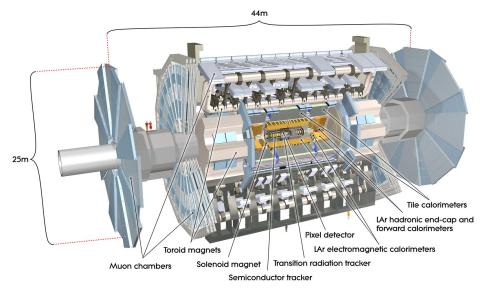
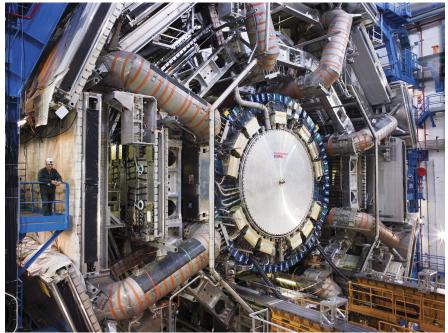
ATLAS activities and studentship

Stewart Martin-Haugh, Mark Owen




LHC

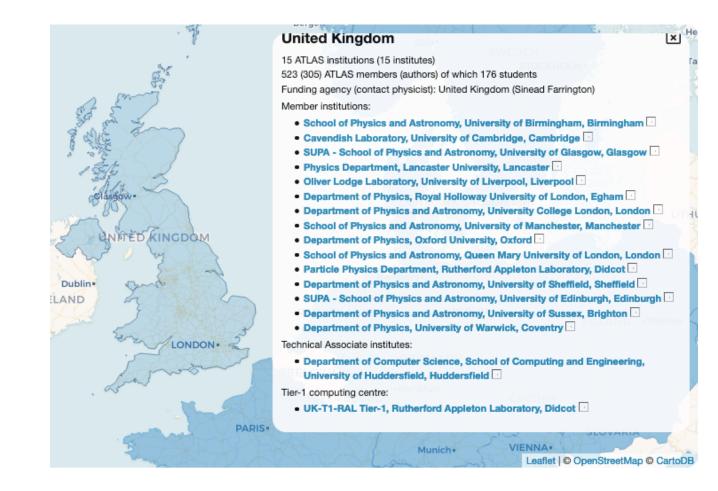
- LHC first started serious data taking in 2011
 - Run 1, ran at up to 75% nominal luminosity, culminated in discovery of Higgs boson
- LHC Run 2 finished at end of 2018
 - Reached 2 times nominal luminosity, delivered over 5 times data of Run 1
- Now in Long Shutdown 2 for upgrade for Run 3 (2022-2024)
 - Machine consolidation, Phase-I upgrades to ATLAS
- Further Long Shutdown 3 starting in 2024 for upgrade to HL-LHC
 - Phase-II upgrades to ATLAS for 5 to 7 times nominal luminosity

ATLAS

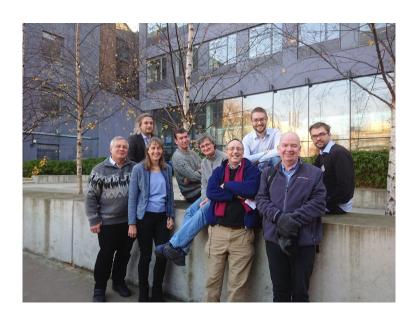
- One of two general purpose detectors at the Large Hadron Collider
- Different subsystems in layers around collision point to record trajectory, momentum and energy of particles

ATLAS Collaboration

- Worldwide effort
- Beyond the scientific authorship, significant engineering effort: ~1000 people



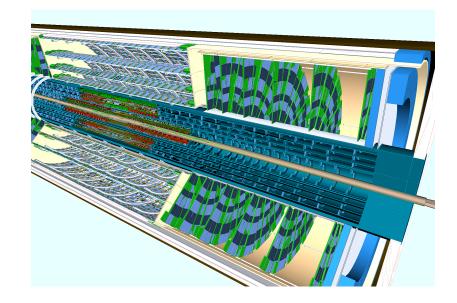
ATLAS UK

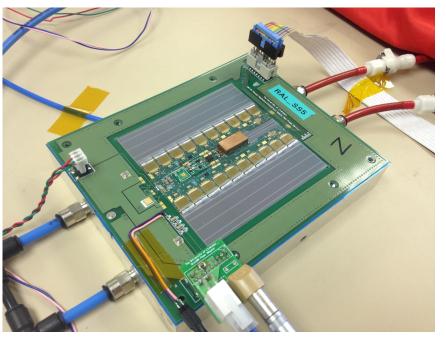

- 14 universities + RAL PPD
 - We have good links with all ATLAS UK universities
- RAL also hosts the UK Tier-1 computing centre
 - Dedicated internet link to CERN
 - Complete copy of LHC raw data

RAL ATLAS group

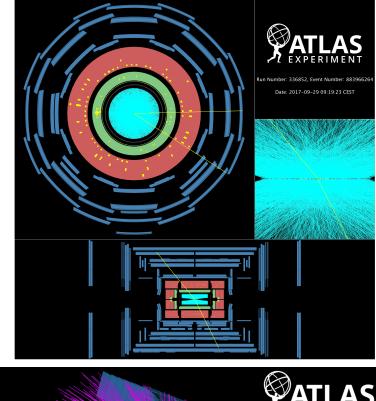
- 22 staff (physicists, engineers)
- 2 PhD students (Warwick, Birmingham) (soon to be 3!)
- Photos not comprehensive

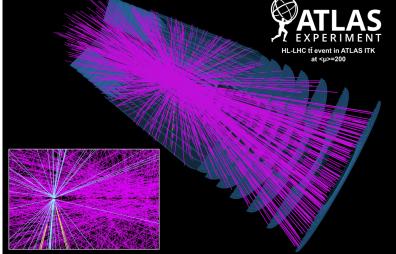
RAL activities


- Built and operated SemiConductor Tracker and trigger systems in Run 1 and 2
- Phase-I upgrades: installation before Run 3 (2022)
 - Level-1 Calorimeter Trigger and High Level Trigger
- Phase-II upgrades: installation before Run 4 (2026)
 - Level-0 Global Trigger, Event Filter and new Inner Tracker (ITk)
- Diverse physics involvement: Higgs, searches for new heavy bosons, B-physics

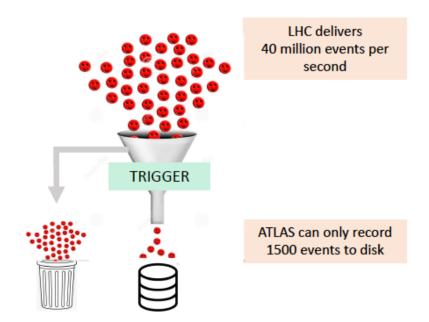


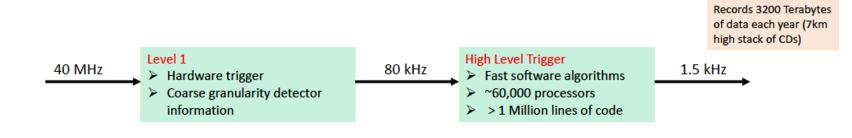
ITk


- Original Inner Detector reaches its end of life in 2024
 - Will be replaced with new all-silicon detector
- RAL group working on barrel strips and endcap pixels
 - Design, data acquisition, assembly and eventually operation

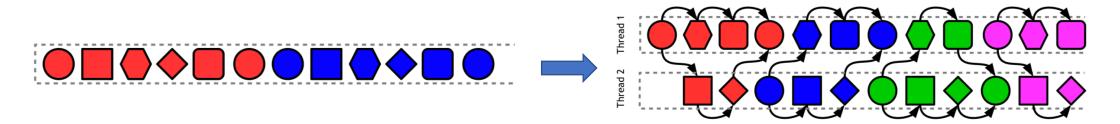


Triggering at the LHC


- LHC collides bunched beams of protons 40 million times per second
 - Every time the bunches cross, multiple protons collide
 - Real example from 2016 with 85 collisions
 - at end of Run 2 LHC delivering ~1 billion protonproton collisions per second
- In Run 4, expect an average of 200 collisions each time bunches cross
 - up to 10 billion collisions per second
 - Interesting collisions at much much lower rate
 - 1 Higgs boson per 10 billion collisions, some processes only a few collisions per year
- We want just the interesting collisions
 - Sitting in a sea of 'pileup' collisions



ATLAS Trigger


- If we stored all the data that ATLAS generates from collisions, we would use every hard drive in the world within weeks
- Store only the interesting collisions (1500/s)
 - Still record the equivalent of full Netflix catalogue every year
- Use dedicated hardware (Level 1 Trigger) and 60,000 CPUs (High Level Trigger)

ATLAS High Level Trigger

• During LS2 rewrote entire trigger code (nearly 1M lines of C++ and Python) to enable multi-threading and improve the selection algorithms

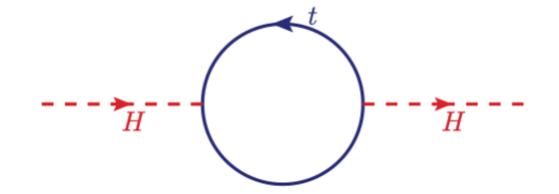
- RAL interests:
 - Tracking using machine learning techniques to find tracks quickly and efficiently
 - Core trigger software flow of events/algorithms, control room tools, analysis tools, etc.
 - Validation of trigger software are we finding the events we want efficiently? Resource usage memory and CPU time?
 - Beyond CPUs: GPUs and FPGAs for Run 4

The Glasgow Group

- Group of 10 academics & ~16 research staff + technicians, engineers & PhD students
- Active in many of the world-leading particle physics activities:
 - ATLAS, LHCb & NA62 on the LHC
 - Grid computing (Tier 2 centre here in the building)
 - Neutrinos (T2K & MICE)
 - Linear collider
 - Detector development
- On ATLAS: Higgs, top, SM measurements & BSM searches. Involved in the trigger, computing, simulation & upgrade (tracker & trigger)

Why the top quark?

- In the SM it's the only quark:
 - With a natural mass:


- $m_{
 m top} = y_t \frac{v}{\sqrt{2}} \approx 173 \ {
 m GeV} \rightarrow y_t \approx 1$ \circ Top quark interacts strongly with the Higgs sector - special role in EWSB?
- Decays before hadronizing:

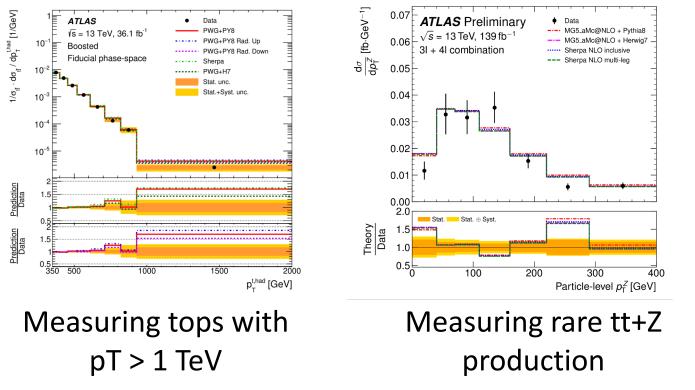
$$au_{
m had} = 2 \times 10^{-24} s$$

 $au_{
m top} = 5 \times 10^{-25} s$

 Copious production rate at the LHC allows for precise tests of QCD involving multiple scales (pT(top), m(top), m(b))

Why the top quark?

Corrections to Higgs mass depend on the top quark Yukawa:



 $\Lambda < 3 \text{ TeV}$

- Assume new physics enters at some high scale: \bullet $\Delta m_H pprox -rac{3}{8\pi^2} y_t \Lambda^2$
 - In effective theory approach: 0
 - For less than 90% cancellation: 0
- Top quark is perhaps the most likely place we will see new physics.

Top physics at Glasgow

• Nice group of people (3 academics + 2 post-docs + 4 PhD students) on a range of top physics:

Parton level $\Delta \phi(l^{+}, \bar{l})/\pi$ [rad/ π]

```
Spin correlation in top-quark pairs
```

Keep precise PhD analysis project flexible at this point - also allows to see how LHC schedule develops

Studentship outline

- Start at Glasgow(~6 months)
 - Academic and computing courses
 - Start work on HLT gain familiarity with project
- Some time at RAL, then 12 18 months at CERN
 - Hands-on experience commissioning/operating HLT system during Run 3
 - control room shifts, expert on-call support
 - Join physics analysis group, foundation for physics analysis component of thesis
- Return to RAL
 - Finish physics analysis, write thesis