

Modeling horn cooling water for fine neutrino flux estimation

SOKENDAI /KEK IPNS Sakiko Nishimori for T2K Beam group

T2K : Long-baseline neutrino experiment

• Search for CP violation in lepton sector by precision measurement of neutrino oscillations.

- There are 3 horns in T2K beamline. (horn 1 - 3)
- Create toroidal magnetic field
 → Pions are focused on the
 beam axis

Water cooling of J-PARC horn

Inside the horn as seen from the viewport

NBI2022

2022/09/19

Effect of horn cooling water to neutrino flux

 The flux uncertainty due to horn CW is estimated about +/-3%.

Based on flux simulation with water layer : 3+/-2mm
 water parameters are varied conservatively.

NBI2022

Right-sign ν_{μ}

2022/09/19

Motivation of this study

• For improving the precision of flux uncertainty, it is important to consider about the distribution of horn cooling

water.

Element of fractional error except hadron interactions SK: Neutrino Mode, v_{μ} T2K Preliminary Fractional Erro Φ×E., Arb. Norm. Hadron Interaction 0.3 roton Beam Profile & Off-axis Angle Material Modeling Number of Protons Iorn Current & Field 2022 Total Flux Error Horn & Target Alignment 2020 Total Flux Error 0.1 10^{-1} 10 E_{v} (GeV) Largest effect other than hadron interactions

 Limited observation only from the view port.
 I decided to make horn's mock-up and to estimate in detail about the water distribution.

measured in NA61 / SHINE experiment

Overview of horn-1 water splaying mock-up

2022/09/19

Constructed mock-up

450 mm

<points>

- Adjustable flow rate
- There are flowmeters for each nozzles.
- Tilted about 3.64 degrees (same as real horn)
- Put black cardboard behind to improve contrast.

cardboard

Mock-up cooling water system diagram

2022/09/19

Water behavior observed in the mock-up

It is necessary to model the water distribution although its shape fluctuates constantly.

2022/09/19

Shooting a video Location of cameras \rightarrow Extracting images from the video from top from front(beam axis) from side

Pictures from up and side are used for image analysis. Pictures from front is not clear.

2022/09/19

Image analysis method

- **Canny method** : Detect and dot the edges of the image (areas of strong color change).
- Overlay images with and without water flow.

Result

Flow : About 2.5L/min **Pressure** : About 1 atm.

The thickness of the water was measured using the thickness of the pipe as a reference (6 cm).

Water thickness : <u>Almost same as current thickness</u> used in the simulation (3 +/- 2 mm). We should consider about the bottom side water.

2022/09/19

To be improved in this study

1 Adjustment of water flow and pressure

The lifting height is different

lifting height : 0m

→ Pressure condition should be adjusted in mock-up

2022/09/19

To be improved in this study

evaluate errors using simulation

2022/09/19

Summary

• For improving the precision of flux uncertainty, we have made the horn-1 mock-up to observe cooling water behavior inside horn.

In the mock-up test, we have established the method to evaluate water layer of inner conductor by image analysis (canny method).

The water thickness (image analysis results) : 1.0 ~ 4.0 mm
this is almost same as current expected value (expected from the observation via viewport).

•We have some improve points.

Adjustment of pressure condition

Treatment of complicated water shape

Back up

The place of horn1 in the target station

the detail of water layer

	Horn 1 cooling water layer	
	Nominal	Uncertainty
Old (13a)	0 mm	±(1mm – 0mm)
New (21a)	3 mm	±2mm ±(dipole – symm) ±(quadrupole – symm)