# **RaDIATE activities at J-PARC**

<u>S.Makimura\*,</u> T.Nakadaira, N.Kawamura, H.Takahashi, T.Ishida (J-PARC/KEK) S.Meigo, E.Wakai, Y.Iwamoto , M.Teshigawara (J-PARC/JAEA) S.Kano (Univ. of Tokyo) H.Matsuda, M.Hagiwara (QST) N.Nakazato (Muroran Inst. Tech.)





K.Ammigan\*, S.Bidha, F.Pellemoine, K.Yonehara (FNAL) D.J.Senor, A.M.Casella, A.Roy, R.Devanathan (PNNL) M.Palmer, D.Kim (BNL) M. Calviani, N. Charitonidis, J. Maestre, C. T. Martin (CERN)



Þ

A

a

ĩ

nts

ወ

age In nvironme

E 🔟

ion Da arget

dia tor

le ra

C C e

#### R a D I A T E Collaboration

Radiation Damage In Accelerator Target Environments

# Japan Proton Accelerator Research Complex



Fast Extraction(FX):  $500kW \rightarrow 1.3MW$ 

Slow Extraction(SX): 65 kW $\rightarrow$  100 kW (150 kW)

ш

Ŀ

4

a

£

# **Targets and Beam windows at J-PARC**

ш

C

Ð

C

0

പ

σ



### **Research Scope**

- Study radiation damage effects in targets & beam windows, which limits major accelerator facilities in beam power
  - Accurate lifetime prediction of target/window
  - Develop new materials & components to extend the life

# **Resent activities**

- Focus upon critical materials at J-PARC/FNAL neutrino projects to realize high-power (+1.2MW ~ 2.4MW) operation for CPV observation
  - Titanium alloys (Ti): primary beam window (T2HK) / target containment window (T2HK/LBNF)
  - Beryllium (Be): primary window/decay pipe window (LBNF)
  - Novel materials under development for,
    - $\mu\text{-}e$  conversion, neutrino, SNS... experiments
      - NITE SiC-SiC composite, SiC coated graphite: ν, μ target
    - Ductile tungsten TFGR-W: μ-e, anti-proton target
- DPA (displacement per atom) cross section measurement,







J

£

#### under RaDIATE collaboration



Post-Irradiation Examination (PIE)



HiRadMat @CERN: Thermal shock experiment
Single-shot thermal shock response and limits
Combination of irradiation and thermal shock

- High-intensity proton irradiation experiment at <u>BNL-BLIP facility</u>, 1st irradiation round completed in 2017-18
- <u>Post-Irradiation Examination (PIE)</u> at Pacific Northwest National Laboratory (PNNL)
- Thermal shock experiment at <u>CERN-</u> <u>HiRadMat facility</u>

HRMT-43, BeGrid2 experiment, 2018 PIE at PNNL in 2022 HRMT-60, in October, 2022

4

ດ

Ŷ

Proton beam:

High intensity, DC beam

Brookhaven

National Laboratory



# **History of RaDIATE collaboration**

Ŀ

4

erat

Accele

| -          |                           | 2016           | 2017 | 2018    | 2019     | 2020      | 2021              | 2022        | 2023           |
|------------|---------------------------|----------------|------|---------|----------|-----------|-------------------|-------------|----------------|
| a          | BNL                       | $\bigcirc$     | BLIF | <b></b> |          |           |                   | BNL-        | XRD            |
| £          | PNNL                      |                |      | , ↓<br> | PI       | E         |                   | PIE         |                |
| n t s      | CERN HiRadMat<br>US-JP    | US-JP<br>start |      |         | /IT43 co | ooling tr | ansport           |             | ) cooling<br>► |
| nmer       | DPA meas.                 |                |      |         |          |           |                   | FNAL        | CERN           |
| nviro      | HIT irradiation           |                |      |         | Ti allo  | y, TFGR \ | <i>N</i> , and SS | 316L        | w/ FNAL        |
| r Target E | CERN HiRadMat<br>CERN-KEK | NITE SiC/S     |      | T35 PIE | PIE      | Collab    | oration fo        | r antiproto | n target       |

### Radiation Damage Studies on Ti-6Al-4V by BLIP specimens

- Ti alloys as next-generation beam window materials:
  - Maintain enough strength & ductility
  - a few displacement-per-atom (dpa), an operational temperature of 300°C
- The conventional two α+β phase Ti-64 alloy loses its ductility after only about 0.1 dpa
  - the radiation-induced  $\omega$  phase in the  $\beta$  matrices,
  - $\bullet$  hardening caused by dislocation loops in the  $\alpha$  matrices





4

J

£

e n t s

m u o

C

g e vir

Dama etEn

o n a r g

<u>ר ש</u>

<mark>ка</mark> ега

t i

С С

υ





The single metastable  $\beta$  phase Ti-15-3 alloy exhibits high radiation damage tolerance, that does not undergo irradiation hardening up to 10 dpa at room temperature

#### C 0 Φ <u>م</u> > ם **ב** Еш ч ч Ð σ 2 0 പ **d r** - 0 4 σ ന ന S.... Φ Ð υ

4

a

Ŷ

S

÷

C

Φ Ε

C

#### Ti-15-3 is typically aged at ~500°C for high temp. usage.

Two-step aging treatment from low temperature to high temperature (ST2A)

- $\alpha$ -phase precipitation to become very fine
- Preserving irradiation resistance at 300°C



#### Strain (%) 05 05 400°C / 448MPa Unirradiated Ti-6AI-4V Creep 20 10 fi-15-3 ST2A 2.000 4.000 6.000 Time (hour)

**Confirmation of creep resistance** 

Ti-15-3 ST2A can be used at higher temperatures than Ti-64

υ

# **Beam window manufacturing**



- In the market, Ti-15-3 alloy is only available in strip form
  - To manufacture T2K beam window prototype
    - Purchase (intermediate) billet material (140Φ×660L)
    - Apply thermo-mechanical processing (upset forging) to realize fineequiaxed microstructure
    - Machining to beam window shape
    - Apply two-step ageing





4

Ø

Ŷ

S

4

C

Ð

e In ronm

**D** >

ama t<mark>E</mark>n

on D arge

<mark>Ra</mark>di elerato

> U U

J









ш

4

D

£





- Beam energy: 440GeV, size:  $\sigma_r$  = 0.25 ~ 4 mm (rms)
- 1.2 x 10<sup>11</sup> / b x (1 ~ 288) = 3.46 x 10<sup>13</sup> ppp in 7.95us (max)

Sigraflex

| Pre-ir                          | ra                              | di                             | a                               | te                        | d                        | sp                       | e             | ciı                   | ne                      | en                     | S                              |                                |             |                             |                             |                 |                |               |               |                   |                   |                                |                                |              |                   |                    |                       |                   |                   |                         |                         |                       |
|---------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------|--------------------------|--------------------------|---------------|-----------------------|-------------------------|------------------------|--------------------------------|--------------------------------|-------------|-----------------------------|-----------------------------|-----------------|----------------|---------------|---------------|-------------------|-------------------|--------------------------------|--------------------------------|--------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-------------------------|-------------------------|-----------------------|
| ADDAY 4                         |                                 |                                | Τ                               |                           | Irrad                    | iated sp                 | pecim         | en box                |                         |                        |                                |                                |             |                             |                             |                 |                |               |               | ,                 | Ion-irra          | diated                         | specie                         | men be       | x                 |                    |                       | _                 |                   |                         | 12                      | Slug                  |
| ARRATI                          | A1.1                            | AL7                            | A1.3                            | A1.4                      | A1.5                     | A1.6                     | A1.7          | A1.8                  | A1.9                    | A1.10                  | A1.11                          | A1.12                          | A1          | .13 A1.                     | 4 A1.                       | 15 A1           | 16 A           | 41.17         | A1.18         | A1.19             | A1.20             | A1.21                          | A1.22                          | A1,23        | A1.24             | A1.25              | A1.26                 | A1.27             | A1.28             | A1.29                   | A1.30                   | Ats                   |
| 288b, 1.2e11 ppb,<br>σ: 0.25 mm | POCO ZXF-50<br>graphite (NT-02) | POCO ZXF-50<br>graphite (NT-02 | POCO ZXF-50<br>graphite (NT-02) | IG-430 graphite<br>(BLIP) | IG-430 graphite<br>(BUP) | IG-430 graphite<br>(BLP) | Mo-coated CfC | Mo-coated CfC         | Mo-coated<br>MoGr       | Mo-coated<br>MoGr      | Sigraflex flexible<br>graphite | Sigraflex flexible<br>graphite | POCO ZXF-50 | graphite<br>POCO ZXF-5Q     | graphite<br>IC-420 anachite | aningerge Cr    | and a drap use | Mo-coated CfC | Mo-coated CfC | Mo-coated<br>MoGr | Mo-coated<br>MoGr | Sigraflex flexible<br>graphite | Sigraflex flexible<br>graphite | ZrO          | ZrO               | ZrO2-SiO2          | ZrO2-SiO2             | MO3               | MO3               | ZrO (higher<br>density) | ZrO (higher density)    | Beryllium<br>S-200-FH |
|                                 | _                               |                                |                                 |                           |                          |                          |               |                       | _                       |                        |                                |                                | _           |                             | <u>.</u>                    |                 |                |               |               |                   |                   |                                |                                |              |                   |                    |                       |                   |                   |                         |                         |                       |
| ARRAY 2                         | 47.1                            | A2.2                           | 42.3                            | 42.4                      | A2.5                     | ated sp                  | A2 7          | A2 8                  | 42.9                    | A2 10                  | A2 11                          | A2 12                          | 42          | 13 42                       | 4 42                        | 15 42           | 16 4           | 12 17         | 42.18         | 42.10             | A2 20             | A2 21                          | A2 22                          | men b        | DX                | 42.25              | 42.26                 | 47.77             | 42.28             | 42.20                   | 42.30                   | Slug                  |
|                                 | CON                             | 0.0                            | 00                              | DE.9                      | \$                       | 0.0                      | ()            | ()                    | n2.9                    | 102.10                 | 2                              | 0                              | 0           | 0                           | 4 102                       | p 10 102        | D D            | ()            | ()            | AL. 19            | A2.20             | 0                              | 0                              | 12.23        | 14.24             | n2.23              | 142.20                | nk.21             | AL.20             | nc.29                   | nz.30                   | 125                   |
| 216b, 1.2e11 ppb,<br>σ: 0.25 mm | POCO ZXF-5(<br>graphite (NT-0)  | POCO ZXF-50<br>graphite (NT-0) | POCO ZXF-50<br>araphite (NT-0)  | IG-430 graphit<br>(BUP)   | IG-430 graphit<br>(BUP)  | IG-430 graphit<br>(BUP)  | Mo-coated CfC | Mo-coated CfC         | Mo-coated<br>MoGr       | Mo-coated<br>MoGr      | Sigraflex flexibl<br>graphite  | Sigraflex flexibl<br>graphite  | POCO ZXF-50 | POCO ZXF-5(                 | graphite<br>IC 430 arothit  | independence-or | IG-430 graphic | Mo-coated CfG | Mo-coated CfC | Mo-coated<br>MoGr | Mo-coated<br>MoGr | Sigraflex flexibl<br>graphite  | Sigraflex flexibl<br>graphite  | ZrO          | ZrO               | Zr02-Si02          | Zr02-Si02             | MO3               | WO3               | ZrO (higher<br>density) | ZrO (higher<br>density) | Beryllium<br>S.200-FH |
| ARRAY 3                         | A3.1                            | A3.2                           | A3.3                            | A3.4                      | Irrad                    | lated sp                 | A3.7          | A3.8                  | A3.9                    | A3 10                  | A3.11                          | A3 12                          | A3          | 13 43                       | 14 A3                       | 15 A3           | 16 A           | 3.17          | A3.18         | A3.19             | Ion-irra          | A3.21                          | A3.22                          | men be       | <b>X</b>          | A3.25              | A3 26                 | A3.27             | A3.28             | A3 29                   | A3 30                   | Slug                  |
| 72b, 1.3e11 ppb,<br>σ: 0.25 mm  | TI 15-3 STA                     | TI-6AI-4V A<br>(Gr23)          | TI-6AI-4V STA                   | Ti-6AI-4V UFG<br>(Gr5)    | Ti (Gr2)                 | TI-5AI-2.5Sn<br>(Gr6)    | Ti 15-3 STA   | Ti-6AI-4V A<br>(Gr23) | Ti-6AI-4V STA<br>(Gr23) | TI-6AI-4V UFG<br>(Gr5) | Ti (Gr2)                       | Ti-5AI-2.5Sn<br>(Gr6)          |             | Ti IMI829                   | Ti Timat 1100               | 11 1111021      | HCO INI II     | Ti-6-2-4-6    | TI 15-3 ST    | TI 15-3 ST2A      | Ti beta 21s       | Ti-17                          | TI DAT54                       | HEA1 - CMINV | HEA2 -<br>CrMnTIV | HEA3 -<br>AICMNTIV | HEA4 -<br>AICoCrMnTIV | NITE SIC-SIC      | NITE SIC-SIC      | Free slot               | Free slot               | NITE SIC/SIC          |
|                                 |                                 |                                |                                 |                           |                          |                          |               |                       |                         |                        | _                              |                                |             |                             | _                           |                 |                |               |               |                   |                   |                                |                                |              |                   |                    |                       |                   |                   | _                       |                         |                       |
| ARRAY 4                         | 44.1                            | A4 2                           | 443                             | 64.4                      | A4.5                     | lated sp                 | A4 7          | A4 8                  | 64.9                    | A4 10                  | A4 11                          | A4 12                          | 6.4         | Non-irradiated specimen box |                             |                 |                |               |               |                   |                   |                                |                                |              |                   |                    | Slug                  |                   |                   |                         |                         |                       |
| 24b, 1.2e11 ppb,<br>σ: 0.25 mm  | Ti 15-3 STA                     | Ti-6AI-4V A<br>(Gr23)          | Ti-6A)-4V STA<br>(Gr23)         | TI-6AI-4V UFG<br>(Gr5)    | Ti (Gr2)                 | TI-5AI-2.5Sn<br>(Gr6)    | Ti 15-3 STA   | Ti-6AI-4V A (Gr23)    | Ti-6AL-4V STA<br>(Gr23) | TI-6AI-4V UFG (Gr5)    | Ti (Gr2)                       | TI-5AI-2.5Sn (Gr6)             |             | Ti IMI829                   | Ti Timer 1100               |                 | *COINIII       | Ti-6-2-4-6    | TI 15-3 ST    | TI 15-3 ST2A      | Ti beta 21s       | Ті-17                          | Ti DAT54                       | HEA1 - CrMnV | HEA2-<br>CrMnTIV  | HEA3-<br>AICMNTN   | HEA4 - AICoCrMnTIV    | TFGR<br>W-1.1%TIC | TFGR<br>W-1.1%TIC | TFGR<br>W-3.3%TaC       | Pure W                  | Titanium<br>(Ti6AldV) |



# NITE SiC/SiC, SiC coated graphite, TFGR W

#### NITE SiC/SiC

Efficient transport of Pions/Muons due to higher density

 Density:
 SiC 3.2 g/cc
 Graphite: 1.8 g/cc
 Developed at Muroran Institute of Technologies
 Overcome of brittleness by composite material



#### SiC coated graphite



Improvement of oxidation resistance in graphite target
Effect of tritium shielding in SiC coated graphite

Production of tritium by proton irradiation @BNL The release rate in temperature dependence up to 1000 °C was measured by temperature programmed desorption @PNNL

#### TFGR W-TiC

- Tungsten is brittle, because grain boundary is weak.
- Brittleness is improved by heavy plastic working.



G. Pintsuk et al.



Recrystallization embrittlement at high temperature

The grain boundary of TFGR W-TiC is reinforced by TiC segregation.



TFGR W-TiC shows ductility after recrystallization.

# HiRadMat under CERN-KEK collaboration

#### NITE SiC/SiC

- Specimen was supplied by Muroran Institute of Technologies.
- Included in HRMT35 for Target Dump Internal, Coated low-Z absorbing material
- Different beam impact depths, beam angles
- Thermal analysis of composite material through Tsai-Wu criterion

Superficial damage for all impacts and had craters at the entrance and exit faces for deep and grazing impacts, coherent with analysis.

J. Maestre et al.

POT: 3.5×10<sup>13</sup> Beam size:  $0.3 \text{ mm} \times 0.3 \text{ mm}$ 288 bunches, pulse duration 7.2 µs dT=2100°C



SOI 1 Partial loss fibres SOI 3





#### TFGR W-TiC

- Included in HRMT48 for AD-target design
- Ir, Ta, TFGR,,,
- TFGR W-TiC, no noticeable damage
- Promising response







C T Martin et al





W-TiC- without GSMM



Hot rolled W

4

Ø

### dpa measurement

M. Yoshida et al., IEEE Trans. App. SC. 32 (2022)



- Displacement per atom (dpa) : given multiplication of the particle flux and displacement cross section (dpa X-sec)
- No experimental dpa X-sec data above 10 MeV energy region, the measurements were conducted at J-PARC.
- dpa X-sec can be obtained by the change of electrical resistance under cryo-temperature irradiation.
  - Awarded:
    - Best paper award by atomic energy society of Japan
    - Most popular article by JNST (Journal of Nucl. Sci. and Technol.)



Exp. data helped revision of calc. model.

# dpa measurement in the future



- To obtain the dpa X-sec for high energy region E>30 GeV, we will carry out the experiment at FNAL FTBF and CERN HiRadMat using the similar manner at J-PARC
- Budget and program were already approved.

#### FNAL BT-FT (by Y. Iwamoto)

Interview of the second second

ш

A

ປ

Ŷ

ments

a <u>-</u>

d C

e a t

b O

с <sup>р</sup>.

erato

Ð

U

υ

Vacuum chamber with GM cryo-cooler



#### Experiment will be carried out January 2023.

#### CERN HiRadMat (by S. Meigo)



Experiment: planned on 2024

# **J-PARC** proton beam irradiation facility

#### Proton beam irradiation facility planned at J-PARC

- $H^{-}$  beam 0.4 GeV, Power >250 kW with 25 Hz of long pulse (0.5 ms)
- Dose >20 dpa/year at the Pb-Bi (LBE) target

ш

4

a

C

Ð

2

0

σ

- User communities established for multi-purpose
  - RaDIATE users are welcome to join the community, which enhances to build of the new facility.



# **Summary**

- J-PARC participated in RaDIATE collaboration since 2017.
- BLIP irradiation, PIE at PNL, and CERN HiRadMat irradiation is in progress.
- PIEs in Titanium alloy, NITE SiC/SiC, SiC coated graphite, and TFGR W-TiC have been conducted.
- DPA cross section measurement contributes the improvement in Monte Carlo simulation.
- A user community for J-PARC proton beam irradiation facility was established to include the request from users all over the world.

4

a





RaDIATE Collaboration Radiation Damage In Accelerator Target Environments

### List of related publications and presentations (FY2021)

- T. Ishida et al., "Investigation into Contrasting Radiation Damage Behavior between High-Strength Titanium Alloy Classifications and Micro-Structural Optimization", 20 International Conference on Fusion Reactor Materials (ICFRM20), Oct. 25-29, 2021. Online Event (Poster).
- F. Pellemoine, "RaDIATE collaboration recent results", International Particle Accelerator Conference, May 24-28, 2021. Online Event (Poster).
- T. Ishida et al., "Progress of Radiation Damage Studies on Ti Alloys as High-Intensity Proton Accelerator Beam Window Materials", the US-Japan Mini-Symposium, Apr. 21-23, 2021. Online Event (Poster). Awarded as Poster with an Honorable Mention.
- S. Bidhar et al., "Extreme beam-induced thermal shock on materials for future high intensity multi-MW accelerator components", US-Japan Mini-Symposium, Apr. 21-23, 2021. Online Event (Poster).
- S. Meigo et al., "Measurement of displacement cross-section at J-PARC, FNAL and CERN", US-Japan Mini-Symposium, Apr. 21-23, 2021. Online Event (Poster).
- K. Ammigan et al., "Advanced material studies for high intensity proton production targets and windows", invited talk at the US-Japan Mini-Symposium, Apr. 21-23, 2021. Online Event (Invited Talk).
- S. Meigo et al., "Measurement of Displacement Cross Section for Proton in the Kinetic Energy Range from 0.4 GeV to 3 GeV", JPS Conf. Proc. 33, 011050 (2021).
- E. Wakai et al., "Irradiation damages of structural materials under different irradiation environments", J. Nucl. Mat 543 (2021), 152503.
- S. Makimura et al., "Development of Toughened, Fine Grained, Recrystallized W-1.1%TiC", Materials Science Forum, Spallation Materials Technology, Vol. 1024, pp 103-109, ISSN: 1662-9752 (2021)
- K. Ammigan et al., "Recent studies of radiation damage effects in high-power accelerator target materials", Joint Experimental and Theoretical Physics seminar, Fermilab, Dec. 18, 2020. Online Event (Talk).

4

Ø

£