Quantum Technologies for Fundamental Physics **The AION project**

Kai Bongs, Pawel Majewski and Tristan Valenzuela

RAL/PPD Open Day for PhD students, 23 February 2021

PhD student supervisors

Prof. Kai Bongs (University of Birmingham)

Director of Innovation - College for Engineering and Innovation; PI of the UK National Quantum Technology Hub in Sensors and Timing

Dr. Tristan Valenzuela (STFC/RAL)

Head of Quantum Sensors Group at RAL-Space Department

Dr. Pawel Majewski (STFC/RAL)

Dark Matter Group Leader at Particle Physics Department

Fundamental science challenges

A How did the Universe begin and how is it evolving?		C. What are the basic constituents of matter and how do they interact?		 B:1. How does the Sun and other stars work and what drives their variability? B:4. What are the conditions for life and how widespread are they? 		B:2. What effects do the Sun and other stars have on their local environment? B:5. How diverse are exoplanets and is our earth typical?		B:3. What processes govern how planetary systems form and evolve? B:6. What are the processes that drive space weather?	
A:4. When and how were the first stars, black holes and galaxies born?	A:5. How do stars and galaxies evolve?	A:6. How Do Nuclear Reactions Power Astrophysical Processes and Create the Chemical Elements?	C:4. What is the dark matter a energy	nature of nd dark ?	C:5. How do gluons form	quarks and 1 hadrons?	C:6. What is 1 nuclear	the nature of matter?	
A:7. What is the True Nature of Gravity?	A:8. What can gravitational waves and high-energy particles from space tell us about the universe?		C:7. Are there new strongly interacti	w phases of ng matter?	C:8. Why is t matter than a	here more antimatter?	C:9. What w measurement boson revea Unive	vill precision s of the Higgs al about the erse?	

Ultra-sensitive measurements with atomic clocks

Offers powerful new approach for particle physics beyond conventional particles detectors and colliders.

From table-top to hyper-large experiment

UK QTFP consortium

UK institutions

QTFP consortium consists of 32 UK and 7 international institutions.

First Quantum Sensors For Fundamental Physics Community Workshop, Oxford October 2018 with 140 scientists from STFC and EPSRC research councils.

UK QTFP consortium **AION project**

WP1	WP2	WP3	WP4
Using Quantum Technology to Search for Low-mass Particles in the Hidden Sector Participants/Collaborators > Join this group >	MaQS (pronounced "Max") Macroscopic quantum superpositions for physics beyond the standard model WP2 workshop slides > Participants/Collaborators > Join this group >	AION A UK Atom Interferometer Observatory and Network Join this group >	Absolute neutrino mass Participants/Collaborators > Join this group >
WP5	WP6	WP7	WP8
Quantum Simulators of Fundamental Physics Participants/Collaborators > Join this group >	QSNET Networked Quantum Sensors for Fundamental Physics Join this group >	Searches for a Fifth Force and Dark Matter using Precision Atomic Spectroscopy Join this group 5	Fundamental physics from precision studies of exotic atoms Participants/Collaborators > Join this group >
WP9	WP10	WP11	
LIST - Lorentz Invariance Space Test Participants/Collaborators > Join this group >	Quantum sensors for fundamental physics: Collective quantum excitations as quantum sensors Participants/Collaborators > Join this group >	QI: Quantum- enhanced Interferometry for New Physics	

RAL responsibilities:

- Design of 10 m long interferometer (TD)
- Design of the magnetic shield (PPD)
- Establish Sr-lab to support AION programme (RAL-Space)

Atom interferometry

Conceptually based on Mach -Zehnder interferometer and rely on light-pulse atom-optical elements

(More details later from Tristan's slides)

The phase difference is readout by measuring the the atom populations in the interferometer outputs

https://indico.cern.ch/event/760005/contributions/3152410/attachments/1734791/2806986/AI-Fundamental-hogan-final.pdf

An Atom Interferometer Observatory and Network (**AION**) for the exploration of Ultra-Light Dark Matter And Gravitational Waves

AION project programme

- Design of 10 m long atom interferometer 2021-2023
- Construction and exploitation at Oxford planned 2023-2027
- Design/construction/exploitation of 100 m long atom interferometer possibly at Boulby mine
- Design/construction/exploitation of 1 km long atom interferometer possibly at Boulby mine

This will be the first large-scale atom interferometer in the UK.

Collaboration with MAGIS-100 project in the US

MAGIS will be the world's largest atom interferometer and push the boundaries of how far an atom can be driven apart from itself.

Design based on 10 m long interferometer at the University of Stanford.

m 2.8 m

nterf

Atom Optics & Lattice Beam

Upper Detection Region

3 Laver Magnetic Shield

ower Detection Region

2D MOT Loading 3D

(<1 mG on axis)

Atom interferometer for Ultra Light Dark Matter Searches and Gravitational Waves Observation

Magnitude of contribution to phase shift : $\Delta \phi \sim \omega_A(2L/c)$ Detection of the gravitational waves: $\delta L=hL$ (variation of baseline) Detection of ultra light dark matter: $\delta \omega_A$ (variation of atom transition frequency)

