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Neutrinos are everywhere
Solar

12C
13N

13C
14N

15O

15N

1H
1H

1H
1H

4He

Atmospheric

Reactor Supernova I Second most abundant
particle in the universe

I But we know almost
nothing about them

I Only interact via the
weak force

I Need powerful sources
and huge detectors
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Neutrinos are unique
I Far lighter than the quarks and charged leptons
I May get their masses by a different mechanism

m2
EW/mν ∼ 1015 GeV ∼ mGUT

I Very different mixing structure to quarks
I Most of what we know comes from neutrino

oscillations arising from this mixing
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Neutrino mixing and oscillation
I Neutrinos mix, like quarks

|να〉 =
∑

i

U?
αi |νi〉

I Unlike quarks, mixings large
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Oscillation structure
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NOvA
I Powerful νµ beam from Fermilab
I Measure flux in Near Detector
I Measure again at Far Detector

for P(νµ→νµ) and P(νµ→νe)

I World’s highest power ν beam
I Longest baseline of any expt.

maximizes sensitivity to mass
ordering
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DUNE
I More powerful beam
I Longer baseline
I Deep underground
I Larger detector
I Finer segmentation

I Primary goal to discover if ν/ν̄
oscillations differ (5σ level)
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Classifiers
I In general want P(physics|observations)

I Want to reduce huge-dimensional space
I Smooth P so don’t need infinite MC stats
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Classifiers
I How to teach the computer to

recognize objects?
I How to get from low level to

high level info?

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
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Traditional approach
I Write algorithms to find features

I Define object as feature combo
I Test
I Search for pathologies
I Add special-cases / new algorithms

I How about cases like these?

Credit: Fei Fei Li @ TED via Kazu Terao @ NNN18
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NOvA event reconstruction

I First cluster hits in space and time

I Start with 2-point Hough transform
I Line-crossing are vertex seeds

I ElasticArms finds vertex
I Fuzzy k -means clustering forms

prongs

I νµ analysis uses a Kalman filter to
reconstruct any muon track
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NOvA “classic” PIDs
νµ PID

I kNN based on dE/dx and scattering LLs, track length, etc.
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NOvA “classic” PIDs
νe PIDs

I LID: ANN based on shower dE/dx LLs
I LEM: “kNN” over library events + decision tree
I ∼ 70% LID/LEM overlap – room for improvement?
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C. Backhouse, R. Patterson, NIM A778 (2015) 31-39
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Artificial Neural Networks
I Origins back in the 40s
I Loosely model the neurons in a brain

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus
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Artificial Neural Networks

I N training events with input properties ~xi and truth yi
I Aim to minimize a loss function
I Squared error (regression):

L =
∑

i

(yi − f (~xi))2

I Cross entropy (classification):
L =

∑
i

−yi log(f (~xi))− (1− yi) log(1− f (~xi))
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ANN training

I Single layer with enough nodes can reproduce any function
I Physicist’s proof: use 2N neurons to build a delta function

I Multi-layer often need fewer nodes

I How to train?
I Fully connected→ number of parameters grows quickly
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Backpropagation

I First applied to NNs in 1982

I Compute partial derivative of loss
w.r.t. each weight ∂L

∂wi

I Optimize loss via gradient descent
I Adjust weights

learning rate × gradient × loss
w ′j = wj − α∇wj L

I Enjoyed a lot of success in HEP
I Recently overtaken by BDTs
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Convolutional Neural Networks

I Recent advances in machine learning/computer vision
I Achieving near-human performance on image classification tasks
I Can we do better by classifying event-displays directly?
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Deep learning
I Deep just means many hidden layers
I Can encode complex structures more

efficiently
I Historically extremely difficult to train

I Various advances
I GPUs - Bring more raw power to bear on training
I Bigger training sets
I Better weight initialization
I Better nonlinearities
I Stochastic gradient descent
I Techniques to prevent overtraining
I Convolutional networks – reduction in number of weights to train
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Training improvements

3− 2− 1− 0 1 2 3
x

0

0.5

1

f(
x)

ReLU
I With traditional response function, saturated neuron ∂L/∂wi → 0

stops training
I “Rectified linear unit” – more effective backpropagation
I Bonus: more efficient calculation

Stochastic gradient descent
I Training convenience: evaluate small batches of events
I Approximate result as noisy sub-estimates even out
I Bonus: can allow for jumping out of local minima
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Training improvements

I Powerful classifiers risk overfitting

Regularization
I Add term λ

∑
w2

i to loss
I Disfavours large weights

Dropout
I At each training iteration randomly set X% of weights to zero
I Weights not reliably used together so can’t be strongly correlated

Moody et al. “A simple weight decay can improve generalization”
Srivasta et al. “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”
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Convolutional Neural Networks

1
8

−1 −1 −1
−1 +8 −1
−1 −1 −1


Edge-detection kernel

I Early neurons in visual cortex sensitive to small “receptive field”
I CNN – deep neural network, inputs are the pixels of the image
I Enforce translational invariance→ convolutions
I Learn optimal kernels direct from data
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Convolutional Neural Networks
I Early CNN example: LeNet: Circa 1989
I Alternating convolution and max-pooling layers (downsampling)
I Finish with fully-connect network
I Max-pooling + convolution→ translational invariance
I Convolutional layer trains N×M×W×H coefficients

Y. LeCun, L. Bottou, P. Haffner, IEEE Proceedings, 86(11), 2278-2324, (1998d)e
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Pooling

I Pooling downsamples information (form of smoothing)
I Max or average of a patch of pixels
I Literal smoothing if stride=1
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Inception modules

I GoogLeNet – 2014
I “Inception module”
I Combine different kernel sizes,

keep number of maps under
control with 1×1 convolutions

I Max pooling downsamples
I Reduce number of feature

maps with 1×1×N→1

Previous Layer

1×1 Convolution

3×3 Convolution

1×1 Convolution

5×5 Convolution

3×3 Pooling

1×1 Convolution
1×1 Convolution

Filter
Concatenation

C. Szegedy et al., “Going Deeper with Convolutions”, arXiv:1409.4842 (2014)
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NOvA’s network – CVN
I Convolutional Visual Network
I Turn NOvA events into pixel map: 100×80 (14.5m×4m) box
I Downsample charges to one byte (256 values)
I Inputs differ substantially to natural images e.g. many zero pixels

I Train to distinguish neutrino flavours (and interaction modes)
I 10 passes over 3.4m training events (1 week with two (k40) GPUs)

“A Convolutional Neural Network Neutrino Event Classifier” JINST vol 11 (2016)
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CVN architecture

X View

Convolution
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Softmax Output

I Usually have multiple “channels” for RGB
I Our views approx independent, don’t want

linear combinations of unrelated info
I “Siamese” network, ∼ cut-down GoogLeNet
I Network topologies an intense research area
I Later CVN iterations have somewhat varying

layer structures
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CVN performance
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I Statistical power equivalent to collecting 30% more data
I Also improves νµ CC selection and adopted by NC group
I Systematic studies show same or less sensitivity to uncertainties
I Good data/MC agreement observed in Near Detector
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CVN characteristics
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I Data analysis divides data into

purity bins by CVN value
I Surviving backgrounds mostly

contain energetic π0 as
expected
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Inside the black box – inspect
νµ CC

FEATURE MAPS

:
:

FEATURE MAPS

:
:
:
:

I Direct inspection of first network layer
I Some features sensitive to tracks, others showers
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Inside the black box – inspect
νe CC
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Inside the black box – t-SNE

I Lower-dimensional subspace contains much of the information
I e.g. principal components on CVN features
I Or non-parameteric “t-distributed stochastic neighbor embedding”

van der Maaten et al. “Visualizing High-Dimensional Data Using t-SNE”
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Inside the black box – occlusion

I Which pixels in the input are important to the result?
I Which are irrelevant?

I νµ PID most focused on cleanliness of track
I νe PID dominated by the EM shower
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Prong CVN

I Train network on individual prongs (from trad. reco) plus context
I Goal is to classify individual particles within the event
I Performance dependent on purity of traditional reconstruction
I In use for energy estimator, in future for xsec measurements
I Not to be confused with “final state CVN”
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Regression energy estimator

I Traditional technique attempts to seperate EM and hadronic hits,
apply different scale factors

I 1m simulated νe interactions, flat across energies

I Train with loss L = 1
N
∑

i

∣∣∣ f (xi )−yi
yi

∣∣∣
I Cautious about systematic biases

I Haven’t found anything dramatic yet

“Improved Energy Reconstruction in NOvA with Regression Convolutional Neural
Networks”, accepted by Phys Rev D
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DUNE detector

36 / 45



DUNE classifier

I Larger 500×500 map
I pixel = 1 wire (5mm) × 1.2ms
I “Unwrapping” wires into global

space helps a lot
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DUNE classifier

I Very similar to NOvA CVN, now triplet architecture
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DUNE classifier

I Performance now exceeding conventional techniques and
estimates from the DUNE CDR

I Will continue to investigate further improvements
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DUNE track/shower CNN

I Choice of reconstruction algorithm guided by hit level classification
I Input small part of the image, classify central hit as trk vs shw
I Excellent performance
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Future directions

I Improved training of Prong CVN using real testbeam data
I Can alleviate most concerns about overtraining to MC sample

I Deploy CNN energy estimator?
I Application of CNNs to vertex finding
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Semantic segmentation

I Possibility to identify particles using deep learning techniques
I Replace conventional reconstruction stack completely

“Fully Convolutional Networks for Semantic Segmentation” arXiv:1411:4038
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Generative Adversarial Nets
I If neural networks can hallucinate

dogs, could they generate MC?

I Autoencoder aims to
reproduce input image

I “Bottleneck” in the middle
I Derives latent variables

I Adversarial networks
I One network generates events
I A second tries to distinguish them from real data
I Loss function is the success of the 1st in fooling the 2nd

“Learning to Pivot with Adversarial Networks” arXiv:1611.01046
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Recurrent Neural Networks

I RNNs implement a form of memory
I Feed in slice of input data, plus output of previous iteration
I More sophisticated “LSTMs”

I A solution in search of a problem?
I Potentially useful for cosmic rejection
I Time-of-flight of muons tracks, delayed michels, neutrons
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Conclusion

I Renaissance in machine learning
I New techniques and technologies
I Neutrino experiments on the leading edge

I Already performing excellently for core event classification tasks
I Exploring extensions in all directions

I Fermilab ML group – machinelearning.fnal.gov

I Extremely young and fast moving field in computer science
I Keep an eye on the literature for the next game-changer

45 / 45



Thank you!
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