Fermilab

LBNF Instrumentation

Žarko Pavlović

09/20/2022

Requirements

- Require well controlled neutrino beam with minimal systematic errors
- No significant contribution to neutrino flux systematic error or impact on physics measurements
- Tolerances
 - Proton beam angle: 70 μrad
 - Proton beam position: 0.5mm, profile: 10%
 - Baffle beam scraping: 1%
 - Target and Horn A/B/C displacement (transverse/tilt): 0.5mm

Instrumentation

- Systems designed to meet the requirements
- Align beamline elements within the tolerance
 - Beam based alignment BPMs, Cross Hairs/BLMs, HADeS

🚰 Fermilab

- Monitor the beamline elements during running
 - HLS, MuMS
- Maintain the beam on target
 - **TPT**
- Next slides cover the instrumentation in upstream to downstream order

3

Hydrostatic/Horn Level System

- Monitor vertical shifts of beamline components (pre target BPMs, Baffle, Horns)
- Motivation
 - After aligning beamline no direct measurement of movement (thermal expansion, mechanical failure, shielding settling)
 - NuMI experience
 - Bushing failed on horn support, one end of horn moved 3 mm down vertically
 - Did not diagnose this until 1 year later during beam-based alignment
 - Calibration of one pre-target proton Beam Position Monitor drifted made it seem like target moved

HLS

- Uses water level to transfer height between sensors
- CERN sensors based on Frequency Scanning Interferometry (FSI)
- Simultaneously compare multiple interferometers to same reference

Monitoring beam on target

- Beam position monitors will be used to steer beam on target
- Beam based alignment finds the target and all other elements within BPM coordinates
 - Dedicated study time (occasional beginning/end of run)
 - Low intensity/single batch, 1mm RMS beam size
- Need to control for:
 - BPM intensity dependence
 - Calibration drift (geometric vs electrical center)

Target Position Thermometer (Hylen device)

- Simple and robust device to measure beam on target
 - · Measurements with full intensity
 - NuMI experience resolution and stability below
 0.1mm
- Complementary to BPMs
 - · Slow device, not pulse by pulse measurement
- LBNF modifications:
 - Change from 3 -> 5 strips
 - Heat sink with cooling fins

NuMI Horn

Cross Hairs/BLMs

- Horn B & C aligned as part of the beam based alignment
- Scan beam across the known physical features to locate each element
- Use cross hairs at upstream and downstream ends of horns B & C
- Beam loss monitor to detect beam scatter from cross hairs

Cross Hair BLM

HADeS & MuMS

Hadron Alignment Detector System (HADeS)

- Used to establish beam direction, and for beam based alignment of Target/Horn A and Baffle
- Preliminary design is based on technology used in NuMI
 - Array of ionization chambers
- Measure centroid position, integrated intensity, RMS changes
- Optimize pixel size and number of channels for LBNF

HADeS

- Need ability to replace in case of failure
- Inserted in the beam only for alignment, retracted during normal operation
- Required 0.5mm alignment precision when inserting

Muon Monitor System (MuMS)

- Sensitive to beam focusing problems, and measure beam centroid
- Similar to NuMI approach,
 - Improved gas system to
- 3 stations with muon threst
- Stations separated by stee

🛟 Fermilab

7 Fermilab

Beam profile at MuMS

- Expect to see beam profile with O(1cm) precision on centroid
- Sensitive to beam misalignment
- Sculpting by hadron absorber introduces some model dependence on centroid absolute position

Summary

- Target Position Thermometer, Cross hair/BLM system, HADeS, and MuMS build on exhaustive experience with NuMI
 - Adapting existing design
 - Demonstrated required functionality
- Developing new HLS system to monitor vertical displacements
 - Prototype test to take place next summer

