Beamline Upgrades for T2K-II and Hyper-K

M. Friend

High Energy Accelerator Research Organization (KEK)

NBI2022 September 19, 2022

Outline

- Many upgrades underway at J-PARC this year !
- Many more future upgrades planned !
 - Many related talks at NBI2022
- General overview / highlights discussed here

J-PARC Neutrino Facility

- Conventional high-intensity neutrino beam for the currently running T2K long-baseline neutrino oscillation experiment (2009~)
 - + other auxiliary experiments
- Various upgrades underway for T2K and towards the Hyper-Kamiokande experiment, which is scheduled to start in 2027

Producing the J-PARC Neutrino Beam

- 30 GeV protons from J-PARC Main Ring (MR) accelerator hit a long carbon target and produce π 's, K's, etc
- Outgoing hadrons are sign selected + focused in three electro-magnetic focusing horns
- π 's decay into (mostly) μ 's and ν_{μ} 's in a ${\sim}100\text{-m-long}$ decay volume
 - Change horn polarity to switch between primarily u_{μ} 's and $\bar{\nu}_{\mu}$'s
- The decay μ's are monitored using a muon monitor and stop in shielding, while the ν's continue on to the near and far detectors
- Using a 2.5° off-axis beam allows for narrower ν energy spectrum

High-Power Proton Source - J-PARC

- Accelerates proton beam to 30 GeV by:
 - 400 MeV Linac (linear accelerator) \rightarrow 3 GeV RCS (Rapid Cycling Synchrotron) \rightarrow 30 GeV MR (Main Ring Synchrotron)

Increasing the MR Proton Beam Power

- In 2020, J-PARC MR accelerator delivered
 - $\sim 2.65 \times 10^{14}$ protons every 2.48 seconds = 515 kW
- Now increasing the beam power in 2 ways:
 - Upgrade PSs + RF to reduce the time between beam spills from 1 spill every 2.48s \rightarrow 1.36s \rightarrow 1.16s
 - Improve stability to increase the number of protons per spill from $\sim 2.65 \times 10^{14} \rightarrow 3.2 \times 10^{14}$ 515 kW $\rightarrow >$ 700 kW $\rightarrow 1.3$ MW

MR Upgrades Towards 1.3MW

Prog. Theor. Exp. Phys. 2021, 033G01

MR Power Supply Upgrade

Luil 2022 work New MR magnet power supplies with energy recovery with capacitor banks developed and tested

- Allow for 1.36s repetition rate
- Installed in 2021
- Power supplies tested in-situ in April and May 2022
- MR beam commissioning with 3GeV DC-mode June 2022 \rightarrow commissioning with 30GeV 1.36s cycle in November 2022

Future MR Upgrades T. Yasui @NuFACT2022

Higher RF voltages are necessary for faster cycling.

The LLRF system was replaced to the new system.

2nd harmonic cavity : for suppressing peak current

ца 1 1000	1200 1400 1600 time	1800 2000 2200 2400	1 0 2000 1200 144	00 1600 2000 2000 2400 time [m]	(simulation)		
	Cycle	Number of o	cavities	Volta	Voltage		
		Fundamental	2nd	Fundamental	2nd		
2021	2.48 s	7	2	300 kV	110 kV		
2023	1.36 s	9	2	510 kV	110 kV		
2026	1.16 s	11	2	600 kV	110 kV		

- + collimator upgrades, FX system upgrades
- + future upgrade to MR abort dump see talk by C. Densham

Fundamental cavity : for acceleration

J-PARC Neutrino Beamline

J-PARC Neutrino Primary Proton

Primary beamline includes:

- Series of normal- and super-conducting magnets
- Proton beam monitors

Final Focusing NC magnets

Arc SC magnets

Beam Monitors along the primary beamline $$_{\rm 11/30}$$

Primary Beamline Maintenance Upgrade

Residual radiation dose at most downstream end of primary proton beamline is high

- Due to backscattering from the neutrino production target, beam window, etc
- Residual dose reaches ${>}1mSv/hr$ on contact weeks after beam stop, even at 500kW beam power
 - Proportional to integrated POT will increase with higher beam powers, longer running time

Make space for quick, hands-on maintenance by reducing length of most downstream bending magnet – new magnet installed summer 2021

See talk by Y. Fujii

Primary Beamline Maintenance Upgrade

1921/202 No Residual radiation dose at most downstream end of primary proton beamline is high

- Due to backscattering from the neutrino production target, beam window. etc
- Residual dose reaches >1mSv/hr on contact weeks after beam stop, even at 500kW beam power
 - Proportional to integrated POT will increase with higher beam powers, longer running time

 Make space for guick, hands-on maintenance by reducing length of most downstream bending magnet - new magnet installed summer 2021

> See talk by Y. Fujii 13/30

See talk

by Y. Fujii

Longer-Term Primary Beamline Maintenance Scheme Plan

- Quick, hands-on maintenance will not be sufficient for long-term, 1.3 MW HK running
 - Expect residual dose at 1 foot will reach 600 $\mu {\rm Sv/h}$ after 1.3 MW $\times 40$ months operation
- Now considering additional future upgrades towards fully remote maintenance scheme
 - Replace several flanges with remote operation flanges
 - Pillow seals are currently used at neutrino beamline Target Station, but difficult at primary beamline
 - Considering new remote flange technologies
 - Improved crane system
 - Other ideas ?
- Discussion with various remote-handling experts ongoing

Proton Beam Profile Monitor Upgrades

Uperade Proton beam profile is measured by series of foil-based SSEMs

- Each monitor causes 0.005% beam loss only use for beam tuning
- Most downstream one is near the target can be used continuously
- Concern with degradation of foils, increase of beam loss/component irradiation with increasing beam power
- US/Japan R&D for lower loss monitor (WSEM) new installation
- Non-destructive profile monitor Beam Induced Fluorescence Monitor (BIF) – developed, prototype installed, tested
 - Upgrading towards full working monitor now

SSEM19 Exchange

- SSEM19 sits at the bottom of monitor stack, between primary and secondary beamlines
 - Very difficult to access
 - Highly radioactive, so requires full remote handling
- Now developing procedure for SSEM19 exchange – first mockup tests done
 - Cables interfere with remote manipulator jig – need to improve
- Watch first mockup test on YouTube!
 - Mockup disconnection: https://www.youtube.com/watch?v=fA8R7nOeFDI
 - Mockup connection: https://www.youtube.com/watch?v=PG2Km-rd1B0
 - Mockup spent cable handling: https://www.youtube.com/watch?v=tgkIkr-AEtE
 - Mockup new cable handling: https://www.youtube.com/watch?v=a6atAl1LUTo

OTR Upgrades

OTR target disk

- Upgrade Work **Optical Transition Radiation Monitor** (OTR) measures proton beam position and profile directly upstream of the target
 - Decrease in OTR light yield observed
 - Due to radiation-induced darkening of optical component (fiber taper)
 - Upgrading optical system to use easily-replaceable fiber taper now (York University + TRIUMF) • Upgrading Ti foils now
 - - Add holes to all OTR target foils can be used to cross check foil position by back-lighting
 - Upgrade to thinner foil for improved stress tolerance
 - New OTR disk will be installed in the beamline in late 2022.
 - Upgrading OTR readout for 1Hz operation, Windows \rightarrow Linux now (see talk by M. Friend) 17/30 (ICL)

 Test installation of new OTR disk on mock Horn 1 by OTR group members in May 2022

OTR Upgrades

DAQ, Beam Control, Interlock Upgrades

- Readout electronics upgraded for 1 Hz beam operation
- New interlock system for fast beam interlock under development see talk by S. Tairafune
- Improvements to beamline magnet interlock system underway see talk by K. Nakayoshi

Neutrino Secondary Beamline

- Neutrino production target and focusing horns for J-PARC neutrino beamline are kept in a gigantic He vessel, followed by 100-m-long He-filled decay volume
 - ${\sim}1500~{
 m m}^3$ He vessel
 - He-filled to minimize production of tritium and NOx by interaction of high-energy particles with air

Neutrino Production Target

J-PARC neutrino production target consists of a 91.4cm long (1.9 interaction length) monolithic carbon target installed in the 1st horn

- Cooled by He gas increase of cooling capacity for higher power underway now see talk by T. Nakadaira
- New target (+ beam window) for 1.3MW also under development (RAL) see talk by M. Fitton

- Longer term studies to establish new target types to further maximize number of produced neutrinos are also ongoing
 - Possible to decrease forward-going wrong-sign component by new target design
 - Higher-density and/or hybrid materials, longer targets

Neutrino Production Target

LUZI 2022 Work J-PARC neutrino production target consists of a 91.4cm long (1.9 interaction length) monolithic carbon target

- Cooled by He gas increase of cooling capacity for higher power underway now - see talk by T. Nakadaira
- New target (+ beam window) for 1.3MW also under development (RAL) – see talk by M. Fitton

Target cooling upgrade

New prototype 1.3MW target

Neutrino Production Target Upgrade Ideas

- Longer term studies to establish new target types to further maximize number of produced neutrinos are also ongoing
 - Possible to increase pion yield and decrease forward-going wrong-sign component by new target design
 - Higher-density and/or hybrid materials, longer targets

One example new target idea – insert 2nd (higher density?) target into downstream end of Horn 1:

University of Glasgow, $RAL_{_{23/30}}$

Horn Upgrades 120^{14} Horn Upgrades 1

- $\sim 10\%$ increase in right-sign neutrino flux, $5 \sim 10\%$ decrease in wrong sign neutrino flux
- Horn 2 striplines are particularly susceptible to impinging beam defocused by horn 1 - cooling upgrade essential
 - Upgraded, water cooled striplines installed in 2022
- Possible future improvements to horn focusing system??

Horn Production, Testing, Installation

- New Horns 1 and 2 were produced at University of Colorado and shipped to J-PARC

 see talk by M. Reh
- Current/magnetic field excitation test of new Horns done
- New Horn 2 installed a few weeks ago
- New Horn 1 to be installed next month
 - New OTR disk also being installed with Horn 1

New Horn 2 during installation

He Vessel, Decay Volume, Beam Dump

- Helium vessel and decay volume are He-filled
 - To minimize production of tritium and NOx by interaction of high-energy hadrons with air
- 96-m-long decay volume
- Beam dump is graphite + iron blocks (~5m) to stop hadrons
- Water-cooled by piping
- Water cooling capability will be upgraded by increasing the water flow

Radioactive Water Disposal

2021/2022 work Essential to properly handle radioactive water produced during neutrino beam production process - dilute + dispose

- New dilution tank to increase the water disposal capacity from 84 $m^3 \rightarrow 484 m^3$ – construction finished early 2022
 - Capacity of the new tank will be enough for 1.3MW

Before construction:

Fully constructed:

Muon Monitoring Upgrades

- Measure tertiary muon beam profile downstream of the decay volume, beam dump (>~5 GeV muons)
 - Ensure alignment, healthiness of target, horns; proton beam position, angle at target; etc
- 2 redundant measurements of the muon beam profile, position using 7x7 arrays of sensors
 - Ionization chambers (IC)
 - Silicon photodiode sensors (Si)
- Now developing EMT (PMT w/out photocathode) as more robust sensor option
- Also developing MCT (MUMON CT) for muon sign measurement

See talk by M. Friend

Neutrino Beamline Upgrade Schedule

Overall schedule of beamline upgrade

	FY2020	FY2021	FY2022	FY2023	FY2024	FY2025	FY2026
Operation		MR PS	upgrade				
Primary beamline & Beam Monitor	FF upgrad	e, Beam mo	onitor				
Horn PS,Trans etc.							
Horn magnets	Cooling ca	ap. up	New Horn	production	for 1.3MW		
Target	Heat Ex. U	pg <mark>r</mark> ade	1.3MW targ	get & Coolir	ng capability	up.	
TS/NU3 Cooling capability							
Radiation safety	For >75()kw	For 1.3M\	N			
Control/DAQ							
Remote Handling							

Conclusion

- J-PARC MR power supply upgrade for 1.36 s repetition rate (>700 kW) is happening now
 - Further RF upgrades towards 1.16 s repetition rate (towards 1.3 MW) coming before 2027
- Many upgrades to the J-PARC neutrino extraction beamline underway now in order to accept the higher power proton beam
- Additional upgrades to come before 2027
 - Primary beamline + monitor stack remote handling
 - Instrumentation upgrades (proton beam profile monitoring, muon monitoring)
 - Interlock upgrades
 - 1.3MW target

J-PARC Neutrino Beamline Technical Design Report : arXiv:1908.05141

Backup Slides

Neutrino Beamline Upgrades Towards 1.3MW

+ Accepting high repetition rate (~1Hz) beam

 \rightarrow Upgrade DAQ + control system

Technical Design Report : arXiv:1908.05141 $_{\scriptscriptstyle 32/30}$

Neutrino Flux Errors

- Essential to not just produce a world-class neutrino beam, but also to precisely understand the neutrino flux
- The ν flux is predicted by simulations which take into account
 - Measured proton beam current, position, angle, profile
 - Measured neutrino beam angle
 - Measured Horn field, alignment
 - Hadron interactions inside + outside the production target
 - External constraints by NA61/SHINE experiment @CERN (in use + future measurements), EMPHATIC experiment @FNAL (future) 33/30