
Will Buttinger
Tim Adye

Will Buttinger

RooFitTrees Project

03/05/2021



What is (are?) RooFitTrees?
• RooFitTrees is a project that born out of two ideas:

– Creation of a statistical analysis data model (Will)
– Management of fitting procedure (Tim)

• RooFitTrees tries to manage efficiently creating, storing, and retrieving 
FitResults and Datasets, using TTree for backend storage

• The ROOT developers support this work and we plan to include it in ROOT
when the project is mature enough

03/05/2021 Will Buttinger

Original ”SDM” entity relationship diagram

RooStatsRooFit

https://gitlab.cern.ch/will/roofittrees/-/tree/master/


Working with RooFitTrees
• Two types of Tree: RooFitResultTree and RooDataTree

– RooFitResultTree: entries (rows) of tree correspond to fit results
– RooDataTree: entries correspond to generated datasets (toys or expected)

• Starting point assumes the user has the following:
– A PDF (RooAbsPdf) - which is really just a function of a bunch of variables

• Variables are either parameters or observables or global observables
– Either an observed dataset or a list of the observables and global observables:

• A dataset consists of both the observed values of the observables (in a RooAbsData) 
and the observed values of the global observables (in a RooArgSet)

• Knowing the observables and global observables implicitly defines the parameters

03/05/2021 Will Buttinger

fits = ROOT.RooFitResultTree(“fits”,pdf);
toys = ROOT.RooDataTree(“toys”,pdf);

data = toys.generate(fitResult, isExp) # fitResult is RooFitResult, isExp is bool

fitResult = fits.fitTo(data) # data is a std::pair<RooAbsData, RooArgSet>

fitResult = fits.snapshotTo(obs,globs) # obs and globs are RooArgSet

Constructing Trees:

“Filling” the RooFitResultTree:

“Filling” the RooDataTree:

“Filling” the RooFitResultTree when you don’t have a dataset:



More about RooFitTrees
• Information for fit results and toys stored in an underlying TTree
• Information such as fit configuration hyperparameters held in tree metadata
• Each RooFitTree can be explored like a regular TTree:

– E.g. using Scan, Draw, etc

• Can also act like a TChain

• RooFitTrees are great for distributed analysis workflows!

03/05/2021 Will Buttinger

fits = ROOT.RooFitResultTree(“fits”,pdf);
fits.Add(“previousFits/*.root”) # load previous fit results

fits.Draw(“final.parName”,”const.parName!=const.parName”)
Drawing distribution of post-fit values of parName where that parameter was floating

Adding previously-saved fits to a FitResultTree



Ongoing R&D
• Ultimately want to be able to use RooFitTrees as underlying fitting and 

generating technology for statistical analysis in ROOT

• This means being able to e.g. “retrieve” a Profile Likelihood Ratio test 
statistic distribution from the trees

• Still working on the best way to achieve this. Two possible approaches so 
far:
1. Advanced usage of ‘friend’ tree concept to connect RooDataTrees and 

RooFitResultTrees
2. Methods for retrieving specific pre-existing fits

• Probably in end will be a combination of both

03/05/2021 Will Buttinger

fitResult = fits.fitTo(data, checkExisting) # checkExisting is a bool

Uxp!gjut!up!b!ebubtfu!)pof!gmpbujoh!QPJ-!pof!
xjui!ju!gjyfe*


