ト

Summary 00000

NNLOPS for Z production: MINLO & UNNLOPS

(1407.2904, 1405.3607)

- different logic of achieving NNLO precision
- available for H, V production (both) and VV production (MINLO)

Improvements 0000000 Problems 00000C Summary 00000

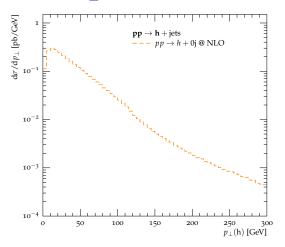
merging example: $p_{\perp,\gamma\gamma}$ in MEPS@LO vs. NNLO

(arXiv:1211.1913 [hep-ex])

multijet-merging at NLO

- sometimes "more legs" wins over "more loops"
- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting
- maintain NLO and LL accuracy of ME and PS
- this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities
- different implementations, parametric accuracy not always clear

(MEPS@NLO, FxFx, UNLOPS)

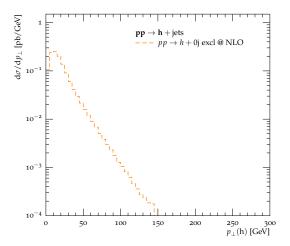

イロト イヨト イヨト イヨト

• starts being used, still lacks careful cross-validation

Status
000000000000000000000000000000000000000

Improvements 0000000 Problems 00000 Summary 00000

illustration: p_{\perp}^{H} in MEPs@NLO

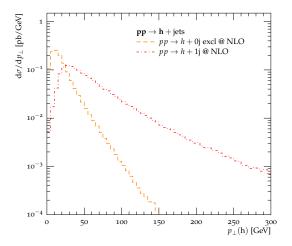

 first emission by MC@NLO

F. Krauss

Improvements 0000000 Problems 000000 Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

 first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}

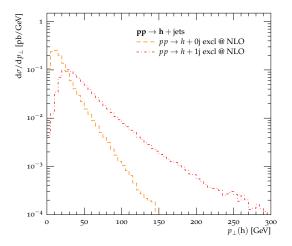

▲ロト▲母ト▲注ト▲注ト 注 のへで

F. Krauss

 Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

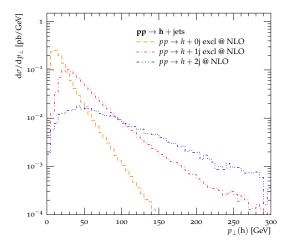

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

| ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ の Q @

 Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

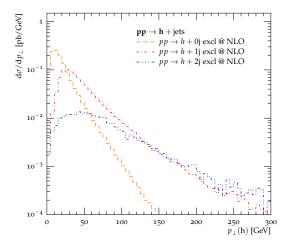

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

| ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ の Q @

 Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO



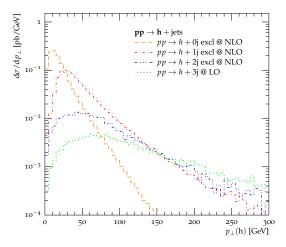
- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

- * ロ * * 御 * * 画 * * 画 * - 三 * の < @

Improvements 0000000 Problems 000000 Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$


iterate

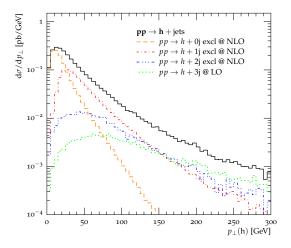
・ 「 「 」 ・ 「 」 ・ 「 」 ・ 「 目 ・ 」 日 ・ 「 日 ・ 」 りゃう

Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$


iterate

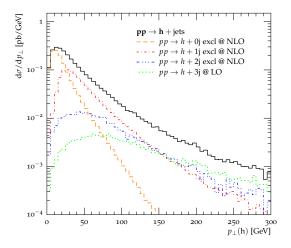
- ▲ ロ ト ▲ 国 ト ▲ 国 ト ▲ 国 - うへで

 Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions


- ▲日を ▲聞を ▲回を ▲回を ▲日を

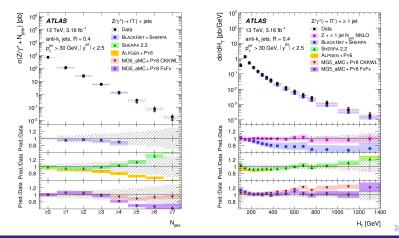
F. Krauss

 Improvements 0000000 Problems

Summary 00000

illustration: p_{\perp}^{H} in MEPS@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

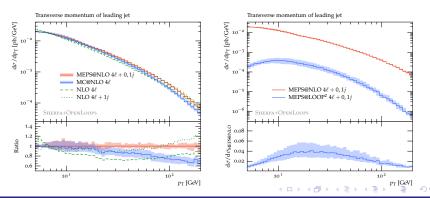

▲ロト▲聞と▲目と▲目と 目 ろくで

 Improvements 0000000 Problems 000000 Summary 00000

MEPS@NLO for Z+jets: ATLAS data (13 TeV)

(arXiv:1702.05725 [hep-ex])

• various merging codes at LO and NLO


Improvements 0000000 Problems 000000 Summary 00000

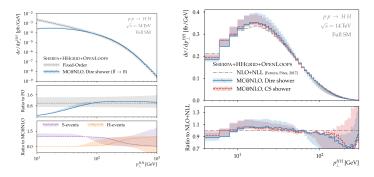
adding loop-induced processes: WW production

(arXiv:1309.0500 [hep-ph])

 \bullet combine MEPs@NLO for "direct" WW production with LO merging for $gg \rightarrow WW$

("tagged" by light-quark box)

F. Krauss


Improvements 0000000 Problems 000000 Summary 00000

MC@NLO for loop-induced processes (HH production)

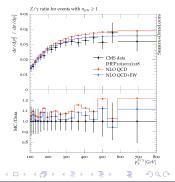
(arXiv:1703.09252 & 1711.03319 [hep-ph])

Image: A mathematic states and a mathematic states

- technology ready for loop-induced NLO (effectively parts of NNLO) combined with parton shower
- two implementations: aMC@NLO _ MADGRAPH & SHERPA

EW corrections

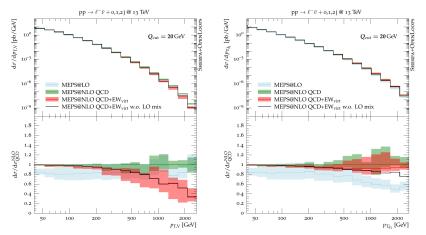
- EW corrections sizeable $\mathcal{O}(10\%)$ at large scales: must include them!
- but: more painful to calculate
- need EW showering & possibly corresponding PDFs


(somewhat in its infancy: chiral couplings)

• example:
$$Z/\gamma$$
 vs. p_T (right plot)

(handle on p_{\perp}^Z in $Z \rightarrow \nu \bar{\nu}$)

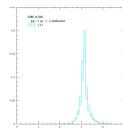
(Kallweit, Lindert, Pozzorini, Schoenherr for LH'15)


- difference due to EW charge of Z
- no real correction (real V emission)
- improved description of $Z \rightarrow \ell \ell$

Improvements 0000000 Problems 000000 Summary 00000

EW corrections in $pp \rightarrow \ell^- \bar{\nu} + \text{ jets}$

(arXiv:1511.08692 [hep-ph])



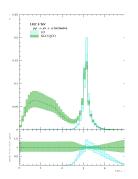
▲口▶▲御▶▲臣▶▲臣▶ 臣 のQで

Improvements 0000000 Problems 000000 Summary 00000

NLO EW predictions for $\Delta R(\mu, j_1)$

 $(\mbox{LHC@8TeV}, p_{\perp}^{j_1} > 500 \mbox{ GeV}, \mbox{ central } \mu \mbox{ and jet}) \label{eq:LHC@8TeV} \bullet \ \mbox{LO} \ pp \to Wj \ \mbox{with} \ \Delta \phi(\mu,j) \approx \pi$

▲ロト▲聞 ▼▲目 ▼▲目 ▼ ● ● ●

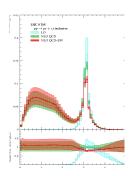

The Edge of Precisionin Simulations for the LHC

 Improvements 0000000 Problems 000000 Summary 00000

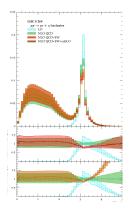
NLO EW predictions for $\Delta R(\mu, j_1)$

(LHC@8TeV, $p_{\parallel}^{j_{\parallel}}$ > 500 GeV, central μ and jet)

- LO pp
 ightarrow Wj with $\Delta \phi(\mu, j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS



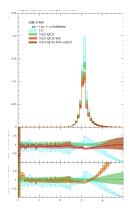
NLO EW predictions for $\Delta R(\mu, j_1)$


(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)

- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS

The Edge of Precisionin Simulations for the LHC

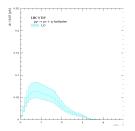
NLO EW predictions for $\Delta R(\mu, j_1)$



(LHC@8TeV, $p^{j_{\parallel}}$ > 500 GeV, central μ and jet)

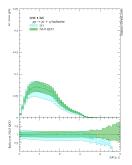
- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR

 Improvements 0000000 Problems 000000 Summary 00000


NLO EW predictions for $\Delta R(\mu, j_1)$

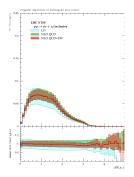
(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)

- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100\,{
 m GeV}$


NLO EW predictions for $\Delta R(\mu, j_1)$

- (LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)
- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1*j*, no $p_{\perp}^{j_2} > 100 \, {
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$

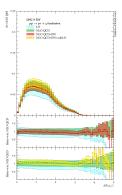
IPPP


NLO EW predictions for $\Delta R(\mu, j_1)$

(LHC@8TeV, $p_{\perp}^{j_1}$ > 500 GeV, central μ and jet)

- LO $pp
 ightarrow W\! j$ with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100\,{
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$
- pos. NLO QCD, \sim flat

NLO EW predictions for $\Delta R(\mu, j_1)$

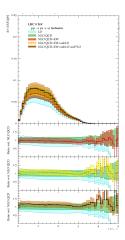


(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)

- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1*j*, no $p_{\perp}^{j_2} > 100 \, {
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$
- $\bullet\,$ pos. NLO QCD, neg. NLO EW, $\sim\,$ flat

 Improvements 0000000 Problems 000000 Summary 00000

NLO EW predictions for $\Delta R(\mu, j_1)$



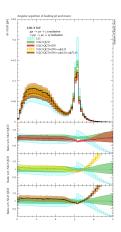
(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)

- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1*j*, no $p_{\perp}^{j_2} > 100 \, {
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$
- $\bullet\,$ pos. NLO QCD, neg. NLO EW, $\sim\,$ flat
- sub-leading Born contribs positive

 Improvements 0000000 Problems 000000 Summary 00000

NLO EW predictions for $\Delta R(\mu, j_1)$

(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)


- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100\,{
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$
- $\bullet\,$ pos. NLO QCD, neg. NLO EW, $\sim\,$ flat
- sub-leading Born contribs positive
- sub²leading Born (diboson etc) conts. pos.

 \rightarrow possible double counting with BG

イロト イヨト イヨト イヨト

 Improvements 0000000 Problems 000000 Summary 00000

NLO EW predictions for $\Delta R(\mu, j_1)$

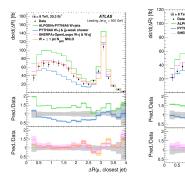
(LHC@8TeV, $p_{\perp}^{j_1} > 500$ GeV, central μ and jet)

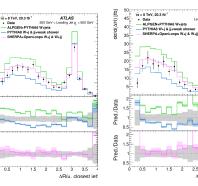
- LO pp
 ightarrow Wj with $\Delta \phi(\mu,j) pprox \pi$
- NLO corrections neg. in peak large $pp \rightarrow Wjj$ component opening PS
- sub-leading Born (γ PDF) at large ΔR
- restrict to exactly 1j, no $p_{\perp}^{j_2} > 100\,{
 m GeV}$
- describe pp
 ightarrow Wjj @ NLO, $p_{\perp}^{j_2} > 100~{
 m GeV}$
- $\bullet\,$ pos. NLO QCD, neg. NLO EW, $\sim\,$ flat
- sub-leading Born contribs positive
- sub²leading Born (diboson etc) conts. pos.
 - \rightarrow possible double counting with BG

イロト イヨト イヨト イヨト

• merge using exclusive sums

Improvements 0000000 Problems 000000 Summary 00000


... and the measurement


(arXiv:1609.07045 [hep-ex])

ATLAS

Leading Jet p_ > 650 GeV

• different fixed order and simulation tools

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

AB(u. closest iet)

F. Krauss

another systematic uncertainty: parton showering

• parton showers are approximations, based on

leading colour, leading logarithmic accuracy, spin-average

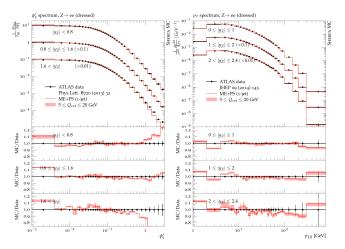
• parametric accuracy by comparing Sudakov form factors:

$$\Delta = \exp\left\{-\int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \left[A\log\frac{k_{\perp}^2}{Q^2} + B\right]\right\} \,,$$

where A and B can be expanded in $\alpha_{s}(k_{\perp}^{2})$

• Q_T resummation includes $A_{1,2,3}$ and $B_{1,2}$

(transverse momentum of Higgs boson etc.)


<ロト <回ト < 回ト < ヨト

- showers usually include terms $A_{1,2}$ and B_1
 - A = cusp terms ("soft emissions"), $B \sim$ anomalous dimensions γ

Problems 000000

LO results for Drell-Yan

(example of accuracy in description of standard precision observable, 1506.05057)

- イロト イ理ト イヨト イヨト ヨー わえの

F. Krauss

improving parton showers

(going beyond "plumbing")

including NLO splitting kernels

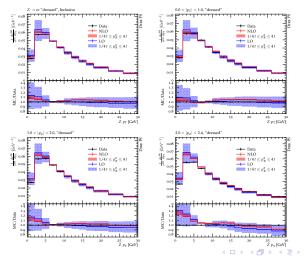
(1705.00982, 1705.00742)

expand splitting kernels as

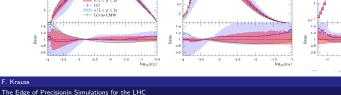
$$P(z, \kappa^2) = P^{(0)}(z, \kappa^2) + \frac{\alpha_s}{2\pi} P^{(1)}(z, \kappa^2)$$

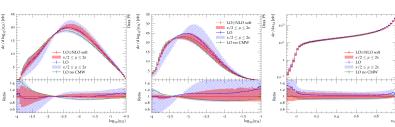
- aim: reproduce DGLAP evolution @ NLO: include NLO splitting kernels
- three categories of terms in $P^{(1)}$:
 - cusp (universal soft-enhanced correction)

(already included in original showers)


<ロト <回ト < 回ト < ヨト

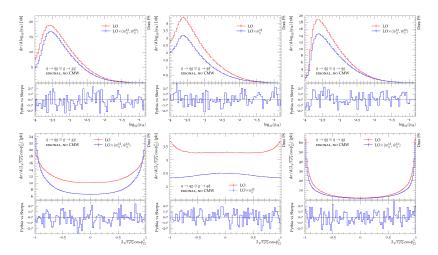
- $\bullet~$ corrections to $1\rightarrow 2$
- new flavour structures (e.g. q
 ightarrow q'), identified as 1
 ightarrow 3
- new paradigm: two independent implementations
- but: still issues with log-accuracy to be resolved (see below)


Problems 000000 Summary 00000


physical results: DY at LHC

(untuned showers vs. 7 TeV ATLAS data, optimistic scale variations)

- capture effect by reweighting original parton shower, with
 - accounting for finite recoil
 - including first $1/N_c$ corrections
 - incorporating spin correlations
- resulting scale dependence (pessimistic estimate) below

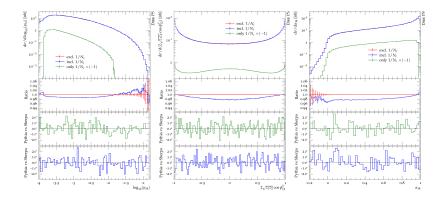


(another way to solve problems in 1805.09327)

IPPP

Problems 000000 Summary 00000

reweighting


▲□▶▲□▶▲□▶▲□▶ = のQで

The Edge of Precisionin Simulations for the LHC

F. Krauss

Problems 000000 Summary 00000

including $1/N_c$ effects

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

F. Krauss

	Status 00000000000000000000	Improvements 000000●	Problems 000000	Summary 00000	
how to assess formal precision?					
 PS proven to be NLL accurate for simple observables, provided 					
Catani, Marchesini, Webber, NPB349 (1991) 635					
$ullet$ soft double-counting removed (\nearrow before) and					
 2-loop cusp anomalous dimension included 					
• not entirely clear numerically, because (technical discussion in 1711.03497)					
 parton shower is momentum conserving, NLL is not parton shower is unitary, NLL approximations break this 					
	study: issues with $2^{\rm nd}$ emin problem		NOWERS (18 DNE in, e.g., Nucl.Phys. B392 (1	805.09327) 1993) 251)	
• highlights problems (evolution parameters and kinematics) (2002.11114)					

- way forward: design a new MC that
 - reproduces NLL exactly
 - allows for merging and matching

Image: Image:

persistent problems

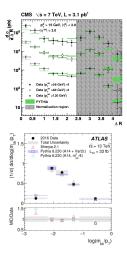
(not everything is rosy)

Problems

Summary 00000

g ightarrow Q ar Q — a systematic nightmare

 parton showers geared towards collinear & soft emissions of gluons

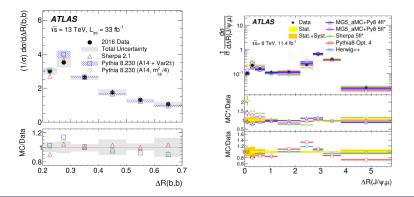

(double log structure)

- g
 ightarrow q ar q only collinear
- old measurements at LEP of $g
 ightarrow bar{b}$ and $g
 ightarrow car{c}$ rate
- fix this at LHC for modern showers

(important for ttbb)

• questions: kernel, scale in α_s

(example: k_{\perp} vs. m_{bb})


F. Krauss

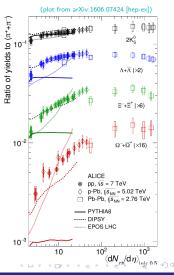
latest ATLAS measurements

(arXiv:1812.09283, 1705.03374 [hep-ex])

- use *b*-tagged jets with R = 0.2 (left)
- use muons in $B \rightarrow J/\Psi(\mu\mu) + X$ and $B \rightarrow \mu + X$ as proxies (right)

F. Krauss

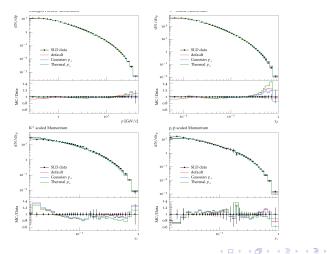
massive quarks are tricky - encore


- heavy quarks also problematic in initial state: no PDF support for $Q^2 \le m_Q^2 \longrightarrow$ quarks stop showering
- possible solutions:
 - naive: ignore and leave for beam remnants (SHERPA)
 - better: enforce splitting in region around m_Q^2 (PYTHIA) \longrightarrow effectively produces collinear Q and gluon in IS
- will need to check effect on precision obsevables: $p_{\perp}^{(W)}/p_{\perp}^{(Z)}$

Problems

Summary 00000

soft physics: strange strangeness


- universality of hadronization assumed
- parameters tuned to LEP data in particular: strangeness suppression
- for strangeness: flat ratios but data do not reproduce this
- looks like SU(3) restoration not observed for protons
- needs to be investigated (see next)

F. Krauss

Problems 000000 Summary 00000

hadronization issues

(illustrative plots from arXiv:1610.09818 [hep-ph])

F. Krauss

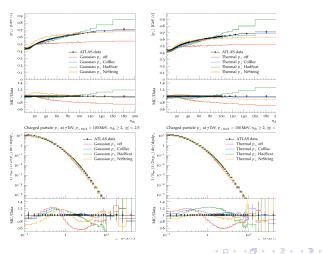
Problems

Summary 00000

hadronization issues

(illustrative plots from arXiv:1610.09818 [hep-ph])

F. Krauss


The Edge of Precisionin Simulations for the LHC

臣

Problems

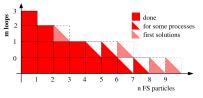
Summary

hadronization issues

(illustrative plots from arXiv:1610.09818 [hep-ph])

F. Krauss

summary & outlook


(successes, wild dreams, & heretical thoughts)

▲ロト▲母ト▲目ト▲目ト 目 のへの

successes & questions

• program of precision calculations (HO QCD) successful:

 $\bullet\,$ NNLO QCD calculations consolidated for $2\to2$ processes

(but: not yet available in full simulations, necessary for investigations at O(<10%) accuracy)

• combine (N)NLO QCD and NLO EW corrections?

(investigate additive vs. multiplicative, maybe with calculations like 1511.08016)

consolidated MC simulation at NLO

(MC@NLO, MEPS@NLO & friends, addition of EW effects)

イロト イポト イヨト イヨト

(but: still steep learning curve ahead)

F. Krauss

wild dreams for upcoming LHC run(s)

(things that I think are feasible in next 5 years)

- NNLO (QCD) \oplus NLO (EW) for all 2 \rightarrow 2 SM processes
- NNLO (QCD) for first "real" $2 \rightarrow 3$ SM processes
- parton shower at $\mathcal{O}(\alpha_s^2)$

(interesting interplay with subtraction at NNLO)

<ロト <問ト < 回ト < 回ト :

• "proper" NNLOPS (MC@NNLO) for all $2 \rightarrow 2$ processes

(plus multijet merging with (N)NLO)

- O(1%) control over inclusive/precision observables: inclusive xsecs; p_⊥ spectrum of W, Z, H; ...
- fix treatment of heavy flavours in FS & IS

(important for Higgs precision/BSM searches, "higher-twist" corrections to simple factorisation, role of PDFs)

(problems at $\mu_F^2\,<\,m_Q^2\,\longrightarrow$ forced transitions to gluons at/around mass threshold)

summary: some heretical thoughts

• massive efficiency issues with HO calculations

(must learn to use tools in smarter ways)

- is there a limit to our perturbative precision programme?
 - discuss non-perturbative effects: compare $\Lambda_{\rm QCD}/Q$ -effects with $\alpha_{\rm s}$
 - improvement scales like ratio of "exponent" n in NⁿLO/Nⁿ⁻¹LO?

(= ∞ for LO \rightarrow NLO, 100% for NLO \rightarrow NNLO, 50% for NNLO \rightarrow NNNLO, ...)

 soft/non-perturbative physics will be the biggest uncertainty for many observables/measurements

(but practically nobody works on it)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@