

Physics optimization of the LBNF target & horn system

John Back University of Warwick

on behalf of the DUNE collaboration

NBI 2022, 19-22 Sept 2022

Introduction

120 GeV proton beam collides with graphite target to produce $\pi \rightarrow \mu \rightarrow \nu_{\mu}$ Beam power = 1.2 MW (upgradable to 2.4 MW), Gaussian σ_{beam} = 2.67 mm

Optimization of beamline for ν CP violation

Laura Fields

Genetic algorithm & Geant 4 simulations: optimize geometry of 3-horn π focusing system

Based on **NuMI 2-horn** beamline (3rd horn reduces individual horn lengths) Target shape also optimized (graphite cylinder or graphite/beryllium fins)

Target & 3-horn system optimization

Laura Fields

Tapered (TDR) vs **CDR** (2-horn) design: **30% increase** in signal v flux ($E_v = 1$ to 4 GeV) Graphite target **L = 2 m (4 \lambda_{int})**, proton beam 1.2 MW, **120 GeV**, $\sigma_{beam} = 2.67$ mm ⁴

Conceptual Graphite Target Designs (RAL Target Group)

Target Conceptual Design Review (July 2019, FNAL)

	Option 1:1x2m long	Option 2: 2x1m long	Option 3: intermediate cantilever
Instantaneous physics	Best instantaneous physics.	Needs an extra 19 days/yr to match option 1.	1.5m needs an extra 19 days/yr (13 days/yr at 1.6m).
Engineering performance	High heat load. Unstable until supported.	High heat load but divided between 2 targets	Pushing at the limits on cantilever length.
Manufacturability	Difficult to make long tubes. DS support adds complexity.	2 nd target low-mass manifold is complex.	Difficult to make long tubes.
Ease of remote maintenance	≈3 weeks exchange time, DS support adds time and risk.	≈2 weeks exchange time, 2 nd target adds some time and risk.	≈1 week exchange time, lowest complexity and risk.
Cost and schedule impacts	DS support somewhat increases cost and time.	2 nd target greatly increases cost and time.	Cheapest and fastest to produce.

Target performance = physics x reliability \Rightarrow Consensus to use option 3: cantilever with L = 1.5 m (prototype) up to 1.8 m (goal)

Cantilever Design Optimization

Maximise target length: needs stronger upstream support \Rightarrow **cone** design

Courtesy RAL High Power Target Group

Layout of target inside 1st horn A

Upstream horn A conductor **cone** (r = 14cm, h = 45cm) \Rightarrow space for wider (stiffer) titanium support for longer target

Engineering limits: minimum z_A Physics limits: maximum z_A

Max z_A = 40cm: L = 1.5 to 1.8 m L = 3.1 to 3.8 λ_{int} (ρ =1.78 g cm⁻³)

Horn B (& C) Modifications Cory Crowley

Similar for Horn C, $L_c = 2.2m$ (essentially a mirror image)

Signal v flux changes since DUNE TDR

Projected target physics performance

Approx extra run time needed to match TDR CP σ sensitivity = 3

Configuration	Extra time per run year (1 run year = 204.5 days)	
2.2m target (TDR)	0 days (0 %)	
1.8m cantilevered target (CT)	6 days (3 %)	
1.8m CT + horn A cone (hA)	6 days (3 %)	
1.8m CT + hA + updated horns B & C	11 days (5 %)	
1.5m CT + hA + updated horns B & C	23 days (11 %)	

Estimated target exchange times: 21 days for TDR target 7 days for cantilevered target

IPAC'21 poster **WEPAB212** "Physics studies for the LBNF graphite target design"

Target outer titanium container

Target titanium support fins

Thin Ti support fins at ± 45 and ± 135 degrees along target length (from z = 40 cm)

Small effect on neutrino flux: only affects π trajectories close to these angles, slightly better to have holes (also good for cooling)

Extra run days per year vs outer container thickness t_{oc}

Δt extra days/yr = fractional exposure change x 204.5 days; same **40 kt** far detector mass, 1.2 MW

Summary

- LBNF 3-horn & target system
 - Optimized for neutrino CP violation physics for DUNE
- LBNF target: cantilevered graphite cylinder with He cooling
 - Design, prototyping & construction by RAL High Power Target Group
 - L = 1.5 m (prototype), L = 1.8 m (goal), r = 8 mm, σ_{beam} = r/3
 - Upstream cone support structure, target inside Horn A
 - Thin titanium support fins at $\pm 45 \& \pm 135 deg$. along target length
 - Outer titanium container thickness: as small as possible
 - Engineered **3-1-0.7 mm taper** \approx uniform 1 mm thickness
- Future plans: DUNE replica target for NA61
 - π production measurements to reduce ν physics uncertainties