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Neutrinos are everywhere

__ Atmospheric

FACT: about 65 million neutrinos pass
through your thumbnail every second.

» Second most abundant

u érnova - . .
P particle in the universe

» But we know almost
nothing about them

» Only interact via the
weak force

» Need powerful sources

and huge detectors
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TeV

Neutrinos are unique

0S. oM

» Far lighter than the quarks and charged leptons
» May get their masses by a different mechanism “7%

méw/m, ~ 10" GeV ~ mgut > /

» Very different mixing structure to quarks __ s N g

» Most of what we know comes from neutrino
oscillations arising from this mixing
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Neutrino mixing and oscillation

» Neutrinos mix, like quarks
[Va) = Z ailvi)

» Unlike quarks, mixings large




Oscillation structure
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NOVA

» Powerful v, beam from Fermilab
» Measure flux in Near Detector

» Measure again at Far Detector
for P(v,—v,) and P(v,—ve)

» Longest baseline of any expt.
maximizes sensitivity to mass
ordering
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NOVA

» Powerful v, beam from Fermilab
» Measure flux in Near Detector

» Measure again at Far Detector
for P(v,—v,) and P(v,—ve)

» World’s highest power v beam

» Longest baseline of any expt.
maximizes sensitivity to mass
ordering
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DUNE

» More powerful beam
» Longer baseline

» Deep underground

» Larger detector

» Finer segmentation
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DUNE

>
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v

More powerful beam
Longer baseline
Deep underground
Larger detector
Finer segmentation

Primary goal to discover if v/v
oscillations differ (50 level)
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Classifiers

» In general want P(physics|observations)

» Want to reduce huge-dimensional space
» Smooth P so don’t need infinite MC stats
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Classifiers

» How to teach the computer to
recognize objects?

» How to get from low level to
high level info?

29 90
9 €

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
10/45



Traditional approach

» Write algorithms to find features

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
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Traditional approach

» Write algorithms to find features

» Define object as feature combo

» Test

» Search for pathologies

» Add special-cases / new algorithms

/
|\
E

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
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Traditional approach

Write algorithms to find features
Define object as feature combo
Test

Search for pathologies

Add special-cases / new algorithms

vV v.v.VvY Yy

Stretching cat
(Nuclear FSI)

- ‘.‘—ﬂ; w
oy 4

o

Partial cat ! y
(particle escaping
fiducial volume) { I
Ll E

s.._. /} » How about cases like these?

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
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NOVA event reconstruction

& e+p
¥ Simulated 2
GeV ccqe event.

1 meter

1 meter -

1. Hough algorithm to
b draw guidelines.

mag,

[

2. Elastic arms to find
= global vertex.

/A

&/ 3. Fuzzy k-means
)4 algorithm to make final

clusters.

v

v

v

v

v

First cluster hits in space and time

Start with 2-point Hough transform
» Line-crossing are vertex seeds

ElasticArms finds vertex

Fuzzy k-means clustering forms
prongs

v, analysis uses a Kalman filter to
reconstruct any muon track
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NOVA event reconstruction

1 meter

+
Simulated 2 P
GeV ccge event. - B

proton

1. Hough algorithm to
draw guidelines.

-
|

2. Elastic arms to find
global vertex.

3. Fuzzy k-means

algorithm to make final
clusters.

» First cluster hits in space and time

| » Start with 2-point Hough transform

» Line-crossing are vertex seeds
» ElasticArms finds vertex

» Fuzzy k-means clustering forms
prongs

» v, analysis uses a Kalman filter to
reconstruct any muon track
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NOvVA “classic” PIDs

v, PID
» kNN based on dE/dx and scattering LLs, track length, etc.

Events
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NOvVA “classic” PIDs

ve PIDs
» LID: ANN based on shower dE/dx LLs
» LEM: “kNN” over library events + decision tree
» ~ 70% LID/LEM overlap — room for improvement?
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C. Backhouse, R. Patterson, NIM A778 (2015) 31-39
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Artificial Neural Networks

» Origins back in the 40s

» Loosely model the neurons in a brain
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Artificial Neural Networks o
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» N training events with input properties X; and truth y;
» Aim to minimize a loss function
» Squared error (regression):

L= Z(YI_

» Cross entropy (classification):
L=> " —yilog(f(X)) — (1 — yi)log(1 — £(X:))
i
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ANN training

3 hidden neurons 6 hidden neurons 20 hidden neurons
L] L ] [ ]
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»hnp:zzgﬁz 31n.qith b.ig[ng} ral-networks-1/
» Single layer with enough nodes can reproduce any function
» Physicist’s proof: use 2N neurons to build a delta function
» Multi-layer often need fewer nodes

» How to train?
» Fully connected — number of parameters grows quickly



Backpropagation

» First applied to NNs in 1982

» Compute partial derivative of loss
w.r.t. each weight -

» Optimize loss via gradient descent

» Adjust weights
learning rate x gradient x loss

J— .
W = w onWjL

» Enjoyed a lot of success in HEP
» Recently overtaken by BDTs
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Convolutional Neural Networks

il OBJECT ID: ARPL,
01/15/2014 135107

OBJECT ID: TREE

44 OBECT ID: HUMAN

» Recent advances in machine learning/computer vision
» Achieving near-human performance on image classification tasks
» Can we do better by classifying event-displays directly?
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Deep learning

» Deep just means many hidden layers

» Can encode complex structures more
efficiently

» Historically extremely difficult to train

\
WE NEED T0 GO DEEPER.

» Various advances

>

vV vy vy VvV VY

GPUs - Bring more raw power to bear on training

Bigger training sets

Better weight initialization

Better nonlinearities

Stochastic gradient descent

Techniques to prevent overtraining

Convolutional networks — reduction in number of weights to train

20/45



Deep learning

50007
4500

» Deep just means many hidden layers  “|

3500

000

» Can encode complex structures more
efficiently

» Historically extremely difficult to train

25004

2000

Theoratical posk (GFLOP/S)

" VIDIA GPU DP

wncams /_e ,
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Release date

» Various advances
» GPUs - Bring more raw power to bear on training
Bigger training sets
Better weight initialization
Better nonlinearities
Stochastic gradient descent
Techniques to prevent overtraining
Convolutional networks — reduction in number of weights to train

vV vy vy VvV VY
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Training improvements

RelLU Ct " 7k il
» With traditional response function, saturated neuron dL/0w; — 0
stops training
» “Rectified linear unit” — more effective backpropagation
» Bonus: more efficient calculation

Stochastic gradient descent
» Training convenience: evaluate small batches of events
Approximate result as noisy sub-estimates even out
» Bonus: can allow for jumping out of local minima

v
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Training improvements

» Powerful classifiers risk overfitting

Regularization
» Add term A\ )" w? to loss
» Disfavours large weights

Dropout
» At each training iteration randomly set X% of weights to zero
» Weights not reliably used together so can’t be strongly correlated

Moody et al. “A simple weight decay can improve generalization”
Srivasta et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”
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Convolutional Neural Networks

R
g |1 18 -
—1 -1 -1

Edge-detection kernel

» Early neurons in visual cortex sensitive to small “receptive field”
» CNN - deep neural network, inputs are the pixels of the image
» Enforce translational invariance — convolutions

» Learn optimal kernels direct from data
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Convolutional Neural Networks
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Edge-detection kernel

» Early neurons in visual cortex sensitive to small “receptive field”
» CNN - deep neural network, inputs are the pixels of the image
» Enforce translational invariance — convolutions

» Learn optimal kernels direct from data
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Convolutional Neural Networks

» Early CNN example: LeNet: Circa 1989

» Alternating convolution and max-pooling layers (downsampling)
» Finish with fully-connect network

» Max-pooling + convolution — translational invariance

» Convolutional layer trains NxMxW xH coefficients

K : O.
L = /%0
1 :.:::' ) [0 ﬂ / o)
P H -
FULLY
CONVOLUTION POOLING CONVOLUTION POOLING CONNECTED
LAYER LAYER LAYER LAYER LAYER

Y. LeCun, L. Bottou, P. Haffner, IEEE Proceedings, 86(11), 2278-2324, (1998d)e
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Pooling

Single depth slice

X 11124
max pool with 2x2 filters
SEN6N 7 | 8 and stride 2
3 | 2 [N
1| 2 ESHIEE
y

» Pooling downsamples information (form of smoothing)

» Max or average of a patch of pixels

» Literal smoothing if stride=1

25
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Inception modules

Filter
Concatenation

v

GoogLeNet — 2014
» “Inception module”

» Combine different kernel sizes,
keep number of maps under
control with 1x1 convolutions

» Max pooling downsamples

» Reduce number of feature
maps with 1x1xN—1

3x3 Convolution 5x5 Convolution 1x1 Convolution

3x3 Pooling

C. Szegedy et al., “Going Deeper with Convolutions”, arXiv:1409.4842 (2014)
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NOvVA’s network — CVN

» Convolutional Visual Network

» Turn NOVA events into pixel map: 100x80 (14.5mx4m) box

» Downsample charges to one byte (256 values)

» Inputs differ substantially to natural images e.g. many zero pixels

» Train to distinguish neutrino flavours (and interaction modes)

» 10 passes over 3.4m training events (1 week with two (k40) GPUs)
NOVA Preliminary

E — Training Loss 3
E —o4s
E — Test Loss El

— Test Accuracy

Loss
Accuracy

8
7
6
5
4
3
2

1
0

| | E|
0 500 1000 1500
ber of Training lterations (10°)

“A Convolutional Neural Network Neutrino Event Classifier” JINST vol 11 (2016)
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CVN architecture

Softmax Output

THIS 15 YOUR MACHINE LEPRNING SYSTEM?

YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSWERS ON THE OTHER SIDE.

VIHAT I THE ANSUERS ARE LRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

Avg Pooling
6x5

Inception
Module

Inception
Module

Max Pooling
3x3, stride 2

Max Pooling
3x3, stride 2

Inception
Module

Inception
Module

Inception
Module

Inception
Module

Max Pooling Max Pooling

» Usually have multiple “channels” for RGB

» Our views approx independent, don’t want

linear combinations of unrelated info

g » “Siamese” network, ~ cut-down GoogLeNet

» Network topologies an intense research area
» Later CVN iterations have somewhat varying

layer structures
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CVN performance

NOVA Preliminary NOVA Preliminary
F T T T B 3000~ T T T —
| —e— NDdata ] 3 -~ ND data
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CVN v, classifier Reconstructed neutrino energy (GeV)
» Statistical power equivalent to collecting 30% more data
» Also improves v,, CC selection and adopted by NC group
» Systematic studies show same or less sensitivity to uncertainties

» Good data/MC agreement observed in Near Detector
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CVN characteristics

NOVA Simulation

Neutrino Beam

T T T
8.85x10%° POT-equiv
[lBeamv,and v,
[l Wrong-sign (Appearing v,)
[l Beam bkg with a 7° (KE > 0.5 GeV)
[E]Beam bkg without EM activity
[l Cosmic bkg

v, CC

Cosmic v,CC NC

2 4 6
Number of Bkg Events

NOvVA Simulation
T

T
4 [CINC
[]Beamv,CC
v.CcC

Events / 6.05 x 10%° POT-equiv

S

1 15 2 25
n° Energy (GeV)

Events / 8.85 x 10?° POT-equiv

NOVA Preliminary

Low PID Mid. PID High PID

15 . I
[ signal v, CC ol ©
[ beam v, CC s|ls
[ NC o=
. v, CC &

v, CC

10~ [ v, CC

7] cosmic

1234 1234 12234
Reconstructed Neutrino Energy (GeV)

» Data analysis divides data into

purity bins by CVN value

» Surviving backgrounds mostly

contain energetic 7° as
expected
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CVN characteristics

Neutrino Beam

NOVA Simulation

v, CC
||

Cosmic v,CC NC

[l Beam bkg with a 7° (KE > 0.5 GeV)
[E]Beam bkg without EM activity
[l Cosmic bkg

T T T
8.85x10%° POT-equiv
[lBeamv,and v,
[l Wrong-sign (Appearing v,)

2 4 6
Number of Bkg Events

NOvVA Simulation

Events / 6.05 x 10%° POT-equiv
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S
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n° Energy (GeV)

NOVA Preliminary
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Reconstructed Neutrino Energy (GeV)

» Data analysis divides data into
purity bins by CVN value

» Surviving backgrounds mostly
contain energetic 7° as
expected
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Inside the black box — inspect

~ FEATURE MAPS

» Direct inspection of first network layer
» Some features sensitive to tracks, others showers
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Inside the black box — inspect

ve CC

80.

0 | BN -->
50
= | . -
g 40—\‘ e
20 e IV —> -
Pt FEATURE MAPS
iﬂE

» Direct inspection of first network layer
» Some features sensitive to tracks, others showers
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[]
Reco Labels Truth Labels
v, NC Ne
6 6
v.cocon v, cCcon
4 v.CODIS 4 v.CC DIS
v, CC RES v, CC RES
2 2
v.COQE v CCQE
v, cecon v, cC con
0 0
v,CCDIS v, CCDIS
v, CCRES v, CC RES
-2 -2
1, CCQE v, CCQE
4 v, cCcon -4 v, CCcol
v, CC DIS v, CC DIS
9 v, CC RES -9 v, CC RES
v, CCQE v, CCQE
8 -6 -4 -2 0 2 4 3 & -6 -4 -2 0 2 2 3

» Lower-dimensional subspace contains much of the information

» e.g. principal components on CVN features

» Or non-parameteric “t-distributed stochastic neighbor embedding”
van der Maaten et al. “Visualizing High-Dimensional Data Using t-SNE”
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Inside the black box —t SNE

» Lower-dimensional subspace contains much of the information

» e.g. principal components on CVN features

» Or non-parameteric “t-distributed stochastic neighbor embedding”
van der Maaten et al. “Visualizing High-Dimensional Data Using t-SNE”
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Inside the black box“— t-SNE
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» Lower-dimensional subspace contains much of the information
» e.g. principal components on CVN features

» Or non-parameteric “t-distributed stochastic neighbor embedding”
van der Maaten et al. “Visualizing High-Dimensional Data Using t-SNE”
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Inside the black box — occlusion

Cell

80

True NC

70

60

50H8

40
5x5 block of cells

30 removed to make each
alternative PID output

20 for the occlusion test

) 0

0
0 20 40 60 80

Plane

100

.

=

True ve CC

5x5 block of cells
removed to make each
alternative PID output
for the occlusion test.

20
10 D
0
0 20 40 60 80 100

Plane

» Which pixels in the input are important to the result?

» Which are irrelevant?
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Inside the black box — occlusion

True ve CC

5x5 block of cells
removed to make each
alternative PID output
for the occlusion test.

O

40

Plane

60 80

80 - " 80
True NC )
70 g 70t
E '
60 60t
Lo
50 el 50 o/
3 40 - \ g T 40 "7'/..-.}
o We can trick the v, ID output by 5 o " .
30 o ncof e rack which don 8/ |3 T
. look like a clean muon track.
20 E/ 20
10| %) 10
00 20 40 60 80 100 [ 00 20
Plane
» Which pixels in the input are important to the result?
» Which are irrelevant?
» v, PID most focused on cleanliness of track

100
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Inside the black box — occlusion

80

True NC

2 \ We can trick the v ID output by

removing the parts of the start
and end of the track which don't

. / look like a clean muon track.

v

v

v

v

20 40 60 80
Plane

100

more v, like

no change

less v, like

80

True ve CC
The ve ID output is by far most
sensitive to the electron track.
0 20 40 60 80 100

Plane

Which pixels in the input are important to the result?

Which are irrelevant?

v, PID most focused on cleanliness of track

ve PID dominated by the EM shower

more ve like

no change

less ve like
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Prong CVN

side

- side
view

view

cvnlD

cvnlD

Train network on individual prongs (from trad. reco) plus context
Goal is to classify individual particles within the event
Performance dependent on purity of traditional reconstruction

In use for energy estimator, in future for xsec measurements
Not to be confused with “final state CVN”

vVvyVvYyyvyy
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Regression energy estimator

Top View Side View

& [ — Cal. Energy B
[~ [J10 shape-only GENIE — Kinemaic Energy

— CNN Energy

Cell
Cell

Events / 18.0 x 10%° POT

3 (RecoE-TrueE)/TrueE s

» Traditional technique attempts to seperate EM and hadronic hits,
apply different scale factors

» 1m simulated ve interactions flat across energies

)

7

» Train with loss L = Z,

YI
» Cautious about systematic biases
» Haven'’t found anything dramatic yet

“Improved Energy Reconstruction in NOvA with Regression Convolutional Neural
Networks”, accepted by Phys Rev D
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Regression energy es’umator

Top View side View

BN Electron
I Hadronic

Cell
=
Cell

Plane : Plane

0 0.25 T

E ° CNN Energy

2o o o Kinematic Energy

g : 4 Calorimetric Energy
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» Traditional technique attempts to seperate EM and hadronic hits,

apply different scale factors

» 1m simulated ve interactions flat across energies

» Train with loss L = Z,

Xi)—Yi
YI

» Cautious about systematic biases

» Haven'’t found anything dramatic yet

“Improved Energy Reconstruction in NOvA with Regression Convolutional Neural

Networks”, accepted by Phys Rev D
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DUNE detector
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DUNE classmer

Time

Induction View Induction View 500 Col. View
400 400 400
300} 300, 300F ’
o o
E E
= =
200 200 200
y N
/ \ N
/ N N
/ AN
/ .
100 yd 100 100 \
0 . 0 Ny
0 100 200 300 500 0 100 200
Wire

» Larger 500500 map

> pixel =

1 wire (bmm) x 1.2ms

» “Unwrapping” wires into global
space helps a lot
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DUNE classifier

m S -1
) AN NN 4 - 75
== == =22 £~ Training Loss Work in progress
= — = 35—  — TestLoss ]
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1 8
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| _ 15 ]
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- - Number of Training Iterations

» Very similar to NOvA CVN, now triplet architecture
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DUNE classifier

Neutnno Beam Anti-Neutrino Beam Neutrino Beam Anti-Neutrino Beam

Work in 5?8 gss

e = il

Selection Efficiency

v, Signal
NC Background

o4 - Signal (pre-selection)
e CDR Fast MC

0.21= TensorFlow CVN
G e e e ey ol o

6 7
Reconstructed Energy (GeV)

» Performance now exceeding conventional techniques and
estimates from the DUNE CDR

» Will continue to investigate further improvements
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DUNE track/shower CNN

input image

Convolutional Neural Network

- . probability:
> EM-like
> track-like
> empty

convolutional layers dense layers output

» Choice of reconstruction algorithm guided by hit level classification

» Input small part of the image, classify central hit as trk vs shw
» Excellent performance
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DUNE track/shower CNN

Prc \ )DUNE simulatio

CNN output: MC truth:

input: 2D ADC EM-like (blue) / track-like (red) EM-like (green) / track-like (red)

» Choice of reconstruction algorithm guided by hit level classification
» Input small part of the image, classify central hit as trk vs shw
» Excellent performance
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Detector Blocks at MC7

» Improved training of Prong CVN using real testbeam data
» Can alleviate most concerns about overtraining to MC sample

» Deploy CNN energy estimator?
» Application of CNNs to vertex finding
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Semantic segmentation

forward/inference

backward/learning

21

» Possibility to identify particles using deep learning techniques
» Replace conventional reconstruction stack completely

“Fully Convolutional Networks for Semantic Segmentation” arXiv:1411:4038
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Semantic segmentation

"Reconstruction®

I

,—Where we’re going, We don’t need

’l,

>~ reconstruction.

» Possibility to identify particles using deep learning techniques
» Replace conventional reconstruction stack completely

“Fully Convolutional Networks for Semantic Segmentation” arXiv:1411:4038
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Generative Adversarial Nets

» If neural networks can hallucinate
dogs, could they generate MC?

» Autoencoder aims to
reproduce input image

» “Bottleneck” in the middle
» Derives latent variables

» Adversarial networks
» One network generates events
» A second tries to distinguish them from real data
» Loss function is the success of the 1st in fooling the 2nd
“Learning to Pivot with Adversarial Networks” arXiv:1611.01046

43/45



Recurrent Neural Networks
Unfold ‘ ‘ .

[ v TU

@@@

v

RNNs implement a form of memory
Feed in slice of input data, plus output of previous iteration
More sophisticated “LSTMs”

vy

v

A solution in search of a problem?
Potentially useful for cosmic rejection
Time-of-flight of muons tracks, delayed michels, neutrons

vy
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Conclusion

» Renaissance in machine learning
» New techniques and technologies
» Neutrino experiments on the leading edge

» Already performing excellently for core event classification tasks
» Exploring extensions in all directions

» Fermilab ML group —machinelearning.fnal.gov

» Extremely young and fast moving field in computer science
» Keep an eye on the literature for the next game-changer
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