
Next Frontiers in Particle Physics Detectors Maxim Titov, CEA Saclay, Irfu, France

TALK OUTLINE:

Introduction and Overview

- Advancing Concepts in Vertex/Tracking
 - Solid State (Silicon) Detectors
 - Micro-Pattern Gaseous Detectors
- Advancing Concepts in Picosecond-Timing Detectors
- Advanced Concepts in Particle Identification and Photon Detectors
- Advanced Concepts in Calorimetry
- Advanced Concepts in TDAQ, Computing
- Summary and outlook

RAL Particle Physics Department Seminar, December 2, 2020

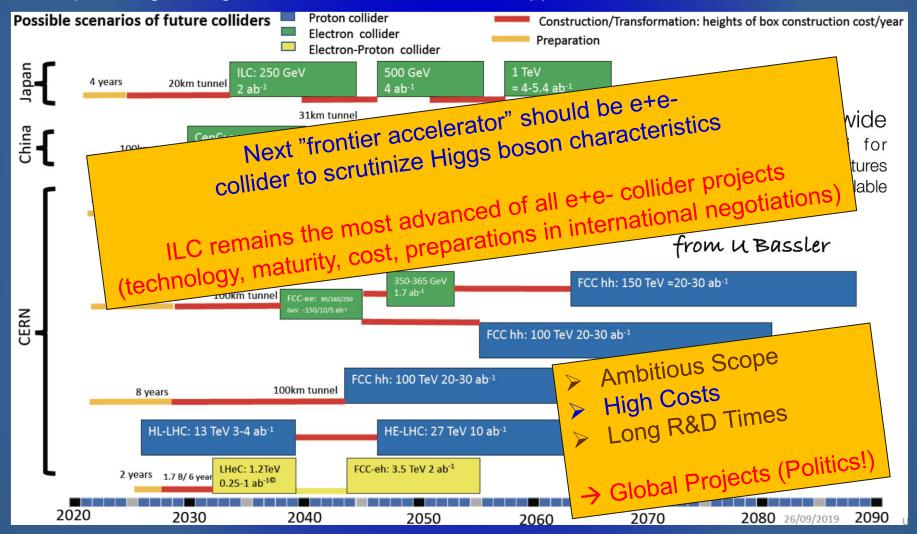
Future Collider Facilities: A Wealth of Detector R&D Activities

- Plethora of excellent instrumentation conferences each year
- Too many different experiments and R&D techniques to cover even partially

THIS TALK: attempt to list the key technology challenges in the context of the future Energy Frontier collider facilities: using synergies in detector R&Ds between hadron & lepton colliders (not much about Intensity and Cosmic Instrumentation Frontier needs → apologies)

→ It is (mostly) based on the summary talk & proceedings of the INSTR2020 conference: https://indico.inp.nsk.su/event/20/timetable/#20200224.detailed

→ Linear Collider Collaboration Detector R&D Liaison Report (new update early 2021): http://ww2.linearcollider.org/P-D/Working-groups/Detector-R-D-liaison


International Co	nference on Ins	trumentation for Co	olliding Beam Physics
h		TR - 202	
will be cohosted by	onference «Instrum the Budker Institute	entation for Colliding Be e of Nuclear Physics (BIN rom 24 to 28 February,202	am Physics» (INSTR 20) P) and Novosibirsk State
Conference on Instr The conference cov	rumentation) and on ers novel methods o d other accelerators	ship with those held in Elba (PM or Pisa Meeting of particle detection used as well as in astrophysics	on Advanced Detectors). In various experiments at
experiments at coll	iding beams and rel	the status and progress ated fields. The main top	n Instrumentation for lines include:
Colliders and deter Tracking and verter		11 2-411	
Timing detectors Micropattern gas d	letectors	I THE AL	Th
Particle identificati Calorimetry	on	11 440'	Man La Dal
Instrumentation fo Electronics, Trigge	r Astroparticle and t		
+Computing and so	ftware in HEP	deside.	
11.04	- II.	lenary and poster	CONCERNMENT OF TAXABLE PARTY
Organized		tute of Nuclear Phy sk State University	N *Novosibirsk
	INTERNATIONAL	ADVISORY COMMITTEE	THE REAL SCIENCE
	Halina Abramowicz Alexander Bondar Giovanni Bencivenni Amos Breskin	Tel Aviv Univ. NSU, Novosibirsk INFN, Frascati Weizmann Institute, Rehovot	
Local Organizing and Program Committee	Mikhail Danilov Dmitri Denisov	Lebedev Institute, Moscow BNL, Brookhaven	Contact information
Yu, A, Tikhonov (Chair)	Eckhard Elsen Cristiano Galbiati	CERN Princeton	Conference Chairman: Prof. Yuri A. Tikhonov
M. N. Achasov A. Yu. Barnyakov	Franco Grancagnolo David Hitlin	INFN, Lecce Caltech, Pasadena	E-mail: Yu.A.Tikhonov@inp.nsk.su
			And a second
A. F. Buzulutskov	Manfred Jeitler Vladimir Kekelidze	HEPHY, Vienna JINR, Dubna	Conference Secretariat: E-mail: instr20@inp.nsk.su
S. I. Eidelman F. V. Ignatov	Vladimir Kekelidze Mikhail Korzhik	HEPHY, Vienna	Conference Secretariat: E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/
S. I. Eidelman F. V. Ignatov A. A. Kononov	Vladimir Kekelidze Mikhail Korzhik Manfred Krammer Peter Krizan	HEPHY, Vienna JINR, Dubna Belarus State University CERN Univ. of Ljubljana	E-mail: instr20@inp.nsk.su
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin	Vladimir Kekelidze Mikhail Korzhik Manfred Krammer	HEPHY, Vienna JINR, Dubna Belarus State University CERN Univ. of Ljubljana INR, Moscow DESY, Zeuthen and	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzmin P. A. Lukin	Vladimir Kekelidze Mikhail Korzhik Manfred Krammer Peter Krizan Yury Kudenko Wolfgang Lohmann Clara Matteuzzi	HEPHY, Vienna JINR, Dubna Belarus State University CERN Univ. of Ljubljana INR, Moscow DESY, Zeuthen and RWTH Aachen INFN, Milano-Biococa	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzmin P. A. Lukin A. A. Prokopenko	Vladimir Kekelidza Mikhail Korzhik Manfred Krammer Peter Krizan Yury Kudenko Wolfgang Lohmann	HEPHY, Vienna JINR, Dubna Belarus State University CERN Univ. of Ljubljana INR, Moscow DESY, Zeuthen and RWTH Aachen INFN, Milano-Biococa	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzmin P. A. Lukin	Vladimir Kakelidze Mikhail Korzhik Manfred Krammer Peter Krizan Vury Kudenko Wolfgang Lohmann Clara Matteuzzi Guenakh Mitselmakher Mikiniko Nakao Carsten Niebuhr	HEPHY, Vienna JINR, Dubna Belarus State University CERN Univ. of Ljubljana INR, Moscow DESY, Zouthen and RWTH Aachen INFN, Milano-Biocca Univ. of Florida, Gainesville KEK, Tsukuba DESY	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzin P. A. Lukin A. A. Prokopenko L. I. Shekhtman	Viadimir Kakelidze Mikhail Korzhik Manfred Krammer Peter Krizan Yuny Kudenko Wolfgang Lohmann Clara Matteuzzi Guenakh Mitselmakher Mikiniko Nakao Garaton Niebuhr James Ritman Hiroyuki Sagawa	HEPHY, Vienna JINR, Dubna Belarus State University UNK, of LJCERN NNK, Moscow DESY, Zouthen and RWTH Aachen INFN, Milano-Biocca Univ. of Florida, Gamesville KEK, Tsikuba KEK, Tsikuba FZ Jalilo ICRR, Tokyo	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzin P. A. Lukin A. A. Prokopenko L. I. Shekhtman	Viadimir Kakeildze Mikhail Korzhik Manfred Krammer Peter Krizan Yuny Kudenko Wolfgang Lohmann Clara Matteuzzi Guenakh Mitselmakher Ganiton Niebor James Ritman Hiroyuki Sagawa Jochen Schwiening Maxim Titov	HEPHY, Vienna Bularus State University Univ, ot CERN Univ, ot CERN Univ, ot CERN NR, Hubjana DESY, zouthen and RWTH Aachen INN, Miano-Biocca Univ, of Florida, Ganesville KEK, Tsukub CESY ICR, Tolyo GSI, Darmstadt CEA, Saday	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,
S. I. Eidelman F. V. Ignatov A. A. Kononov E. A. Kravchenko M. V. Kuzin A. S. Kuzin P. A. Lukin A. A. Prokopenko L. I. Shekhtman	Viadimir Kakelidze Mikhail Korzhik Manfred Krammer Peter Krizan Yury Kudenko Wolfgang Lohmann Clara Matteuzzi Guenakh Mitselmakher Mikihiko Nakao Caraten Niebuhr James Ritman Hiroyuki Sagawa Jochen Schwiening	HEPHY, Vienna Belarus Stato University Univ. of Ljubijana INR, Moscow DESY, Zouthen and Vien RWTH Aachen Univ.ofFlorida, Gainesville KEK, Tsukuba Conto Cono	E-mail: instr20@inp.nsk.su Web: http://instr20.inp.nsk.su/ Budker INP 11 Lavrentiev Av.,

inst	Published by IOP Publishing for Sissa Medialab	
_	RECEIVED: June 12, 2020 ACCEPTED: June 28, 2020 Published: October 22, 2020	
International Conference on Instr Novosibirsk, Russia 24–28 February, 2020	rumentation for Colliding Beam Physics	
Next frontiers in particle	physics detectors: INSTR2020	\mathbb{N}
summary and a look into	o the future	
M. Titov		\bigcirc
Commissariat à l'Énergie Atomique et Éne 91191 Gif sur Yvette Cedex, France	rgies Alternatives (CEA) Saclay, DRF/IRFU/DPHP,	9
E-mail: maxim.titov@cea.fr		H
to the next generation of lepton colliders at the Instrumentation Frontier. Many t	ninosity particle accelerators, from LHC to HL-LHC and s, have set quite stringent constraints on the future needs technologies are reaching their sensitivity limit and new crome the currently irreducible technological challenges.	2020 JINST
concern for a high-precision silicon verter is CMOS sensors offering low mass and p	udget and power consumption represents a very serious x and tracking detectors. One of the most promising areas sootentially radiation-hard technology for the future proton- tensity frontier and heavy-ion experiments. MPGDs have	15
primary choice whenever the large-area tube technology is inherently fast and ner	he fertile field of gaseous detectors; these will remain the coverage with low material budget is required. Vacuum w developments include advances in microchannel plates	C10023
novel concepts of picosecond-timing dete	a picosecond-time resolution in large systems. Several ectors will have numerous powerful applications in parti- vent reconstruction, and serve numerous scientific goals.	02
The story of modern calorimetry is a ter- ment of an experimental method. Silico	xtbook example of physics research driving the develop- on photomultipliers have seen a rapid progress in the last or scintillator-based devices. The integration of advanced	ω
to be addressed. Bringing the modern a	onalities plays an increasingly important role and needs algorithmic advances from the field of machine learning tions and trigger systems is another major challenge. The	
timescales spanned by future projects in j constitute a challenge in itself, in addition	particle physics, ranging from few years to many decades, to the complexity and diversity of the required accelerator es advances and recent trends in the instrumentation tech-	
	es advances and recent denes in the instrumentation den-	

European Strategy Update: Shaping the Future of Particle Physics

- Global vision for our domain going beyond regional boundaries
- In the case of global facility outside of Europe, CERN should act as the European regional hub providing strategic coordination and technical support

European Strategy Update also calls for Accelerator & Detector R&D Technology Roadmaps

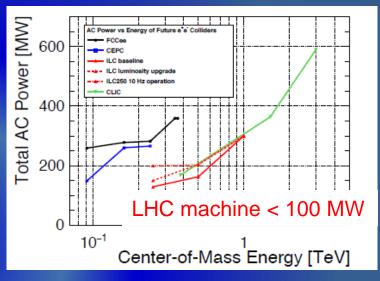
Storage Rings or Linear Collides for Future e+e- Accelerator

Accelerator R&D Roadmap (intensify accelerator R&D and sustain it with adequate resources): https://indico.cern.ch/event/966397/contributions/4067075/attachments/2147034/3619166/AccRoadMap_LRivkin_PECFA.pdf

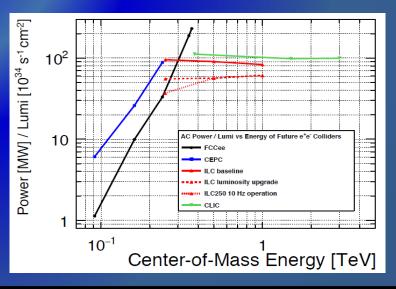
Power consumption is an important consideration!

- Energy tends to be the cost driver:
 - \rightarrow hadrons high-field magnets;
 - → e+e- high-gradient RF

Circular collider:


→ high-luminosity from Z peak to top threshold Linear colliders:

ightarrow extendability to high energies / beam polarization


★ L ×E_{CM} drives the MWatts (at least for leptons): → it's all about COST per GeV | inv fb

- Where are the acceptable limits? (not the technical limits)
- High running costs may need to be shared (global project)
- R&D needed in increasing efficiencies and/or recovering the energy

Linear Collider provides power efficient luminosity for > 250 GeV

https://indico.fnal.gov/event/20759/contributions/58924/attachints/36900/44905/Lum-Energy-doc-preliminary.pdf

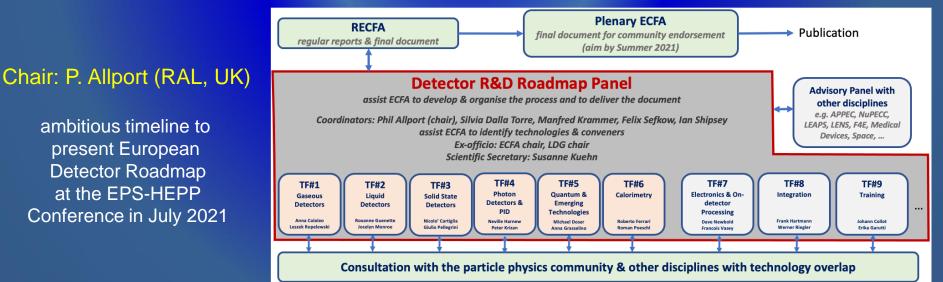
European Strategy Discussion on (Future) Instrumentation R&D

ESPP Symposium (Granada, May 2019): https://indico.cern.ch/event/808335/timetable/#all.detailed

R&D Focus

- 70-20-10 guideline:
 - 70% on NOW current detectors
 - 20% on NEXT future detectors
 - 10% on HORIZON blue sky R&D
- NOW and NEXT should be driven by well defined or prospective requirement
- HORIZON should be driven by technology and what's possible
 - Need more connection to other fields
- % of what resources ? Money, time

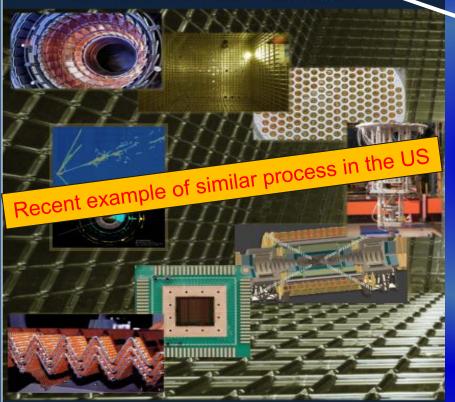
AT GOOGLE, LUERE DNORAGED TO DEPED DEVELOPMENT OF ADAM DEVELOPMENT OF A LUER TOD YOU THE ANTIC TODAS


- Importance (at an appropriate level) of Generic / "blue sky" R&D
- Recognition of excellence in instrumentation -> Career opportunities for detector physicists in universities/ research institutes must be greatly strengthened to foster participation of young people in this branch of science

May 13, 2019

F.Forti, Technological Challenges

Detector R&D Roadmap (to guide Detector R&D process in Europe and define inclusive roadmap):


https://indico.cern.ch/event/966397/contributions/4067074/attachments/2146995/3619108/EFCA_DetRDRoadmap_ECFA201120_SK.p

US: Basic Research Needs Report & Snowmass Process

The Snowmass Process is organized by the DPF of the American Physical Society: https://snowmass21.org → Identify and document a vision for the future of particle physics (PP) in the US in a global context → Communicate opportunities for discovery in PP to broader community and to the (US) government.

Basic Research Needs for High Energy Physics Detector Research & Development

Report of the Office of Science Workshop on Basic Research Needs for HEP Detector Research and Development December 11-14, 2019

BRN Report published in Sep. 2020:

https://science.osti.gov/hep/Community-Resources/Reports

EF physics/instrumentation drivers in BRN are Higgs-centered:

Science	Measurement	Technical Requirement (TR)	PRD
Higgs properties with sub-percent precision Higgs self-coupling with 5% precision	TR 1.1: Tracking for e^+e^-	[TR 1.1.1: p_T resolution: $\sigma_{p\tau}/p_T = 0.2\%$ for central tracks with $p_T < 100$ GeV, $\sigma_{p\tau}/p_T^2 = 2 \times 10^{-5}/\text{GeV}$ for central tracks with $p_T > 100$ GeV TR 1.1.2: Impact parameter resolution: $\sigma_{r\phi} = 5 \oplus 15 (p \text{ [GeV] sin}^{\frac{3}{2}}\theta)^{-1} \mu\text{m}$ TR 1.1.3: Granularity : 25 × 26 μm^2 pixels TR 1.1.4: 5 μm single hit resolution TR 1.5.7 er track timing resolution of 10 ps	18, 19, 20, 23
Higgs connection to dark matter	TR 1.2: Tracking for 100 TeV pp	Generally same as e^+e^- (TR 1.1) except TR 1.2.1: Radiation tolerant to 300 MGy and $8 \times 10^{17} n_{eq}/cn^2$ TR 1.2.2: $\rho_{pr}/p_T = 0.5\%$ for tracks with $p_T < 100$ GeV TR 1.2.3: Per track timing resolution of 5 ps rejection and particle identification	$16, 17, \\18, 19, \\20, 23, \\26$
New particles and phenomena at multi-TeV scale	TR 1.3: Calorimetry for e^+e^-	TR 1.3.1: Jet resolution: 4% particle flow jet energy resolution TR 1.3.2: High granularity: EM cells of 0.5×0.5 cm ² , hadronic cells of 1×1 cm ² TR 1.3.3: EM resolution : $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$ TR 1.3.4: Per shower timing resolution of 10 ps	$1, 3, \\7, 10, \\11, 23$
	TR 1.4: Calorimetry for 100 TeV pp	Generally same as e^+e^- (TR 1.3) except TR 1.4.1: Radiation tolerant to 4 (5000) MGy and $3 \times 10^{16} (5 \times 10^{18}) n_{eq}/cm^2$ in endcap (forward) electromagnetic calorimeter TR 1.4.2: Per shower timing resolution of 5 ps	$1, 2, 3, \\7, 9, 10, \\11, 16, \\17, 23, \\26$
	TR 1.5: Trigger and readout	TR 1.5.1: Logic and transmitters with radiation tolerance to 300 MGy and $8\times10^{17}\mathrm{n_{eq}/cm^2}$ TR 1.5.2: Total throughput of 1 exabyte per second at 100 TeV pp collider	16, 17, 21, 26

Within Snowmass process, compile extended list of physics drivers and base technology requirements on them, e.g.:

- LLP searches requirements on granularity (low mass tracking) and and PID(ps-timing)
 benchmark for timing/trigger;
- Boosted / Substructure object reconstruction
- Higgs Couplings to light quarks (charm, strange) and tau-tagging;

Technology Synergies in Detector R&D with non-HEP/Industry

European Commission funded programs, such as EUDET, AIDA, ATTRACT play important role in enabling and supporting generic R&Ds

2018 ATTRACT CALL: Funds for multi-disciplinary detectors and imaging R&D

→ Initiative bringing together Europe's fundamental research and industrial communities to lead the next generation of detection and imaging technologies (https://attract-eu.com)

Total Proposals received:1211 Participation in Proposals per Financed: 170 /100keuro Country Kickoff 20-21 May 2019 CERN ATTRACT Phase I Software and United States Integration United Kinodom 17% Statistics: Ukraine Data Turkey 2 acquisition Switzerland 108 weden 14 systems and Sensors St Helena computing 58% 20% South Africa Slovenia - Phase 1 is officially closed Serbia Romania Portuga since October 31st, 2020 Poland Front and back Norway end electronics letherland \rightarrow Presentation of 5% Malta uxembouro Lebanor 170 papers happened Large Other Latvia Corporation 4% Research Jerse 3% Institute Italy in September and is Israel 14% Ireland C. Da Via loeland available online University 35% Hungary Germany Research France Technology Finland Organisation Estonia - Phase 2 has been 18% Denmark Republic Cyprus approved and should oalia (Hrvatska) Startup Bulgaria 6% kickoff in January 2021 Belgium 13 Austria SME Aroentina Note: This statistics refers 20% to submitted proposals 200 250

Complementary funding for new concepts or original extensions of existing ideas with emphasis of important industrial impact:

The New AIDAinnova Project and Detector R&D for Higgs Factories

https://indico.cern.ch/event/932973/contributions/4066737/attachments/2140131/3606033/Ainnova-HiggsF-FSefkow20201110.pdf

History: EC-funded Detector R&D Projects

PF6: EUDET: 2006-2010

Detector development for linear collider

FP7: AIDA: 2011-2014

- · Detector development for LHC upgrades and linear colliders
- Project-specific work packages

FP8: AIDA-2020: 2015-2020

- Common LC and LHC work packages
- · New communities: large cryogenic neutrino experiments, new topics

Higgs Factory Detector R&D

· New innovation measures, with industry

New AIDAinnova Call / Objectives:

- Support research infrastructure networks developing and implementing a common strategy/ roadmap including technological development required for improving their services through partnership with industry
- Support incremental innovation and cooperation with industry
- Complementarity to ATTRACT
- Increased focus on industrial partners
- No Transnational Access Proposed
- Funding 10 M€ for 4 years

Some targeted applications:

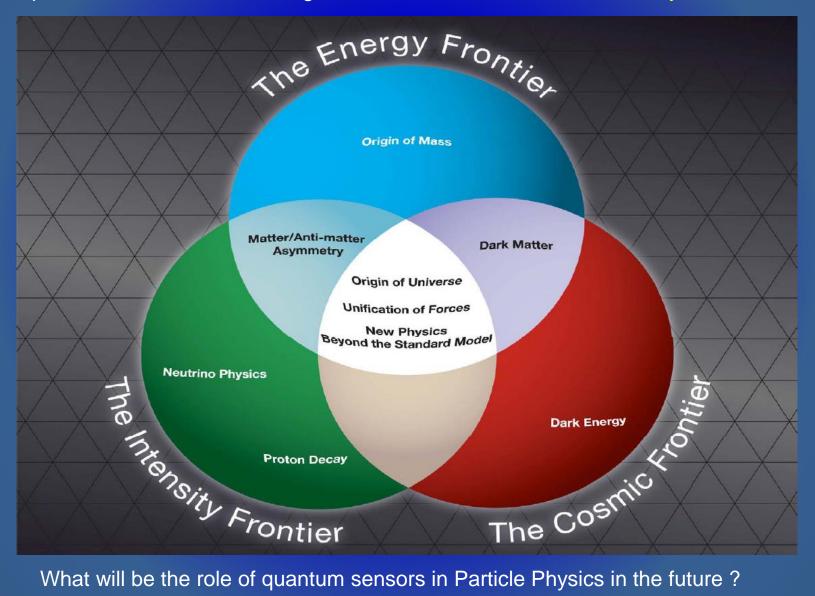
- ✓ Higgs Factories
- ✓ ATLAS, CMS LS4, ALICE, LHCb LS3 pre-TDR
- Accelerator-based neutrino experiments

Detector Technology	Linear & Circular Colliders common R&D	Differences
All	test infrastructure prototype electronics software for reconstruction and optimisation	readout rates power and cooling requirements
Silicon Vertex and Track Detectors	highest granularity and resolution, timing ultra-thin sensors and interconnects simulation and design tools low-mass support structures cooling micro-structures	emphasis on timing (background) and position resolution
Gaseous Trackers and Muon Chambers	ultra-light structures for large volumes industrialisation for large area instrumentation eco-friendly gases	DC and TPC presently considered only at some colliders
Calorimeters and Particle ID	highly compact structures and interfaces advanced photo-sensors and optical materials ps timing sensors and electronics	emphasis on granularity and stability DR and LAr pesresently only considered for circular

Nov. 2020: AIDAinnova project has been invited to the grant preparation phase

Increasing

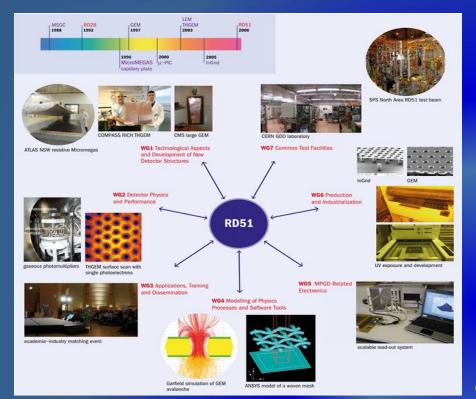
level of integration


F. Sefkow

AIDA

Cutting Edge Science Relies on Cutting Edge Instrumentation

Technologies developed under generic R&D and/or experiment-oriented programs at the Energy Frontier provide a boost in novel designs that often suit the needs of Intensity / Cosmic Frontiers



What will be the role of quantum sensors in Particle Physics in the future ?

Technology-Oriented R&D Collaborations

- Originally: "Cell" approach, oriented to select the different LHC experiment detector technologies CERN DRDC program (90's): http://committees.web.cern.ch/Committees/obsolete/DRDC/Projects.html
 - Today: Successful approach to streamline efforts/resources, handle new techniques and common components to on-going detector engineering challenges/production:
- ✓ RD42 Diamond detectors
 ✓ RD50 Silicon radiation hard devices
 ✓ RD51 Micropattern gas detectors
 ✓ RD53 Pixel readout chip for ATLAS and CMS (65 nm)
 - \rightarrow In general, large collaborations of interacting institutes
 - \rightarrow Good model, allows to consolidate resources especially people
 - \rightarrow CERN is central, but support needed from other labs and agencies
- Detector R&D Programs originally focused on ILC and CLIC Linear Colliders (exploit complementary / commonalities of technological developments for different facilities)
 - CALICE high granularity electromagnetic and hadronic calorimeters (since 2001 for ILC)
 → CALICE enabled high granularity calorimetry for CMS HL-LHC upgrade
 - Developments of Monolithic Active Pixels (MAPs) (since 1998 for ILC)
 → MAPs enabled application in EUDET telescope, STAR (RICH), ALICE ITS, CBM, ...

Micro-Pattern Gaseous Detectors: RD51 Collaboration

CERN – RD51 website (recently updated): https://rd51-public.web.cern.ch/welcome

- Today: ~ 90 RD51 institutes in 25 countries
- RD51 proposal for extension beyond 2018: arXiv: 1806.09955
- Started in 2008, RD51 technological collaboration approved by the CERN Research Board for the third five-years term (2018-2023)

Coordination through RD51 (« RD51 Model »):

Advance the technological development and application of MicroPattern Gas Detectors (MPGDs) and contribute to the dissemination of these technologies.

Development

Exploit existing technologies Large size single-mask GEMs Resistive Micromegas

Develop novel technologies μPIC, μR-WELL, GRIDPIX

Dissemination

High-Energy Physics ALICE, ATLAS, CMS, Compass, KLOE, BESIII

Fundamental research beyond HEP LBNO-DEMO, active-target TPCs

Beyond fundamental research Muon radiography, n-detection, X-ray radiographies **Tools and facilities**

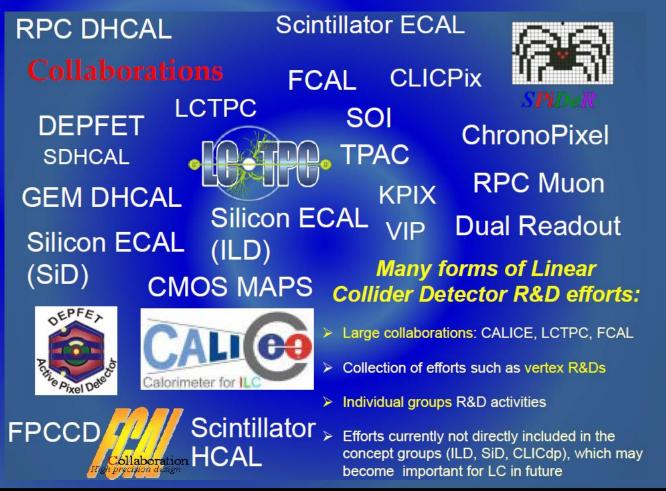
(GDD lab, common test beam)

Electronics (Scalable Readout System SRS, instrumentation)

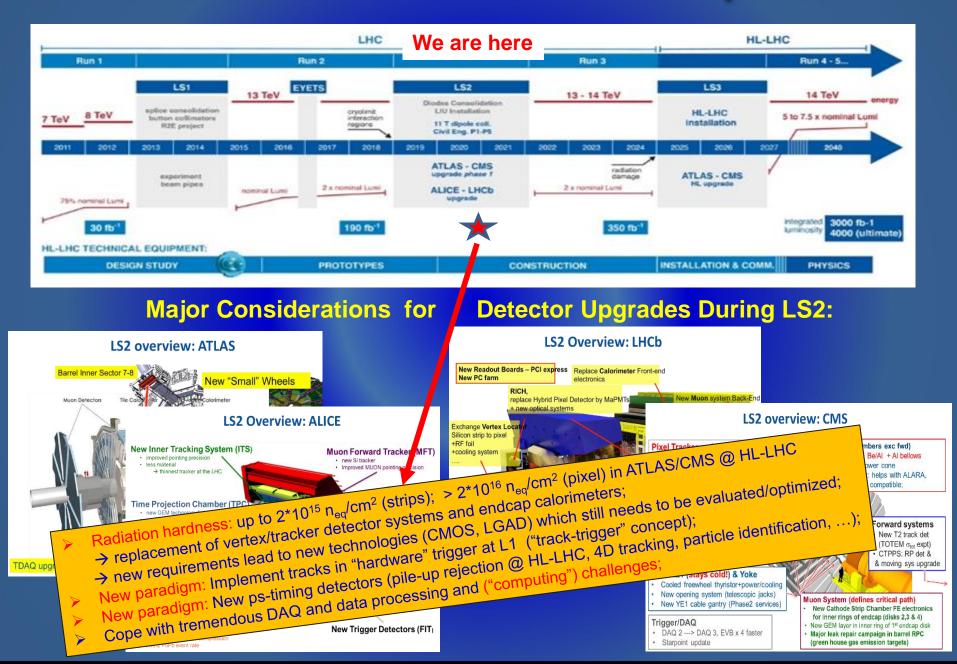
Simulation (Garfield, Magboltz, Degrad, neBEM) combination of generic and focused R&D with bottom-top decision processes, full sharing of "know-how", information, common infrastructures → This model can be exported to other detector domains

Linear Colliders Detector R&D's

LC Detector Liaison Report: http://ww2.linearcollider.org/P-D/Working-groups/Detector-R-D-liaison


- No specific choices are made / keep various options for technologies to realise the individual sub-detectors
 Advantage that technologies can be further advanced until the project is approved.
- Furthermore and as important this keeps a broad community of R&D groups at universities and labs involved and increases the chance to arrive at the best technically possible solution when it has to be built.

ILC Project Timeline:


- → International Development Team IDT (2020-2022);
- → ILC Pre-Lab (2022-2025);
- \rightarrow ILC Laboratory >=2025;

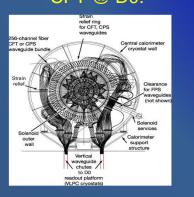
Preliminary timeline for ILC Detector technology choices:

- 2022 Call for EOIs
- 2023 Call for LOIs
- 2024/25 Selection and merger process;
- 2025 Technical Proposal submission
- 2026/27 TDRs submission

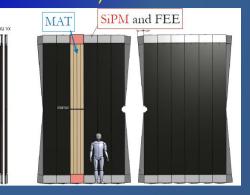
LHC Run 2 is Over ... The HL-LHC Era is Upon Us ...

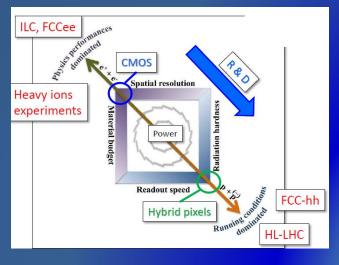
State-of-the-Art in Tracking and Vertex Detectors

3 major technologies of Tracking Detectors:


Silicon strips, hybrid, monolithic detectors:

Gaseous (MWPC, TPC, RPC, MPGDs):


Fiber Trackers:UA2 upgrade, CHORUS, CFT @ D0 Experiment, LHCb UpgradeCFT @ D0:LHCb Tracker Upgrade (Sci-fibers with SiPM readout):

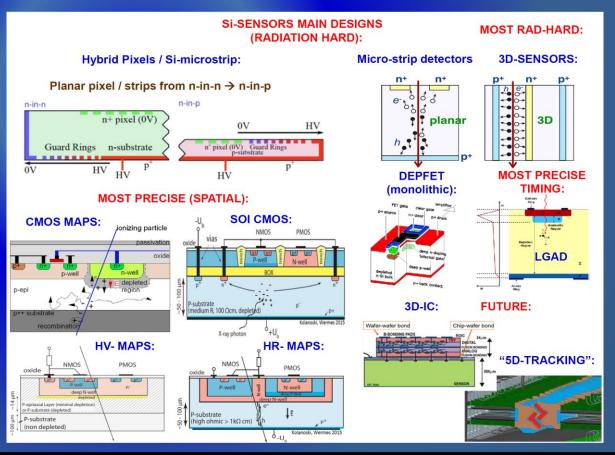

cluster

12 layers covering a sensitive area of 6 x 4.8 m2 result in the largest high-precision scintillating fiber tracker (sci-fibers 250µm readout by SiPM array)

C. Joram, PH Detector Seminar, 23/05/2014

Vertex and Tracking Systems: State-of-the-Art

 Basic applications are optimized for two different realms of interest : electron and hadron colliders → different optimizations/requirements (pp: radiation hardness, speed; e+e-: granularity, material budget)

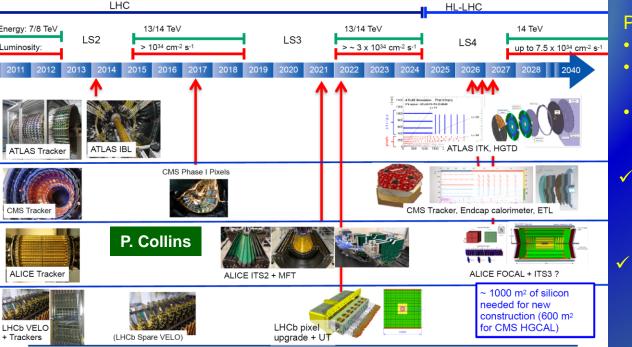

Design problems include: granularity vs the power (particularly for precision timing) and the inactive material to service power and data readout etc. for both accelerator types. Radiation hardness and a strong emphasis on data reduction / feature extraction for the on-detector electronics are particular issues for hadron colliders.

Hadron Colliders:

- ✓ Hybrid pixel detectors (planar & 3D)
- HV/HR-CMOS for outer pixel layers for HL-LHC upgrades;
- ✓ LGADs for ps-timing

Lepton Colliders:

- ✓ CMOS (STAR HFT, ALICE ITS)
- ✓ DEPFET (Belle II)
- ✓ Chronopix
- ✓ Sol
- ✓ FPCCD
- ✓ 3D-IC (Global Foundries, LAPIX, TJas,...industries)



Silicon @ LHC: State-ofthe-Art & Upgrades

Lots of common developments for ATLAS, CMS Pixel Upgrades @ HL-LHC (2026):

- Pixel chips based on common 65 nm CMOS RD53 development
- ✓ Planar n-in-p sensors → cost-effective single sided processing
- ✓ 3D sensors for innermost layers;
- ✓ Option of MAPS for outer pixel layer (ATLAS)
- ✓ CO2 cooling, Serial powering , LpGBT

Exp. / Timescale	Application Domain	Tech.	Detector size / Module size / Channel count	Radiation Environment	Special Req. / Remarks
ATLAS ITK Upgrade CERN LS3	Hadron Collider (Vertex / Tracking)	Si hybrid pixels (n-in-p), 3D innermost, Si-Strips	Total area: pixel – 12.7 m ² ; strips - 165 m ² Single unit: pixel-50x50 (25x100) μm ² strip len./pitch: ~24 – 80 mm/ ~70 μm Channels count : pixels – 5 G; strips – 60 M	Fluences up to 2 x 10 ¹⁶ n _{eq} /cm ²	Option for outermost pixel layer: MAPS RD53 ASIC 65 nm CMOS
CMS Tracker Upgrade CERN LS3	Hadron Collider (Vertex / Tracking)	Si hybrid pixels (n-in-p), 3D innermost, Si-Strips	Total area: pixel - 4.9 m²; strips - 200 m² Single unit: pixel-25x100 (50x50) μm² strip len./pitch: 50-24-1.5 mm /~100 μm Channels count: pixels - 3 G; strips - 175 M	Fluences up to 2.3 x $10^{16} n_{eq}/cm^2$	Special p ₇ -modules in outer strip layers RD53 ASIC 65 nm CMOS
ALICE ITS Upgrade CERN LS2	Heavy lon Physics (Tracking)	CMOS MAPS, 7 barrel layers	Total area: 10 m ² ; Single unit: pixel size 30x30 μm ² Channels count : 12.5 G	Fluences up to 1.7 x 10 ¹³ n _{eq} /cm ²	0.3% X ₀ per layer (inner barrel) ASIC: 180 nm TowerJazz
LHCb VELO Upgrade CERN LS2	Hadron Collider (B Physics)	Si hybrid pixels (n-in-p)	Total area: 0.12 m^2 ; Single unit: pixel size $55x55 \mu\text{m}^2$ Channels count : 41 M	Fluences up to 8 x 10 ¹⁵ n _{eq} /cm ²	130 nm CMOS, 40 MHz VELOPIX readout, rates up to 20 Gb/s
LHCb Upstream Tracker Upg. CERN LS2	Hadron Collider (B Physics)	Si strips (n-in-p & p-in-n)	Total area: 9 m ² ; Single unit: strip length/pitch: 50 -100 mm / 100 – 200 μm ² Channels count : ~ 500k	Fluences up to 5 x 10 ¹⁴ n _{eq} /cm ²	
BELLE II PXD / SVD	e+e- Collider (B Physics)	DEPFET / Si-strips (p-in-n)	Total area: 0;03 m ² / 1.2 m ² ; PXD unit: pixel size ~50x50 μm^2 SVD unit: strip- 120 mm / 50–240 μm^2 Channels count : 7.7 M / 245 k	Fluences up to 10 ¹³ n _{eq} /cm ²	0.15 X ₀ per layer

Pixel Systems will enlarge dramatically:

- Surface: ATLAS by factor of ~15
- Channel count : ALICE will reach
 12.5 billion pixels with CMOS MAPS
- Cell size: LHCb by ~1000 (strips → pixels)
- ✓ The Si-strip sensors will consist of (n-in-p) and replace (p-in-n) → radiation hardness consideration,
- 3D sensors develop. (FBK, CNM) has been focused on ATLAS-IBL pixels plus several joint MPW production runs with CMS / LHCb.

ATLAS, CMS, LHCb Trackers for HL-LHC

CMS Phase II Tracker: 200 /4.7 m2 strips / pixels ATLAS ITK: 165 / 12.7 m² strips / pixels

Outer Tracker (2S Module):

7.6

Non-irradiated

2.6

7.0

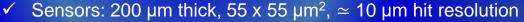
Vite = 250V, Voru = 106 DAC units

Visite = 600V, Vinte = 110 DAC units

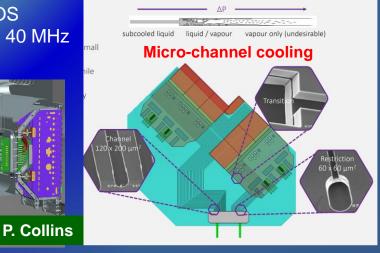
Emulated p, (GeV)

Irradiated

Angle (deg)


K. Klein

6.5


LHCb hybrid silicon pixel modules for Phase I upgrade (Run3/4) :

VELO mounted within a secondary vacuum in the primary LHC vacuum

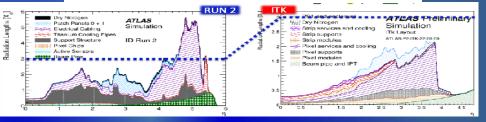


- 120 x 120 µm² micro cooling-channel etched in sensor substrate
- VeloPix ASIC in 130 nm CMOS
- Triggerless binary readout @ 40 MHz
- >20 Gb/s/ASIC 40M pixels \checkmark



More than ASICs and Sensors, we have to take care of all aspects –

Mechanics and Cooling, Powering Schemes, Optical Links, Integration ...


Current link implementation based on vertical cavity surface emitting lasers (VCSEL)
 Higher bandwidth requirements could be addressed by silicon photonics and Wavelength Division Multiplexing (WDM)

Keeping the radiation budget under control needs efforts in all areas:

- Advanced serial powering schemes
- Ultra-light structural materials and integration
- Heat management (CO₂ cooling) integrated in the detector design

Significant budget reduction for ATLAS ITK:

DC-DC powering widely accepted in HEP

Experiment	Sub-detector	What	How	Where
CMS	Outer Tracker	Strip modules, LpGBT, VTRx+	DC-DC	Front-end
	Phase-1 pixel	Pixel modules	DC-DC	Patch panel
	Phase-2 pixel	LpGBT, VTRx+	DC-DC	Patch panel
	i nase-z pixel	Pixel modules	Serial	
	Endcap calorimeter	Silicon modules, LpGBT, VTRx+	DC-DC	Patch panel or front-end
	Barrel calorimeter	Crystal ADC	DC-DC	Front-end
	Muon system (GEM)	Chambers	DC-DC	Front-end
	Timing detector	Readout, LpGBt, VTRx+	DC-DC	Front-end
ATLAS	Strips	Strip modules, LpGBT, VTRx	DC-DC	Front-end
	Phase-2 pixel	LpGBT, VTRx+	DC-DC	Patch panel
	i nase-z pixel	Pixel modules	Serial	
	Tile calorimeter	Electronics	DC-DC	Patch panel
	Liquid argon calorimeter	Electronics	DC-DC	Front-end
	Muon micromegas	GBTx, VTRx	DC-DC	Front-end
LHCb	Velo	Pixel modules, GBTx	DC-DC	Patch panel
	Fiber tracker	Fiber modules, GBTx, FPGA	DC-DC	Front-end
ALICE	Pixels	Pixel modules	DC-DC	Front-end
Belle 2	SVD	Silicon modules	DC-DC	A. Mussgiller

Monolithic Sensors (MAPS): State-of-the-Art

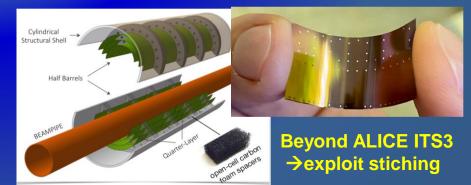
CMOS MAPS for charged particle tracking was initiated for ILC in 1998

			MIMOSIS	- PSIRA proposal
	STAR-PXL	ALICE-ITS	CBM-MVD	ILD-VXD
Data taking	2014-2016	>2021-2022	>2021	>2030
Technology	AMS-opto 0.35 µm	0.18 μm	0.18 μm	0.18 μ m (conservative) < 0.18 μ m ?
	4M	HR, V _{bias} ~-6V Deep P-well	HR, Deep P-well	?
Architecture	Rolling shutter + sparsification + binary output	Asynchronous r.o. In pixel discri.	Asynchronous r.o. In pixel discri.	Asynchronous r.o. (conservative)
Pitch (µm ²) / Sp. Res.	20.7 x 20.7 / 3.7	27 x 29 / 5	22 x 33 / <5	~ 22 / ~ 4
Time resolution (μ s)	~185	5-10	5	1-4
Data Flow	Besson	~10 ⁶ part/cm ² /s Peak data rate ~ 0.9 Gbits/s	peak hit rate @ 7 x 10 ⁵ /mm ² /s >2 Gbits/s output (20 inside chip)	~375 Gbits/s (instantaneous) ~1166Mbits / s (average)
Radiation	O(50 kRad)/year	2x10 ¹² n _{eq} /cm ² 300 kRad	3x10 ¹³ n _{eq} /cm ² /yr & 3 MRad/yr	O(100 kRad)/year & O(1x10 ¹¹ n _{eq} (1MeV)) /yr
Power (mW/cm ²)	< 150 mW/cm ²	< 35 mW/cm ²	< 200 mW/cm ²	~ 50-100 mW/cm ² + Power Pulsing
Surface	2 layers, 400 sensors, 360x10 ⁶ pixels 0.15 m ²	7 layers, 25x10 ³ sensors > 10 m ²	4 stations Fixed target	3 double layers 10 ³ sensors (4cm ²) 10 ⁹ pixels ~0.33 m ²
Mat. Budget	\sim 0.39 % $\rm X_0$ (1st layer)	~ 0.3% X ₀ / layer		~ 0.15-0.2 % X ₀ / layer
Remarks	1 st CPS in colliding exp.	(with CERN)	Vacuum operation Elastic buffer	Evolving requirements

MIMOSA @ EUDET BT Telescope \rightarrow 3 um track resolution achieved

STAR Heavy Flavour Tracker (2014):

Ladder with 10 MAPS sensors (~2x2 cm each) mounted on carbon fiber sectors: 356M pixels on ~0.16 m²(Si); 50 um thin sensors; 20 to 90 kRad/year


CMOS MAPS for ALICE ITS2 (Run 3):

TowerJazz 180 nm technology; on-chip digital readout architecture \rightarrow rad-hard to >TID 2.7 Mrad 7 layers of MAPS \simeq 10 m² with 12.5 Gpix High resistivity eps layer \rightarrow rad hard to TID 2.7 Mrad;

CMOS MAPS for ALICE ITS3 (Run 4): (LOI: CERN-LHCC-2019-018)

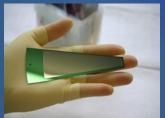
Three fully cylindrical, wafer-sized layers based on curved ultra-thin sensors (20-40 µm), air flow cooling Almost massless (IB), < 0.02-0.04% per layer

Vertex Technologies for ILC : State-of-the-Art

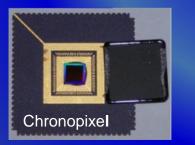
Exploiting the ILC low duty cycle 0(10⁻³): triggerless readout, power-pulsing

Readout strategies:

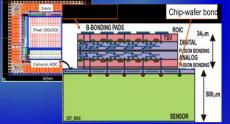
- \rightarrow continuous during the train with power cycling \rightarrow mechanic. stress from Lorentz forces in B-field
- \rightarrow delayed after the train \rightarrow either ~5µm pitch for occupancy or in-pixel time-stamping


Physics driven requirements	Running constraints	Sensor specifications	,
3.U.		> Small pixel $\sim 16 \mu m$	
Material budget <u>0.15% X₀/layer</u>		> Thinning to $50 \mu m$	
L	Air cooling		
r of Inner most layer <u>16mm</u>	beam-related background		
	> radiation damage	radiation tolerance	
		≤3.4 Mrad/ year	
		$\leq 6.2 \times 10^{12} n_{eq} / (cm^2 yea)$	r)

Sensor's contribution to the total material budget is 15-30% (majority from cables + cooling +support)


CMOS (CPS): continuous readout, stiching

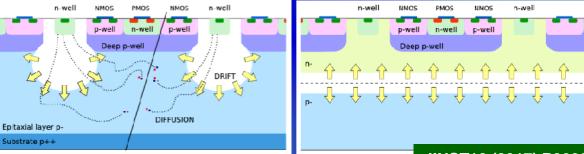
75 / 50 um thick (Belle II)


Chronopixel: delayed readout, monolithic CMOS, 50 um thick

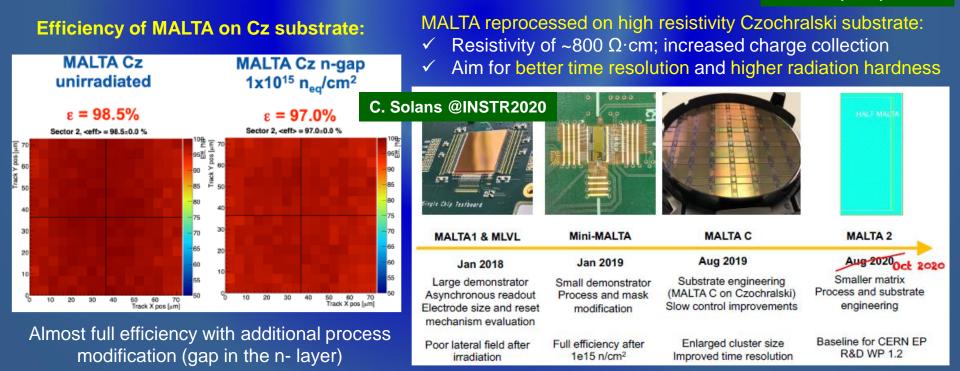
DEPFET: continuous readout, Fine pixel CCD: delayed readout, 5 um pitch, 50 um thickness

SOI: delayed / continuous readout; suited for 3D integration

3D Integration (in-pixel data processing, on-hold): MWR in 2010, VIP(ILC)


- Ultra-light self-supported \checkmark layers with stitching **CMOS sensors** (available in Tjas 180 nm process: ALPIDE, MIMOSIS)
- \checkmark Sol based 3D integration is coming (Sol for ILC rely on high-density in-pixel circuitry, with double-tier option recently addressed)

Towards Radiation-Hard MAPS


- Advances in commercial CMOS technologies combined with dedicated designs allowed significant progress from STAR to ALICE to ATLAS in areas like radiation hardness, response time, and hit rates
- Strong interest for R&D to fully exploit potential of MAPS in future trackers
- > High granularity, low material budget and power, large area at reduced cost (compared to hybrid pixels)

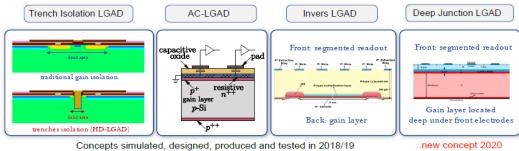
From ALPIDE to MALTA/Monopix: modified Tower Jazz 180 nm process

- Malta designed as a radiation hard high speed monolithic CMOS sensor for ATLAS
- Uniform n-implant blanket in epitaxial layer gives lateral depletion right through to small input capacitance electrode

JINST12 (2017) P06008

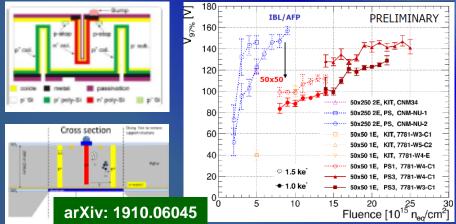
RD50 Collaboration: Radiation Hard Semiconductor Devices

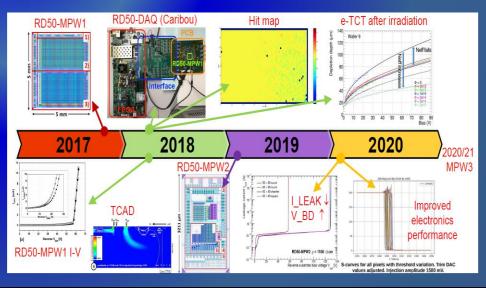
Sensors for 4D Tracking: Development of Radiation Hard Timing Detectors (LGAD)


Incredible success story \rightarrow pioneered by RD50 and CNM since 2010 (> 50 production runs)

Areas of LGAD developments within RD50:

- Timing performance
 (~ 25 ps for 50 um sensors)
- Fill factor and signal homogeneity
- Radiation Hardness (~2x10¹⁵ n_{ed}/cm²)
- Performance Parameterisation Model


- Two opposing requirements:
- · Good timing reconstruction needs homogeneous signal (i.e. no dead areas and homogeneous weighting field)
- · A pixel-border termination is necessary to host all structures controlling the electric field
- Several new approaches to optimize/mitigate followed


One of the biggest riddles remains the understanding of the radiation damage microscopic mechanisms that lead to the degradation of the gain layer in the LGAD devices.

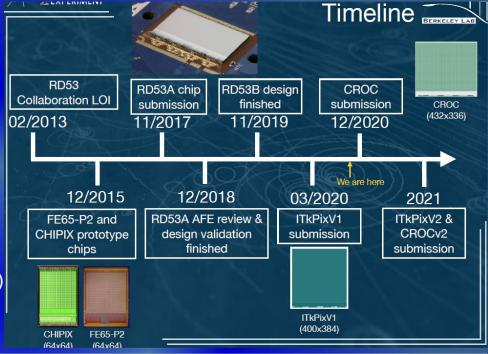
M. Moll

Optimization of 3D sensors for HL-LHC Upgrades: Good efficiency even up to ~ $3x10^{16} n_{eq}/cm^2$ & time resolution: 30 ps at V_{bias} > 100V and T = -20C

Development of Radiation-Hard (HV-CMOS) sensors:

RD53 Collaboration: 65 nm ASICs for HL-LHC

Established in 2013 recognizing that HL-LHC requirements are extremely challenging, yet very similar for both experiment \rightarrow joint effort to go


RD53 Collaboration in charge of:

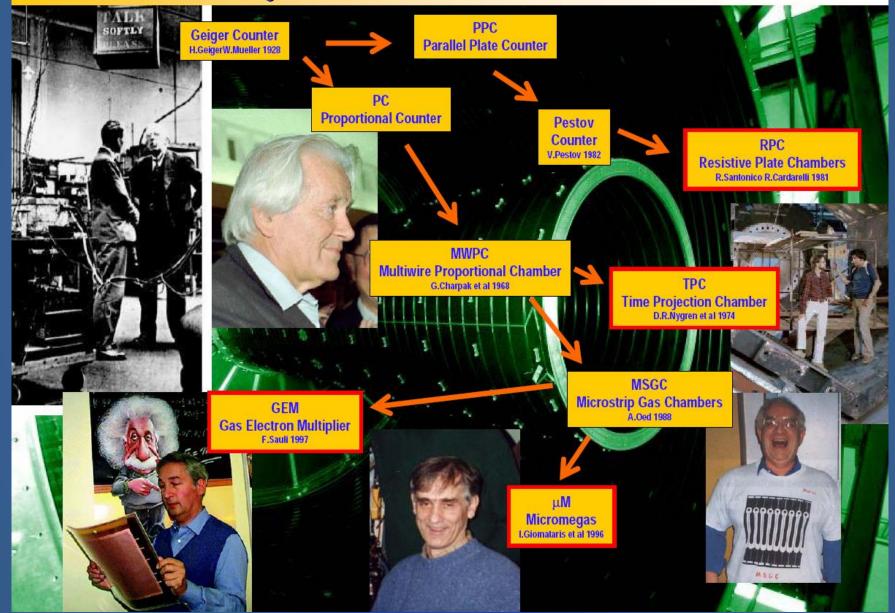
- Detailed understanding of radiation effects in 65nm technology
- Design of readout chip for the use in the ATLAS/CMS HL-LHC Pixel detectors:
 - → Analog front-end
 - → Analog IPs (Bias DACs, monitoring ADC, CDR /PLL, high-speed serialiser, SLDO, References)
 - → Digital logic (hit buffering, data compression, ...)
- ✓ Initial end-goal was half-size RD53 demonstrator

 RD53 extended in 2018 to design pre-production and production version of readout chips

ITkPixV1 : June 2020

ATLAS/CMS main differences in requirements

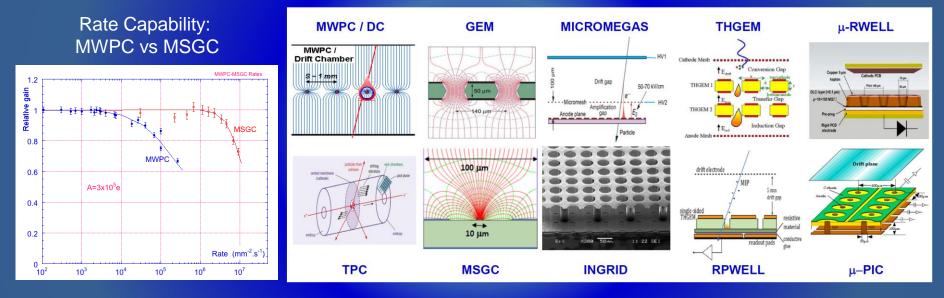
	RD53B-ATLAS (ITkPixV1)	RD53B-CMS (CROCv1)
Pixel array size	20x19.2 mm ² (400x384)	21.6x16.8 mm ² (432 x 336)
Analog Front-End	Differential FE	Linear FE
Trigger	1 level: 1MHz, 10us 2 level: L0:4MHz, L1:600kHz, 25 us	1 level: 750 kHz, 12 us
Distance to beam -> Hit rate	r = ~3.4 cm	r = 3cm J. Christiansen


All main digital functionalities working as expected, but very large digital current on a rail \rightarrow patch in ITkPixV1.1

Long time to develop radiation tolerance in 65 nm O(Grad) and large cost
 technology is not straightforward;

HEP Community now looks into 28nm for the future and dedicated 130/65nm technologies for monolithic pixels;

Advanced Concepts in Gaseous Detectors


Gas Detector History

Gaseous Detectors: From Wire/Drift Chamber \rightarrow Time Projection Chamber (TPC) \rightarrow Micro-Pattern Gas Detectors

Primary choice for large-area coverage with low material-budget (+ dE/dx measurement)

1990's: Industrial advances in photolithography has favoured the invention of novel microstructured gas amplification devices (MSGC, GEM, Micromegas, ...)

HL-LHC Upgrades: Tracking (ALICE TPC/MPGD); Muon Systems: RPC, CSC, MDT, TGC, GEM, Micromegas;

Future Hadron Colliders: FCC-hh Muon System (MPGD - OK, rates are comparable with HL-LHC) Future Lepton Colliders: Tracking (FCC-ee / CepC - Drift Chambers; ILC / CePC - TPC with MPGD readout) Calorimetry (ILC, CepC – RPC or MPGD), Muon Systems (OK)

Future Election-Ion Collider: Tracking (GEM, µWELL; TPC/MPGD), RICH (THGEM), TRD (GEM)

The Evolution of Drift Chambers at e+e- Colliders

		pa	ist			
SPEAR	MARK2	Drift Chamber		MARK2	Drift Chamber	VEP
SPEAR	MARK3	Drift Chamber		PEP-4	TPC	VE
DORIS	PLUTO	MWPC	PEP	MAC	Drift Chamber	BE
DONIO	ARGUS	Drift Chamber		HRS	Drift Chamber	S.K
CESR	CLEO1,2,3	Drift Chamber		DELCO	MWPC	3.6
	CMD-2	Drift Chamber	ВЕРС	BES1,2	Drift Chamber	
VEPP2/4M	IM KEDR Drift Chamber		ALEPH	ТРС		
	NSD	Drift Chamber	LEP			
	CELLO	MWPC + Drift Ch.		DELPHI	TPC	
				L3	Si + TEC	
	JADE	Drift Chamber		OPAL	Drift Chamber	CI
PETRA	PLUTO	MWPC		MARK2	Drift Chamber	
RARIES IN	MARK-J	TEC + Drift Ch.	SLC			FC
	TASSO	MWPC + Drift Ch.		SLD	Drift Chamber	
			DAPHNE	KLOE	Drift Chamber	CE
	AMY	Drift Chamber	PEP2	BaBar	Drift Chamber	
TRISTAN	VENUS	Drift Chamber				SC
Red to the	TOPAZ	TPC	KEKB	Belle	Drift Chamber	SI

present

VEPP2000	CMD-3	Drift Chamber
VEPP4	KEDR	Drift Chamber
BEPC2	BES3	Drift Chamber
S.KEKB	Belle2	Drift Chamber

future

ILC	ILD	TPC	
	SiD	Si	
CLIC	CLIC	Si	
FCC-ee	CLD	C:	
		Drift Chamber	
0500	Baseline	TPC Si	
CEPC	IDEA	Drift Chamber	\triangleright
SCTF	BINP	Drift Chamber	
STCF	HIEPA	Drift Chamber	

Lesson #1 - from "open" to "closed" cell

: closec Lesson #3 – small cells and He gas

the tra . He radiation length 50× longer than Ar · square · slower drift velocity implies smaller Lorenz angle for a given B-field small • He has a smaller cross section for low energy photons than Ar small size cells limit the electron diffusion contribution to spatial resolution ... but small size cells provide high granularity (improving occupancy) and allow for a larger number of hits per track, improving spatial resolution portior envelc ... but small portions of active volume not sampled between the cylindrical envelope of use of axial wires and the hyperboloid envelope of stereo wires contrit . accumulation of trapped electrons and ions in a region of very low field • some • longitudinal gain variation at boundaries between axial and stereo layers

- spatial resolution dominated by ionization statistic
- adding more quencher to compensate, mitigates

Lesson #4 – full stereo configuration

 no gar electro

- Lesson <u>#5 summary</u>
- consta
- larger maxim
 two sti
 two sti
- open t
 the gas mixture is based on helium with a small amount of quencher (90% He / 10% iC₄H₁₀, KLOE gas) which, besides low multiple scattering contribution, allows for the exploitation of the cluster timing technique, for improved spatial resolution, and of the cluster
- consta counting technique, for excellent particle identification
 - suggested wire material is Ag coated Al, but lighter materials are
- F. Grancagnolo @ INSTR2020 (like metal coated carbon monofilaments)
- An ultra-light drift chamber (IDEA concept) targetted for FCC-ee and CePC was inspired by DAFNE KLOE Wire Chamber and by more recent version of it for MEG2 experiment

Some TPC Examples in Particle / Ion Physics

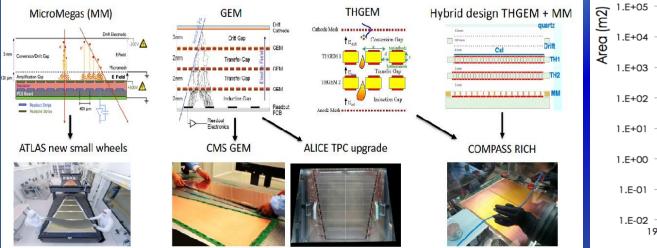
- Invented by David Nygren (Berkeley) in 1974
- Proposed as a central tracking device for the PEP-4 detector
 @ SLAC 1976
- More (and even larger) were built, based on MPWC readout
- New generation of TPCs use MPGD-based readout: e.g. ALICE Upgrade, T2K, ILC, CepC

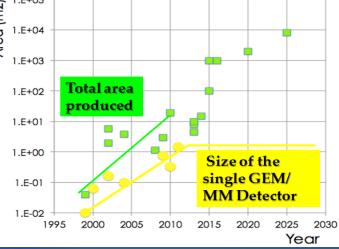
PEP4 ((SLAC)
--------	--------

					· · · · · · · · · · · · · · · · · · ·		1
PARAMETER /	PEP4	TRIUMF	TOPAZ	ALEPH	DELPHI	STAR	ALICE 1)
EXPERIMENT							
1. OPERATION	1982 / 1984	1982 / 1983	1987	1989	1989	2000	2009
INNER / OUTER RADIUS	0.2 / 1.0	~0.15 / 0.50	0.38 / 1.1	0.35 / 1.8	0.35 / 1.4	0.5 / 2.0	0.85 / 2.5
[m]							
MAX. DRIFTLENGTH (L/2)	1	0.34	1.1	2.2	1.34	2.1	2.5
MAGNETIC FIELD [T] GAS :	0.4/1.325	0.9 Ar/CH4	1	1.5	1.23	0.25/0.5	0.5
GAS : Mixture	Ar / CH4 80 / 20	Ar/CH4 80/20	Ar / CH4 90 / 10	Ar / CH4 91 / 9	Ar / CH4 80 / 20	Ar / CH4 90 / 10	Ne /CO2/ N2 90/ 10/ 5
	8.5				80720		
Pressure [atm]		1	3.5	1	1	1	1
DRIFT FIELD [KV / cm /	0.088	0.25	0.1	0.11	0.15	0.14	0.4
atm]	-	-		-	6.60		
ELECTRON DRIFT	5	7	5.3	5	6.69	5.45	2.7
VELOCITY [cm/µsec]				-	5		
ωτ (see 2.2.1.3)	0.2/0.7	2	1.5	7	-	1.15/2.3	< 1
PADS: Size w•L [mm•mm]	7.5x7.5	(5.3-6.4)x19	(9-11)x12	6.2x30	~7x7	2.85x11.5	4x7.5
						6.2x19.5	6x10/15
Max. no. 3-D points	15 - straight	12	10 - linear	9+12 - circular	16 - circular	13+32 - straight	
dE/dx: Max. no.	183	12	175	148+196	192	13+32	63+64+32
samples/track							
Sample size [mm atm]; w	4•8.5; wires	6.35; wires	4x3.5; wires	4; wires	4; wires	11.5 +	7.5+10+15; pads
orp						19.5;pads	
GAS AMPLIFICATION	1000	50 000		3000-5000	5000	3000/1100	20 000
GAP a-p; a-c; c-gate ²⁾	4; 4; 8	6	4; 4; 8	4; 4; 6	4; 4; 6	2; 2; 6 / 4; 4 ; 6	
PITCH a-a; cathode; gate	4; 1; 1		4; 1; 1	4; 1; 2	4; 1; 1	4; 1; 1/4; 1; 1	2.5; 2.5; 1.5
PULSE SAMPLING [MHz/	10/455, CCD	only 1 digitiz.,	10/455, CCD	11/512, FADC	14/ 300, FADC	9.6/400	5-10/500-1000, ADC
no. samples]	1001	ADC					
GATING ³⁾	≥1984 o.on tr.	≥1983 o.on tr.	o. on tr.	synchr. cl.wo.tr		o.on tr.	o.on tr.
PADS, total number	15 000	7800	8200	41 000	20 000	137 000	560 000
							l
PERFORMANCE							
$\Delta x_T [\mu m]$ -best / typ.	130-200	200/	185/230	170/200-450	180/190-280	300-600	spec:800-1100
$\Delta x_L [\mu m]$ -best / typ.	160-260	3000	335/900	500-1700	900	500-1200	spec:1100-1250
2-TRACK SEPARATION	20		25	15	15	8 - 13 / 30	
[mm], T / L							
∂p/p ² [GeV/c] ⁻¹ : TPC alone; high p	0.0065		0.015	0.0012	0.005	0.006	spec:0.005
dE/dx [%] SINGLE TRACKS/	2.7/4.0		4.4 /	4.4 /	5.7 / 7.4	7.4/7.6	spec:4.9 / 6.8
IN JETS							
COMMENTS		a in single PCs	chevron pads	circular pad rows	circular pad rows	No field wires	No field wires
		strong ExB effe	ct			> 3000 tracks	≤ 20 000 tracks
		-		•	-		-

1) Expected performance

2) a = anode, p = pads, c = cathode grid

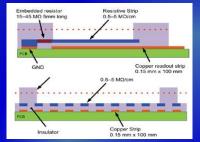

3) o. on tr.: gate opens on trigger; cl.wo.tr. : opens before collision and closes without trigger; static : closed for ions only (see text).



MPGD Technologies @ CERN Experiments

- The integration of MPGDs in large experiments was not rapid, despite of the first large-scale application in COMPASS at SPS in the 2000's
- Scaling up MPGD detectors, while preserving the typical properties of small prototypes, allowed their use in the LHC upgrades
 - → Many emerged from the R&D studies within the CERN-RD51 Collaboration
- Successful accomplishment of LHC upgrades will help to disseminate MPGD technologies even wider

Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
COMPASS TRACKING > 2002	Fixed Target Experiment (Tracking)	3-GEM Micromegas w/ GEM preampl.	Total area: 2.6 m ² Single unit detect: $0.31x0.31 m^2$ Total area: ~ 2 m ² Single unit detect: $0.4x0.4 m^2$	Max.rate: ~100kHz/mm ² Spatial res.: ~70-100μm (strip), ~120μm (pixel) Time res.: ~ 8 ns Rad. Hard.: 2500 mC/cm ²	Required beam tracking (pixelized central / beam area)
TOTEM TRACKING: > 2009	Hadron Collider / Forward Physics (5.3≤ η ≤ 6.5)	3-GEM (semicircular shape)	Total area: ~ 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp, pA and AA collisions.
LHCb MUON DETECTOR > 2010	Hadron Collider / B-physics (triggering)	3-GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	Redundant triggering
COMPASS RICH UPGRADE > 2016	Fixed Target Experiment (RICH - detection of single VUV photons)	Hybrid (THGEM + Csl and MM)	Total area: ~ 1.4 m ² Single unit detect: ~ 0.6 x 0.6 m ²	Max.rate:100 Hz/cm ² Spatial res.: <~ 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
ATLAS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	Resistive Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) ~ 2-3 m ²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5C/cm ²	Redundant tracking and triggering; Challenging constr. in mechanical precision
CMS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	Redundant tracking and triggering
ALICE TPC UPGRADE CERN LS2	Heavy-Ion Physics (Tracking + dE/dx)	4-GEM / TPC	Total area: ~ 32 m² Single unit detect: up to 0.3m²	Max.rate:100 kHz/cm ² Spatial res.: ~300μm Time res.: ~ 100 ns dE/dx: 11 % Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution



Large-Area MM / GEM Detectors for ATLAS / CMS Upgrade

Resistive MM for ATLAS NSW Muon Upgrade:

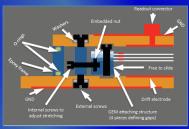
Standard Bulk MM suffers from limited efficiency at high rates due to discharges induced dead time Solution: Resistive Micromegas technology

- Add a layer of resistive strips above the readout strips
- Spark neutralization/suppression (sparks still occur, but become inoffensive)

Still, main issue encountered: HV unstability

==> found to be correlated to low resistance of resistive strip anode ==> applied solutions + passivation in order to deactivate the region where R<0.8 M Ω

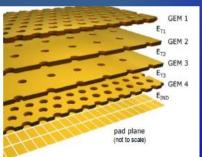
Production, sector integration ongoing (~1200m² resistive MM):


Challenging Timeline: > NSW-A completion: Apr/May 2021

> NSW-C completion: Mid Sep 2021 w/ very little contingency

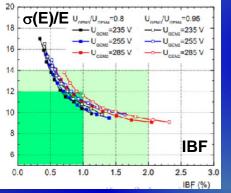
GEMs for CMS Muon System Upgrade:

- Single-mask GEM technology (instead of double-mask)
 - → Reduces cost /allows production of large-area GEM



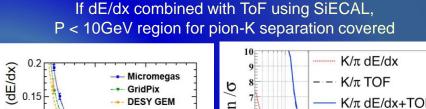
September 2020: 144 GEM chambers installed

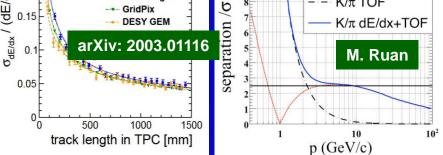
TPC with MPGD Readout for ALICE Upgrade and ILC


ALICE TPC → replace MWPC with 4-GEM staggered holes (to limit space-charge effects)

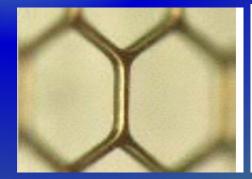
TPC reinstallation in the ALICE cavern (August 2020)

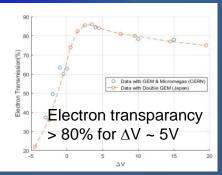
- Upgrade for continuous TPC readout @ 50 kHz Pb-Pb collisions


Phys. requirements:
 IBF < 1%,
 Energy res. σ(E)E < 12%



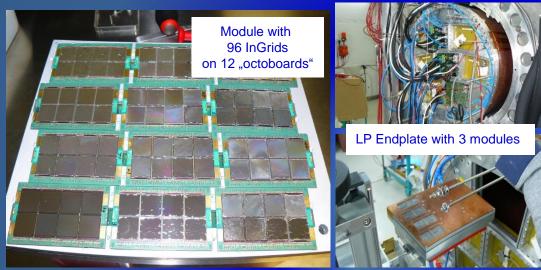
ILC – TPC with MPGD-based Readout

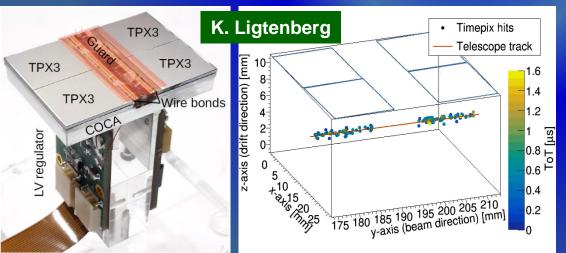

Target requirement of a spatial resolution of 100 um in transverse plane and dE/dx resolution < 5% have been reached with all technologies (GEM, MM and GridPix)



ILC: gating scheme, based on large-aperture GEM

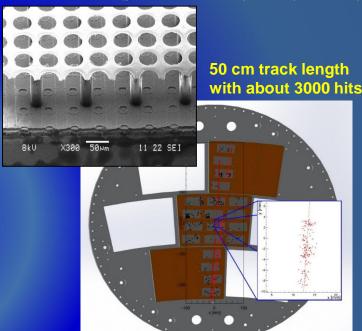
- → Machine-induced background and ions from gas amplific.
- → Exploit ILC bunch structure (gate opens 50 us before the first bunch and closes 50 us after the last bunch)




Pixel TPC / GridPix Readout for ILC and CePC

Feasibility is shown @ DESY test-beam with 160 GridPix

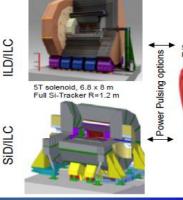
3 modules for Large TPC Prototype : 1 x 96 and 2 x 24 GridPixs 320 cm² active area, 10,5 mio. channels, new SRS Readout system



Quad board (Timepix3) \rightarrow development of 8 quad detector (2020)

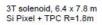
- GridPix: INTEGRATE MICROMEGAS amplification grid directly on top of CMOS ("Timepix") ASIC
- 3D Gaseous Pixel Detector \rightarrow

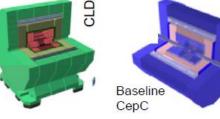
2D (pixel dimensions) x 1D (drift time)

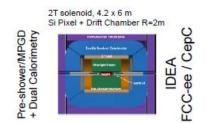

Physics properties of pixel TPC:

- Improved dE/dx by cluster counting
- Improved meas.of low angle tracks
- Excellent double track seperation
- Much reduced hodoscope effect
- Lower occupancy @ high rates
- Fully digital read out (TOT)

Vertex & Tracking Challenges @ Future Lepton Colliders


Beam parameters	ILC		CLIC		FCC-ee			CepC		
Energy(TeV)	0.25	0.5	0.38	1.5	3	0.091	0.24	0.36	0.091	0.24
Luminosity (x 1034 cm-2 s-1) per IP	1.35	1.8	1.5	3.7	5.9	230	8.5	1.7	32	1.5
Bunch train frequency (Hz)	5	;	50							
Bunch separation (ns)	554 1312		0.5		20	994	3000	25	680	
Number of bunches / train - beam			312 312		16640	393	48	12000	242	


3 5(4) T solenoid 8 8 x 8 m Si Pixel + TPC R=1.8(1.5) m



2T solenoid, 7.4 x 7.4 m Full Si-Tracker R = 2m

All-Silicon vs Silicon + Gaseous Tracking: some open technology questions remains to be addressed:

All-Silicon tracker (ILC / SiD, CLICdp, FCC / CLD, CEPC / FST concepts)

- ✓ ILC: number of layers; thin detectors, time-stamping capability, minimize material budget (2D/ stitching); power savings / engineering;
- ✓ Circular colliders: continuous operation → power-pulsing is not possible (aim less power consumption & active (increased) cooling) \rightarrow increased material budget;

Silicon + TPC (ILC /ILD, CEPC baseline concepts)

- ILC: use of GEM-grid gating; dE/dx performance looks OK; CC: can TPC stand for (extremely) high readout rate; ion feedback – can it cope @ Z-pole;
- Calibration and detector alignment:
- Low power consumption FEE ASIC;
- Mechanical (field cage rigidity) and distortion (field cage quality, module flatness) challenges;

Silicon + Wire/Drift Chamber (FCC / IDEA, CEPC / IDEA)

- Can it cope with high rates @ Z-pole;
- Half as many hits as in TPC \rightarrow more Si-layers \rightarrow momentum resolution sufficient ?;
- Aging effects: hydrocarbon-based mixtures are not trustable for long-term operation in DC \rightarrow search for different gas mixtures;
- Very long wires (~4m), study/optimize wires material;
- dE/dx by cluster counting (depends on N_{bite} in DC);

MPGD Concepts for Energy / Intensity / Cosmic Frontiers

2017 MPGD Conference Summary: https://indico.cern.ch/event/581417/timetable/#20170525.detailed

Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
ATLAS Muon System Upgrade: Start: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m² Single unit detect: (2.2x1.4m²) ~ 2-3 m²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: ~10 ns Rad. Hard.: ~0.5C/cm ²	- Redundant trackin and triggering; Challenging constr. mechanical precision
ATLAS Muon Tagger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	µ-PIC	Total area: ~ 2m ²	Max.rate:100kHz/cm² Spatial res.: < 100µm	
CMS Muon System Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	- Redundant trackin and triggering
CMS Calorimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: ~ 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: ~ mm	Not main option; could be used with HGCAL (BE part)
ALICE Time Projection Chamber: Start: > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM w/ TPC	Total area: ~ 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~100 ns dE/dx: 12 % (Fe55) Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution
TOTEM: Run: 2009-now	High Energy/ Forward Physics (5.3≤ eta ≤ 6.5)	GEM (semicircular shape)	Total area: ~ 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp, pA and AA collisions.
LHCb Muon System Run: 2010 - now	High Energy / B-flavor physics (muon triggering)	GEM	Total area: ~ 0.6 m² Single unit detect: 20-24 cm²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM, THGEM Micromegas, u-PIC, InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate:100 kHz/cm ² Spatial res.: <100µm Time res.: ~1 ns	Maintenance free fo decades

ESS LOKI- SANS:

Small Angle Neutron

Scattering (Low Q)

Start: > 2020(for 10 v.)

SPIDER: ITER NBI

PROTOTYPE

tart: ~ 2017(for 10 v.

n_TOF beam

monitoring/

beam profiler

Run: 2008-nov

Neutron scattering:

Small Angle

CNESM diagnostic

Characterization of

for ITER plasma heating

Monitors

using neutron emiss Neutron Beam

al deuterium bean

GEM w/

borated cathode

GEMs w/

Al-converter

angular capability

MicroMegas

ubulk and GEM w/

converter

irectionalit

Total area: ~1 m

Single unit detec 20x35 cm²

Total area: ~ 100cm

Time res.: ~ 5 ns

Rad. Hard.: no

33x40 cm

trapezoid

Single unit detect

MPGD Technologies for the International Linear Collider MPGD Tracking Concepts for Hadron / Nuclear Physics Special Requirements Remarks MPGD Technology Total detecto size / Single xperimen fimescale Applicati Domain Operation Characteristics Experiment Application Domain MPGD opecial edundant tracking Performance allenging constr. in echanical precision: Perfor module size Si + TPC Momentum COMPASS @ CERN GEM Total area: 2.6 m² Max.rate:10^7 Hz Required hearn ILC Time Project High Energy Physics Micromegas Total area: ~ 20 m² Max. rate: <1 kHz Hadron Physics Single unit detect: 0.31x0.31 m² (~100kHz/mm2) tracking (pixelized central / beam area) GEM (p) Spatial res.: <150µm dp/p < 9*10-5 1/GeV Single unit detect (Tracking) Spatial res.: -70-100 um Run: 2002 - now Time res.: - 15 ns InGrid (pixels) 400 cm² (pads) 130 cm² (pixels) Micromegas w strip), ~120µm (pixel) Start: > 2030 dE/dx: 5 % (Fe55) Total area: ~ 2 m³ Power-pulsing GEM preamp Time res.: ~ 8 ns Rad. Hard.: no Single unit detect: 0.4x0.4 m² dundant tracking Rad. Hard.: 2500 mC/cn LC Hadronic (DHCAL) High Energy Physics Max.rate:1 kHz/cm GFM. Total area: - 4000 m² Jet Energy resolution: 3-4 % KEDR @ BINP Particle Physics GEM Toral area: ~0.1 m² Max, rate:1 MHz/mm THGEM RPWELL, imetry) Spatial res.: ~ 1cm Euro: 2010-000 (Tracking) Spatial res.; ~70µm Single unit detect: Time res.: ~ 300 n Power-pulsing, self-Start > 2030 Micromegas 0.5 - 1 m SBS in Hall A @ ILAB Nuclear Physics GEM Total area: 14 m² Max, rate:400 kHz/cn Rad. Hard.: no triggering read (Tracking) nucleon form factors / struct. Spatial res.: -70µm Single unit detect. 0.6x0.5m² Start: > 2017 Time res.: ~ 15 ns ILD Rad. Hard.: 0.1-1 kGy/y 0 kHz Pb-Pb rate; Particle Flow Calorimetry (ILD/SiD): oncept Nuclear Physics pRad in Hall B @ ILAB GEM Total area: 1.5m² Max, rate:5 kHz/cm2 (Tracking Spatial res.: ~70µm PFA Calorimeter Single unit detect. 1.2x0.6 m2 ow IBF and good Start: 2017 Time res.: ~ 15 ns Rad. Hard.: 10 kGy/y eration in pp, pA Nuclear Sol ID in Hall A@ ILAB GEM Total area: 40m² Max rate/600 kHz/cm Physics Spatial res.: ~100µm Single unit detect. 1.2x0.6 m2 Start: ~ > 2020 (Tracking) Time res - 15 ns Rad. Hard.: 0.8-1 kGy/y. Hadron Physics TPC w/ GEM Total area: 0.26m Max. rate:10° kHz/cm² E42 and E45 @JPARC Gating grid operation ~ 1kHz (Tracking) 0.52m(diameter) x0.5m(drift length) Spatial res.: 0.2-0.4 mm Start: -2020 gating grid ACTAR TPC Nuclear physics TPC w ng rate < 10^4 nuclei Work with various iintenance free for ades Nuclear structure Micromegas 25*25 cm2 and but higher if some beam gas (He mixture iC4H10, D2...) Reaction processes (amp. gap -220 µm) 12.5*50cm2 masks are used. Start: ~2020 for 10 v.

MPGD Tracking for Heavy Ion / Nuclear Physics cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Cymranod					ALTIYOTOO	0000	11000100		earry ren		riyeree	IVIP	GD lechi	noiogie	s for <u>Pho</u>	ton Detection	<u>on</u>
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Requirements/ Remarks	Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks	Experiment / Timescale		MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM		Spatial res:(r phi) = 250um Spat. res.(z) = 350um	- Mat. budget 2% X0 - Operation in 0.5 T	STAR Forward GEM Tracker @ RHIC Run: 2012-present	(tracking)	GEM	Total area: ~ 3 m ² Single unit detect: ~ 0.4 × 0.4 m ²	Spatial res.: 60-100 µm	Low material budget:: < 1% X0 per tracking layer	COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM + CsI and MM)	Total area: ~ 1.4 m² Single unit detect: ~ 0.6 x 0.6 m²	Max.rate:100 Hz/cm ² Spatial res.: <- 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
BESIII Upgrade @ Beijing	Partcile Physics/ e+e- collider	Cylindrical GEM	155, 180, 205 mm	Max. rate: 10 kHz/cm ² Spatial res:(xv) = 130um	 Material ≤ 1.5% of X₀ for all lavers 	Nuclotron BM@N @ NICA/JINR Start: > 2017	Heavy Ions Physics (tracking)	GEM	Single unit detect: ~ 0.9 m ²	Max. rate: ~ 300 MHz Spatial res.: ~ 200µm	Magnetic field 0.5T orthogonal to electric field	PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH – e/h separation)	GEM+CsI detectors	Total area: ~ 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate: low Spatial res.: ~ 5 mm (rø) Single el. eff.: ~ 90 %	Single el. eff. depends from hadron rejection factor
Run: 2018-2022 CLAS12 @ JLAB	(Tracking) Nuclear Physics/ Nucleon structure	Planar (forward) & Cylindrical	Total area:	Spat. res.(z) = 1 mm Max. rate: - 30 MHz Spatial res.: < 200µm	 Operation in 1T Low material budget : 0.4 % X0 	SuperFRS @ FAIR Run: 2018-2022	Heavy Ion Physics (tracking/diagnostics at the In-Fly Super	TPC w/ GEMs	Total area:~ few m ² Single unit detect: Type I : 50 x 9 cm ² Type II: 50 x 16 cm ²	Max. rate:~ 10^7 Hz/spill Spatial res.: < 1 mm	High dynamic range Particle detection from p to Uranium	SPHENIX Run: 2021-2023	Heavy Ions Physics (tracking)	readout	Total area: ~ 3 m²	Spatial res.: ~ 100 um (rø)	Runs with Heavy Ions and comparison to pp operation
Start: > 2017	(tracking)	(barrel) Micromegas		Time res.: ~ 20 ns	- Remote electronics	PANDA @FAIR Start > 2020	Fragment Separator) Nuclear physics p - anti-p (tracking)	Micromegas/ GEMs	Total area: ~ 50 m ² Single unit detect: ~ 1.5 m ²	Max. rate: < 140kHz/cm² Spatial res.: ~ 150µm	Continuous-wave operation: 10 ¹¹ interaction/s	Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Cherenkov	Total area: ~ 3 m²	Spatial res.: ~ 100 um (rø) Luminosity (e-p): 1033	Low material budget
Run: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation		L = 60 cm	Max. trigger rate: kHz Spatial res.: ~200µm Time res.: ~ 10 ns Rad. Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area	CBM @ FAIR: Start: > 2020	Nuclear Physics (Muon System)	GEM	Total area: 9m ² Single unit detect:	Spatial res.: <1 mm Max. rate: 0.4 MHz/cm ² Time res.: - 15ns	Self-triggered electronics			RICH with GEM readout	Total area: ~ 10 m²	Spatial res.: - few mm	High single electron efficiency
MINOS Run: 2014-2016	Nuclear structure				A - Low material		Hadron Physics	TPC w/GEM	0.8x0.5m ² ~0.4m ²	Rad hard.: 10 ¹³ n.eq./cm ² /year			Part of the state of the	Passary a			CONTRACTOR OF STATE
CMD-3 Upgrade	Particle physics (z-chamber, tracking)	Cylindrical GEM		Spatial res.: ~100µm	ounger	Electron-Ion Collider (EIC) Start: > 2025	(tracking, RICH)	readout Large area GEM planar tracking	Total area: ~ 3 m ⁴ Total area: ~ 25 m ²	Spatial res.: ~ 100 um (rø) Luminosity (e-p): 10 ³³ Spatial res.: ~ 50- 100 um	Low material budget		14	/21			Primary ionization Cel
								detectors		Max. rate: ~ MHz/cm²			I	ALICE VHI			ADOUTPADS
Non destructive diagnostic Bology Nuclear Energy Plant Tokonak Desprosities Chip Irrodiction	Xray Low every Totarrek degeset Redesctive was	MP	GD-base	ed <u>Neutron I</u>	Detectors	ľ	MPGD Tec		es for <u>Ne</u>	utrino Physic	<u>cs</u>	MPGD	Technologie	es for <u>X-R</u>	ay Detection	n and y-Ray Pol	arimetry
	Piveleted GEM Microdosimetry Tiesus Equivalent chamber	MPGE	O coupled to n	-converters:		Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks	Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requirements/ Remarks
Hab Entrolly Tare Monte Habitrothergy Tero Bean Monitor	ct measurements with real tissue Rodon Monitor Radiothere	Niet	R / Spallation utron-beam di		7/K	T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: - 9 m² Single unit detect: 0.36x0.34m²0.1m²	Spatial res.: 0.6 mm dE/dx: 7.8% (MIP) Rad. Hard.: no Moment. res.:9% at 1 GeV	The first large TPC using MPGD	KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEM GEMPIX	Total area: 100 cm ² Total area: 10-20 cm ²	Spat. res.: ~ 8x8 mm^2 2 ms frames; 500 frames/sec Spat. res.: ~50x50 µm^2	
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Characteristics /	Special Requirements / Remarks	SHiP @ CERN Start: 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWELL	Total area: ~ 26 m² Single unit detect: 2 x 1 m² ~ 2m²	Max. rate: < low Spatial res.: < 150 μm Rad. Hard.: no	Provide time stamp of the neutrino interaction in brick"	PRAXyS Future Satellite Mission (US-Japan):	Astrophysics (X-ray polarimeter for relativistic	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x	1 ms frames;5 frames;sec Max.rate: ~ 1 lcps Spatial res.: ~ 100 um Time res.: ~ few ns	Reliability for space mission under severe thermal and
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd converter	Total area: ~ 1 m² Single unit detect: 60x60 cm²	Spatial res.: ~500µm Time res.: ~ 10 us	Localise the secondary particle from neutron conversion in Gd with < 500um precision	LBNO-DEMO (WA105 @ CERN): Start: > 2016	Neutrino physics (Tracking+ Calorimetry)		Total area: 3 m ² (WA105-3x1x1) 36 m ² (WA105-6x6x6) Single unit detect.	WA105 3x1x1 and 6x6x6: Max. rate: 150 Hz/m ² Spatial res.: 1 mm Time res.: ~ 10 ns	Detector is above ground (max. rate is determined by muon flux for calibration)	Start 2020 - for 2years HARPO Balloon start >2017?	astrophysical X-rays Astroparticle physics Gamma-ray polarimetry (Tracking (Triggering)	GEM	50cm ³) ~400cm ³ Total area: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 =	Rad. Hard.: 1000 krad Max.rate: ~ 20 kHz Spatial res.: < 500 um Time res.: ~ 30 ns samp.	vibration conditions AGET development for balloon & self triggered

(0.5x0.5 m2) ~0.25 m

Total area: 720 m

LAr TPC w/

THGEM double THGEM double Single unit detect. phase readout (0.5x0.5 m2) ~ 0.25 m

neff: - 20% efficient - y rejection of 100	< 500um precision	Start: > 2016	caloimetry)	
Max.rate: 40 kHz/mm ² Spatial res.: ~4 mm Time res.: ~ 100 us neff. >60% (at λ = 4 Å) - γ rejection of 10^-7	Measure TOF of neutron interaction in a 3D borated cathode	DUNE Dual Phase Far Detector Start: > 2023?		
Max.rate: 100 kHz/mm ² Spatial res.: ~ 10 mm Time res.: ~ 10 ms neff: >10^-5 γ rejection of 10^-7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters			
Max.rate:10 kHz Spatial res.: .: ~300µm				ĺ

	ment. res.:9% at 1 GeV		50a11 2015		GEMPIX
Spat	. rate: < low ial res.: < 150 μm Hard.: no	Provide time stamp of the neutrino interaction in brick"	PRAXyS Future Satellite Mission (US-Japan):	Astrophysics (X-ray polarimeter for relativistic	TPC w/ GEM
WAI	05 3x1x1 and 6x6x6:	Detector is above	Start 2020 - for 2years	astrophysical X-rays	
Spati	rate: 150 Hz/m ² ial res.: 1 mm e res.: ~ 10 ns Hard.: no	ground (max. rate is determined by muon flux for calibration)	HARPO Balloon start >2017?	Astroparticle physics Gamma-ray polarimetry (Tracking/Triggering)	Micromegas + GEM
Max.	rate: 4*10-7 Hz/m ² ial res.: 1 mm	Detector is underground (rate is	SMILE-II: Run: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)
	Hard.: no	neutrino flux)	ETCC camera Run: 2012-2014	Environmental gamma-ray monitoring (Gamma-ray imaging)	GEM+µPIC (TPC+ Scintillators)
	Carling Contraction	Strand W. P. P. 1. Ja	MARKER HER AND WA		

30 x 30 x 30 cm

Total area:

Total area:

10x10x10 cm

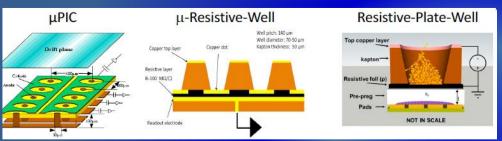
64 HARPO size mod

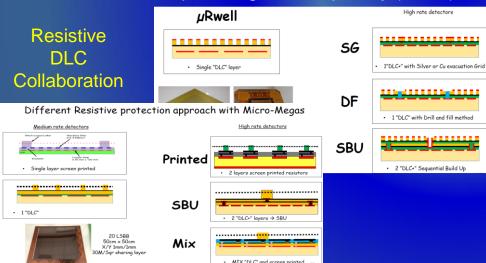
Point Spread Function for

Point Spread Function for

gamma-ray: 1

gamma-ray: 1


MPGD Technologies for Photon Detection

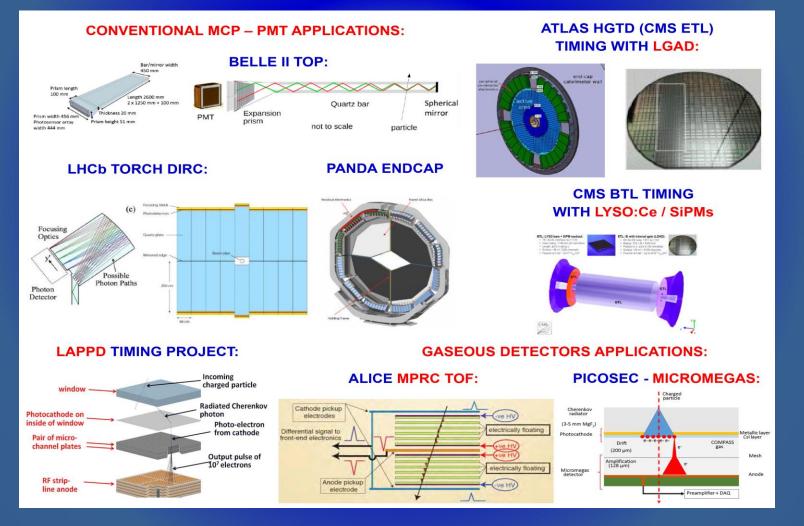

MPGD Technologies @ Future R&D Trends

 Resistive materials and related detector architectures for single-stage designs (µPIC, µ-RWELL, RPWELL, resistive MM)

→ improves detector stability; single-stage is advantage for assembly, mass production & cost.

Diamond-like carbon (DLC) resistive layers
 → Solutions to improve high-rate capability (≥ MHz)

 Picosecond Timing Detector (RD51 PICOSEC Collaboration) – MM device with radiator and radiation-hard PC (see next slides) Optical readout of MPGDs: hybrid approaches combining gaseous with non-gaseous in a single device (e.g. CYGNUS- TPC project):


New manufacturing techniques & structures:

- Solid-state photon and neutron converters, innovative nanotechnology components;
- Material studies (low out-gassing, radiation hardness, radio-purity, converter robustness and eco-friendly gases.
- Emerging technologies related to novel PCs, MicroElectroMechanical Systems (MEMS), sputtering, 3-D printing of amplifying structures and cooling circuits

Advanced Concepts Picosecond (a few 10's) Timing Detectors

Several types of technologies are considered for "Picosecond-Timing Frontier":

- Ionization detectors (silicon detectors or gas-based devices)
- Light-based devices (scintillating crystals coupled to SiPMs, Cherenkov absorbers coupled to photodetectors with amplification, or vacuum devices)

Examples of timing detectors at a level of~ 30 ps for MIPs and ~ 100 ps for single photons

TIMING Detectors with a few 10's of picosecond resolution

Picosecond-level timing was not the part of initial HL-LHC detector requirements:

Became available through pioneering R&D on LGAD / crystals / precise timing with Si:

Fast development of precise timing sensors:

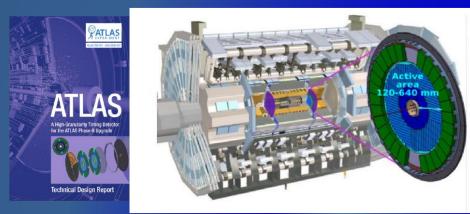
- ✓ 4D pattern recognition for HL-LHC pile-up rejection: tracking $\sim O(10's) \mu m$ & timing detectors $\sim O(10's)$ ps → ATLAS HGTD, CMS ETL (LGAD) \rightarrow CMS BTL (LYSO +SiPM)
- ✓ ps-timing reconstruction in calorimetry (resolve develop, of hadron showers, triangulate H $\rightarrow \gamma\gamma$ prim. vertices) \rightarrow CMS HGCAL (Si & Sci.+ SiPMs)
- ✓ TOF and TOP (RICH DIRC) PID → new DIRC applications (~ 10's of ps & 10's of µm per MIP/pixel) \rightarrow both at hadron / lepton colliders
- ✓ General push for higher luminosity at LHC, Belle-II, Panda, Electron-Ion Collid. \rightarrow Fast timing is needed at colliders, fixed target, and neutrino experiments

- \blacktriangleright Regular PMTs \rightarrow large area, ... but slow
- ➤ MCP-PMT → fast, but small, and not available in quantities to over large areas:
 - \rightarrow ultimate time resolution ~ 3.8 ps (single-pixel devices)

→ radiation hardness up to ~ 20 C/cm (HPK, ALD-coated MCP-PMT°)

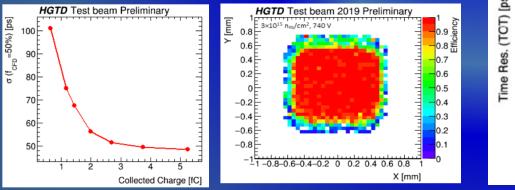
Detector	Experiment or beam test	Maximum rate	Maximum anode charge dose	Timing resolution	Ref.
MRPC presently	ALICE	~500 Hz/cm ² *** (tracks)	14 C	~60 ps/track (present)***	[4]
MRPC after upgrade	ALICE	Plan: ~50 kHz/cm ² ** (tracks)	· · · · · · · · · · · · · · · · · · ·	Plan: ~20 ps/track	[4]
MCP-PMT	Beam test	-	-	< 10 ps/track *	[7,8,9]
MCP-PMT	Laser test		1.	~27 ps/photon *	[14]
MCP-PMT	PANDA Barrel test	10 MHz/cm ² * (laser)	~20 C/cm ² *	-	[11]
MCP-PMT	Panda Endcap	~1 MHz/cm ² ** (photons)	1		[28]
MCP-PMT	TORCH test		3-4 C/cm ^{2*}	~90 ps/photon *	[27]
MCP-PMT	TORCH	10-40 MHz/cm ² ** (photons)	5 C/cm ² **	~70 ps/photon **	[24-27]
MCP-PMT	Belle-II	< 4MHz/MCP **** (photons)		80-120 ps/photon***	[23]
Low gain AD	ATLAS test	~40 MHz/cm ² ** (tracks)	1	~ 34 ps/track/single sensor *	[34,35]
Medium gain AD	Beam test			< 18 ps/track *	[39]
Si PIN diode (no gain)	Beam test (electrons)			~23 ps/32 GeV e	[8]
SiPMT (high gain)	Beam test - quartz rad.		$< 10^{10}$ neutrons/cm ²	~ 13 ps/track *	[8]
SiPMT (high gain)	Beam test - scint. tiles	-	< 10 ¹⁰ neutrons/cm ²	< 75 ps/track *	[41]
Diamond (no gain)	TOTEM	~3 MHz/cm ² * (tracks)		~ 90 ps/track/single sensor *	[36]
Micromegas	Beam test	~100 Hz/cm ² * (tracks)	1	~24 ps/track *	[31,32,40]
Micromegas	Laser test	~50 kHz/cm ² * (laser test)	· · · · · · · · · · · · · · · · · · ·	~76 ps/photon *	[31,32,40]
 Measured in a test ** Expect in the fina *** Status of the prese 	l experiment		J. Va'vra.	arXiv: 1906. 11	322

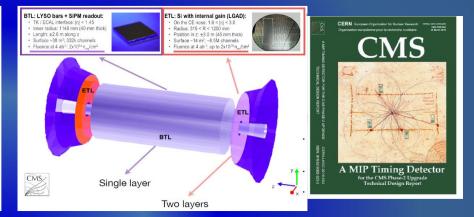
J. va'vra, arxiv: 1906. 11322

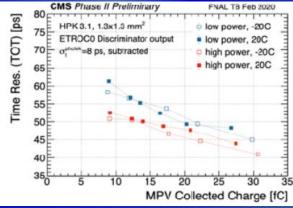

- Radiation hardness: LGAD-sensors, 3D-trench Si sensors, …
- Large scale applications : system aspects of timing detectors
- ✓ "5D reconstruction": space-points / ps-timing are available at each point along the track \rightarrow LHCb EoI for LS4 is of general interest across experiments:
- ✓ LAPPD \rightarrow large-area ps- PID/TOF for hadron/lepton colliders Incom Inc. company started to produce LAPPDs \rightarrow cost still has to be controlled

TIMING DETECTORS for ATLAS / CMS Phase-II Upgrade

ATLAS High Granularity Timing Detector:


CMS Endcap Timing Detectors:


Equipped with LGADs (1.3 x 1.3 mm² pads) targetting > 50 ps resolution (rad-hard only viable solution)

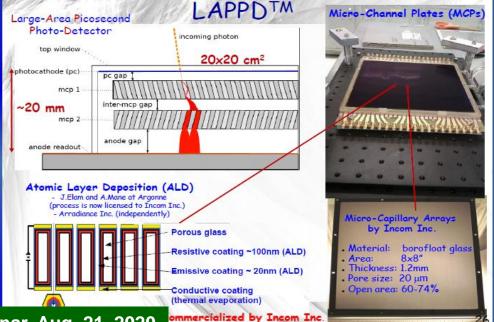

Two double sided layers in front of Calorimeter endcaps: Fluence < 2.5×1015 neq/cm2 Coverage: $2.4 < \eta < 4.0$ with 12 cm < R < 64 cm @ z = 3.5 m

Post irradiation: 4 fC and 50 ps achieved (high/uniform efficiency)

Two double sided layers in front of Calorimeter endcaps: fluence < 1.7 x 1015 neq/cm2 Coverage: 1.6 < η < 3.0 with 0.31 < R < 1.2 @ z = 3 m

P. Collins @ ICHEP2020

Pre irradiation 40-50 ps after discriminator with full efficiency

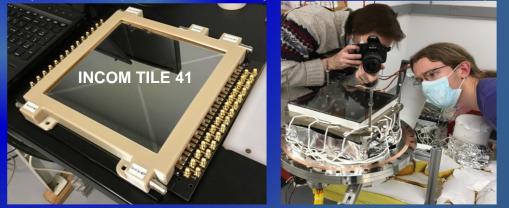

- LGAD are currently produced by 3 foundries (CNM, FBK, HPK)
- LHCb is developing a time-tracking device O(100 ps) device, based on 3D trench Si-sensors with a more uniform field/charge collection, and a goal to withstand fluence of 10¹⁶ - 10¹⁷ n_{eq}/cm2

Towards Large Area Picosecond Photodetectors (LAPPD)

Targets large-area systems to measure the time-of-arrival with O(1ps) resolution

→ Move away from lead-glass MCP's (soft glass impregnated with H_2 during (the 80-step!) processing, to a hard glass with the secondary-emitting layer being a hard pure substance, in this case MgO.

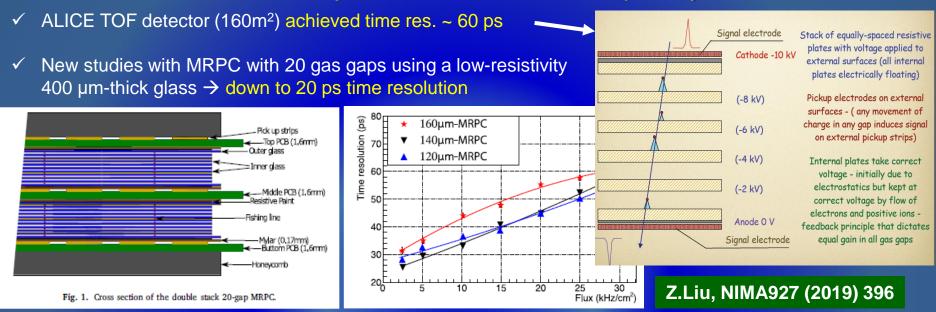
 \rightarrow ALD-process used to simplify the manufacturing of MCPs, to allow tuning of its amplification properties independent of the substrate, and to eliminate the ion feedback destroying the PC and limiting the lifetime.



A. Elagin, Fermilab Wine Cheese Seminar, Aug. 21, 2020

System performance demonstrated:

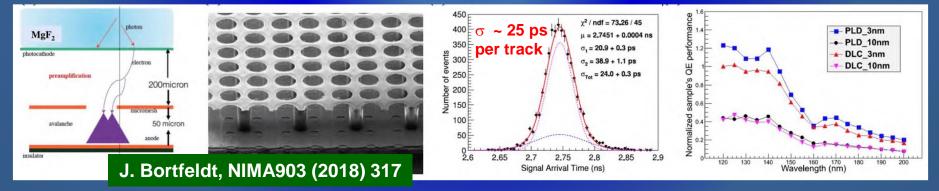
- ✓ Radiation tolerant up to ~ 7 C / cm 2 ,
- ✓ Gains of 2×107
- ✓ Time resolution (single-PE) below 60 ps
- Differential time resolution of below 5 ps for large signals, with an extrapolated number below 2 ps as N/S approaches zero
- ✓ Spatial resolution of ~ 300 um using charge sharing
 https://psec.uchicago.edu/


How LAPPD can become affordable for large-scale experiments (now commercially available from Incom Inc.)

US provisional Patent (62928598) submitted for a batch production using 'vacuum-transfer', capable of 100's of modules /week

Towards Large Area in Fast Timing GASEOUS DETECTORS

Multi-Gap Resistive Plate Chambers (MRPC):



Gaseous Detectors: Micromegas with Timing (RD51 Picosec Collaboration)

Cherenkov radiator + Photocathode + MM

Timing (MIP test-beam):

Csl / DLC PC:

Towards large-area: stability (res. MM), PC robustness, large-area (from single to multi-pad)

Advanced Concepts in PARTICLE IDENTIFICATION (PID)

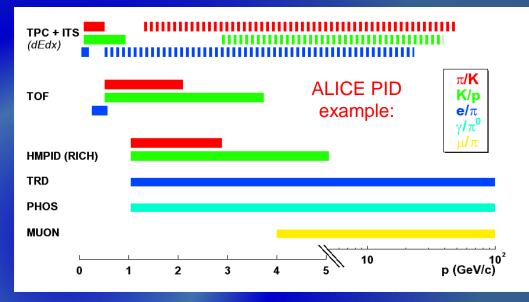
Essential to identify decays when heavy flavour are present: everywhere

Three legs: dE/dx, Time-of-Flight, Cherenkov radiation

Admirable workmanship in radiators and light transport:

- Vacuum Photon Detectors
 PMT, MaPMT, MCP PMT

 - Hybrid Tubes (APD, HAPD)
 - LAPPD
- Solid State Photon Detectors
 Silicon-based (VLPC, CCD, SiPM)

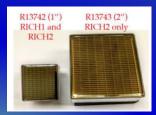

✓ Gas-based Photon Detectors

- Photosensitive (TMAE/TEA in gas)
- MWPC / MPGD + Csl

Superconducting Photon Detectors

- Transition Edge Detectors
- Kinetic Inductance detectors
- Quantum dots, carbon nanotubes

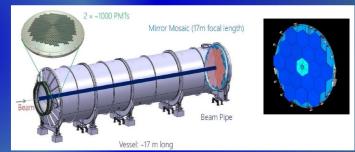
Excellent PID capabilities by combining different techniques over a large momentum range

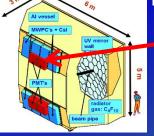


- Threshold Cherenkov Counters photon counting (Aerogel + PMT)
- RICH Detectors (particle momentum and velocity
 Cherenkov angle and/or yield):
 - TOP principle: 1-time of propagation + Cherenkov angle (instead of 2D imaging)
 - RICH + TOF: Measure timing of Cherenkov light
 - ALICE MRPC: Gaseous timing
 - TRD: Cluster Counting method (dN/dx)

Photon Detection for PID: State-of-the-Art

- RICHes with focalisation (SELEX, OMEGA, DELPHI, SLD-CRID, HeraB, HERMES, COMPASS, LHCB, NA62, EIC dRICH)
- ✓ Extended radiator (gas)
- Mandatory for high momenta
- RICHes with Proximity focusing (STAR, ALICE HMPID, HERMES, CLEO III, CLAS12, EIC mRICH, Belle ARICH, FARICH (Panda, ALICE, Super Charm-Tau)
- ✓ Thin radiator (liquid, solid, aerogel)
- ✓ Low momenta
- DIRC and its derivatives (Detector of Internally Reflected Cherenkov light)
 Babar DIRC, BELLE II TOP, Panda Barrel/Endcap & EIC (focusing DIRCs), LHCb TORCH, FDIRC GLUEX
- ✓ Quartz as radiator and light guide
- ✓ Low momenta
- Time-Of-Flight (TOF) detectors (ALICE, BES III)
- ✓ Use prompt Cherenkov light
- ✓ Fast gas detector


LHCb RICH I and II Upgrade for Run-III:


 New electronics @ 40 MHz
 New optics layout for RICH 1
 MaPMTs sill replace HPDs for RICH 1 and RICH2

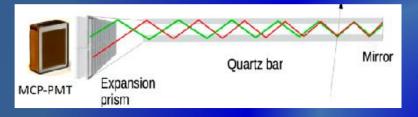
NA62 RICH with 2000 PMTs :

 Good test for GPU-based online selection (RICH participates in the low level trigger)

COMPASS RICH Upgrade:

Replace 8 MWPC's/CsI with hybrid (THGEM /Micromgas) with CsI

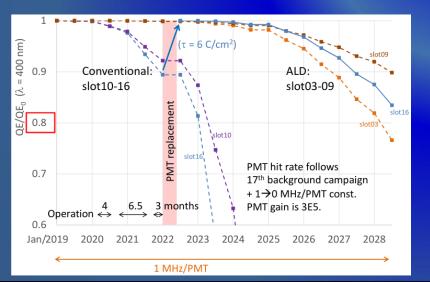
	Hybrid PD scheme	quartz
4.5mm		quartz
38.5mm	• • • • • • • • • • • • • • • • • • • •	
4 mm	Csl	Drift
		TH1
3 enen		
		TH2
5 mm		
	REFERENCES.	


- Exploring a possibility to use more robust PC: hydrogenated nano-diamond crystals
- ✓ R&D towards compact RICH for the future EIC

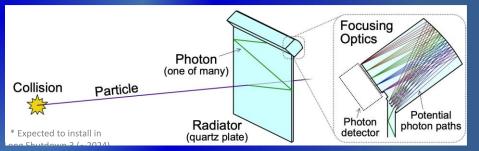
Many Clever Techniques for Ultra-Fast TOF and TOP

Fast progress in the new DIRC-derived concepts, including time-of-propagation counters - exceptional time-resolution of O(10ps), based on MCP-PMTs

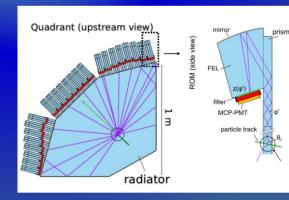
Belle II Time of Propagation RICH (TOP)

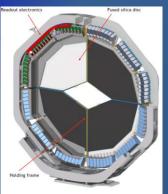

Based on a DIRC concept: instead of 2D-imaging → 1D + Time Of Propagation (TOP, path length)

Installed between drift chamber and calorimeter


- ✓ Single photon efficiency; < 100 ps SPTR
- ✓ few mm spatial res.; operation in 1.5T B field

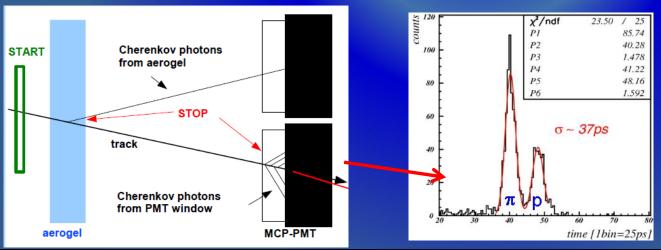
2022: Replacement conven. PMT with ALD-PMT




LHCb TORCH (Time Of internally Reflected CHerenkov light) for Run 4/5:

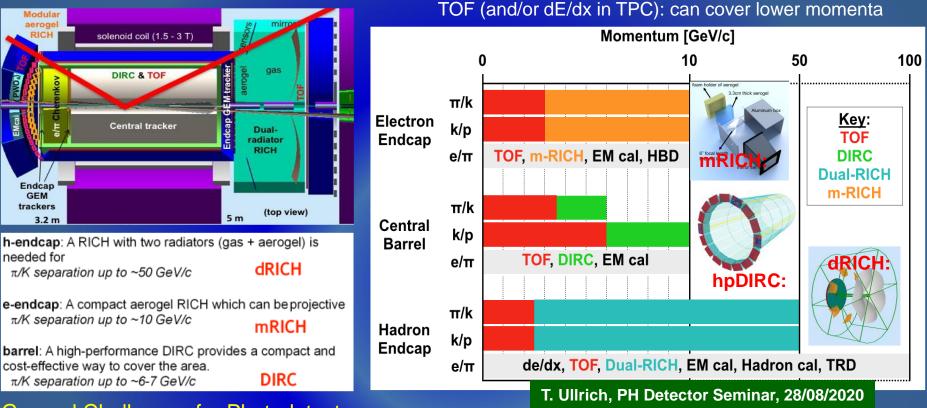
- ✓ Prompt production of cherenkov light in quartz bars
- Cherenkov photons travel to detector plane via total internal reflection and cylindrical focusing block
- ✓ 70 ps per photon \rightarrow 15 ps per track
- Photons detected by square micro channel plate PMTs; resolution improved by charge sharing

Panda DIRC has many similar features to LHCb TORCH:



Trends in Proximity Focusing Aerogel Radiator RICH

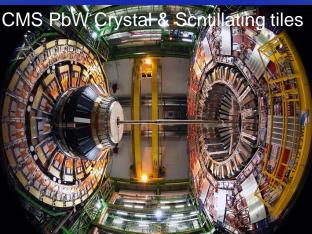
Use of focusing configuration: ARICH (Belle), FARICH (PANDA, ALICE, Super c-τ)


R&D: combination of proximity focusing RICH + TOF with fast new photo-sensors → MCP-PMT or SiPM using Cherenkov photons from PMT window

Cherenkov photons from PMT window can be used to positively identify particles below threshold in aerogel

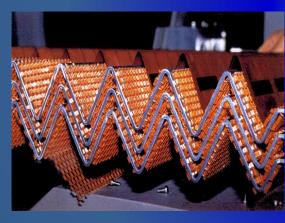
P. Krizan @INSTR2020 T. Credo, 2004 IEEE NSS/MIC Conference Record

Major Challenge for EIC Detectors: Particle Identification



General Challenges for Photodetectors:

- Photodetectors: Big challenge is to provide a reaiable highly-pixelated photodetector working at 1.5 – 3 T field
- SiPMs: high dark count rate and moderate radiation hardness prevented their use in RICH detector, where single photon detector required qt low noise
- MCP-PMTs: very expensive, not tolerantto magnetic fields;
- ✓ Large-Area Picosecond Timing Detector (LAPPD): promising, still not fully applicable for EIR yet
 → need pixellation, efforts underway, control of cost;


Advanced Concepts in CALORIMETRY

4 main technologies: LAr, Scintillators, Crystals (tiles or fibers), Silicon sensors

Two main concepts:

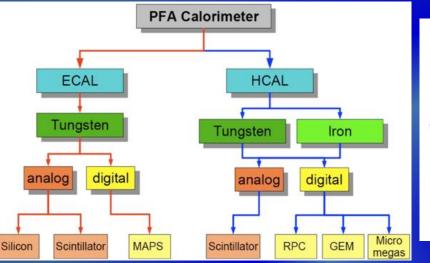
Homogeneous crystals (Csl, LYSO):

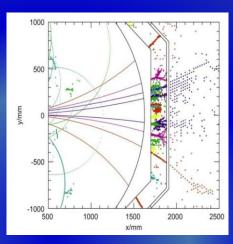
- Best possible resolution
- Application to PET

Sampling:

- Imaging: Particle Flow Algorithm
- Dream: Dual readout
- Sampling with Crystals, shashlik-type

Two main approaches for improving jet energy resolution


Dual (or triple) readout, e.g. DREAM (FCC-ee, CePC) improvement of the energy resolution of hadronic calorimeters for single hadrons:


Cherenkov light for relativistic (EM) component Scintillation light for non-relativistic (hadronic) Particle flow algorithm and imaging calorimeters
 (CALICE detectors for ILC, CLIC, CMS HGCAL):
 → Precise reconstruction of each particle within the jet (reduction of HCAL resolution impact)

Particle Flow Calorimeters: CALICE Collaboration

Development and study of finely segmented / imaging calorimeters: initially focused on the ILC, now widening to include developments of all imaging calorimeters):

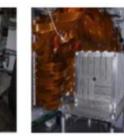
Imaging Calorimetry → high granularity (in 4D), efficient software (PFA) Energy share in a typical jet:

- 60 % charged hadrons;
- 30 % photons (from p0)
- 10 % neutral hadrons (mainly n, K_L) ParticleFlow Concept
- Tracking for charged particles
- ECAL for photons (π0)
- Neutral hadrons from HCAL Issues: overlap between showers,

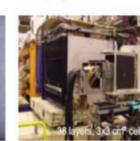
complicated topology, separate "physics event" particles from beam-induced background

PFA calorimetry also adopted by:

CLIC FCC-ee CePC FCC-hh CMS HGCAL ALICE FoCAL DUNE ND


Example: ILD detector for ILC, proposing CALICE collaboration technologies

	ECAL option	ECAL option	HCAL option	HCAL option
Active layer	silicon	scint+SiPM	scint+SiPM	glass RPC
Absorber	tungsten	tungsten	steel	steel
Cell size (cm×cm)	0.5×0.5	0.5×4.5	3×3	1×1
# layers	30	30	48	48
Readout	analog	analog	analog	Semi-dig (2 bits)
Depth # (X ₀ / Λ_{int})	24 X ₀	24 X ₀	5.5 Λ _{int}	5.5 Λ_{int}
# channels [10 ⁶]	100	10	8	70
Total surface	2500	2500	7000	7000

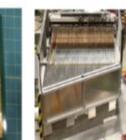

Particle Flow Calorimeters: CALICE Collaboration

Sc-W ECAL

Sc-Fe(W) AHCAL

GRPC-Fe DHCAL

Si-W ECAL

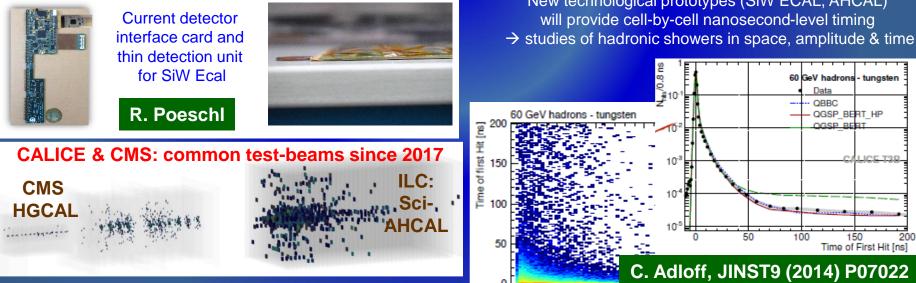

Proof-of-principle with first generation physics prototypes (2003-2012)

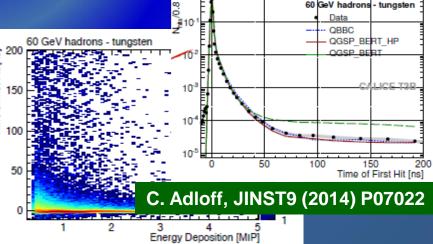
Sc-W ECAL

Sc-Fe AHCAL

GRPC-Fe SDHCAL

Time structure of hadronic showers (from 4D to 5D): New technological prototypes (SiW ECAL, AHCAL)


will provide cell-by-cell nanosecond-level timing

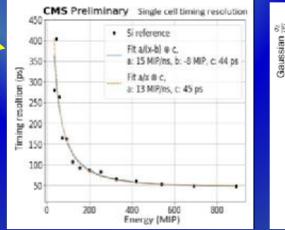

GeV hadrons

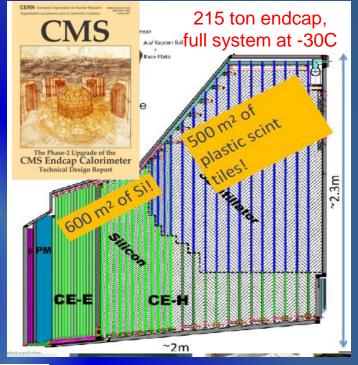
Scalability tests with 2nd generation (>2010) technological prototypes (power pulsing, compact mechanical design, embedded electronics, assembly, calibration approaches)

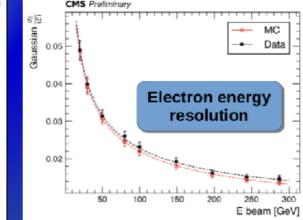
Rationalization / minutiarization of components:

Common tests beals benefit from common approach in CALICE and networking acivities: EUDQA2, AIDA2020

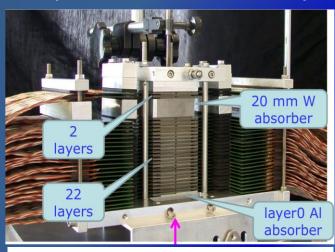
CMS High Granularity Calorimeter for Phase II Endcap Upgrade


CMS endcap region:


- PbWO4 crystal transmission loss due to radiation damage
- Worsening energy resolution due to increased pileup
- Build a fine segmented 'particle flow' calorimeter, ECAL + HCAL combined.
- Use Si sensors as long as radiation and particle flow requires, then switch to cheaper scintillator tiles + SiPM (à la CALICE). (27000 Si-modules, 6M Si-channels, 400000 SiPMs)
- CE-E: Si, Cu, CuW,Pb absorbers, 28 layers, 25 X0 & ~1.3λ
 CE-H: steel absorbers, 24 layers, ~8.5λ
- Si pad sensors from 8" wafers. Different sensor geometries and thicknesses (300,200,120 µm); fluences 2x10¹⁴ - 10¹⁶ n_{eq}/cm²


New (combined) HGCAL + AHCAL test-beam results:

- 28 EM layers, 12 Si-HAD layers,
- 39 Sci-layers from CALICE AHCAL



Multi-layer measurements of shower signal allows precise ToF estimate of $e/\gamma/h0$: ~ 30 ps has been achived for S/N >20

R&D for ALICE FoCAL – MAPS based SiW ECAL

24 layer MIMOSA CMOS sensor calorimeter Si-W stack (test-beam with MIMOSA HG)

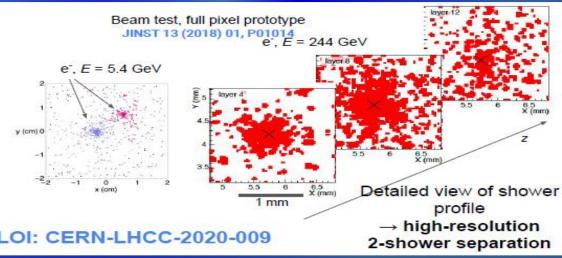
Transverse segmentation LG cells Si pads (1cm²) D Longitudinal segmentation 0 1 2 3 4 5 HG cells MAPS 30x30 µm² HG layer HG layer

T. Peitzmann, PH Detector Seminar, 25/10/2019 P. Allport, PH Detector Seminar, 10/09/2020 A. De Haas, JINST13 (2018) P01014

Forward electromagnetic and hadronic calorimeters;

- FoCal-E: high-granularity Si-W sampling calorimeter \rightarrow direct γ , $\pi 0$
- FoCal-H: Pb-Sc sampling calorimeter for photon isolation and jets

Digital ECAL prototype:


- number of pixels above threshol ~ deposited energy
- Monolithic Active Pixel Sensors (MAPS) PHASE2/MIMOSA23 wit a pixel size: 30x30 µm2
- 24 layers of 4 sensors each: activ area 4x4 cm2, 39 M pixels
- 3 mm W absorber for 0.97 X0 pe layer R_M ~ 11 mm

FoCAL: assuming ≈ 1m² detector surface

	LG	HG
pixel/pad size	≈ 1 cm²	≈ 30x30 µm²
total # pixels/pads	≈ 2.5 x 10 ⁵	≈ 2.5 x 10 ⁹
readout channels	≈ 5 x 10 ⁴	≈ 2 x 10 ⁶

A. Rossi @ ICHEP2020

Could be a unique tool to improve shower simulation ...

DESY Test-Beam with ALPIDE sensors in Nov. 2019 → results soon

Other Calorimetry R&D: Crystals, Scintillating/Cherenkov Fibers

Main Calorimetry concepts & techniques:

- ✓ Noble Liquid (intrinsic radiation hard, 3D imaging, good timing resolution, finely segmented readout)
 → reference design for FCC-hh, also for FCC-ee
- ✓ Homogeneous crystals (ultimate resolution)
 → CMS CALO based on PbWO₄
- ✓ Particle Flow Calorimetry (5D imaging)
 → ILC/CLIC concepts, CMS HGCAL
- ✓ Scintillator-based (cost-effective, mod. rad.-hard)
 → rad-hard crystals (LYSO, BaF₂ crystal scintillators, YAG, GAGG);
 - \rightarrow LHCb ECAL upgrade (shashlyk, spagetti-type);
 - → FCC-hh hadronic barrel similar to ATLAS Tile Calo;

Dual-readout calorimetry

 \rightarrow Dual-fibre readout calorimeter for FCC-ee, CePC

SiPMs are mostly used in HEP Calorimetry:

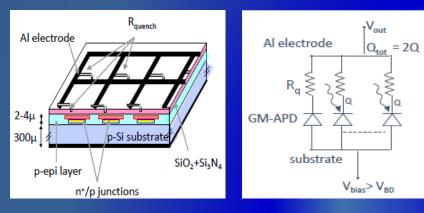
- → SiPMs readout of plastic scintillators, crystals, dual-readout calorimeters;
- → Challenge: cold operation at -30C to keep radiation damage under control

Multipurpose scintillation materials

Materials allowing at the reshuffling of their composition a detection of different kinds of the ionizing radiation

LHCb Phase-2 upgrade sampling electromagnetic crystal calorimeter • ≈ 300 Mrad, ≈ 50 ps

Shashik Shashik

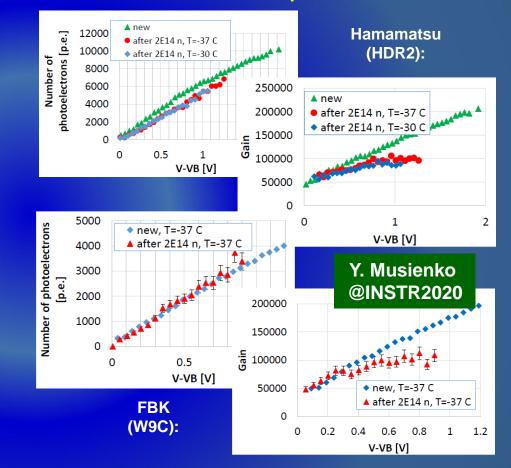


Dual-readout R&D: 32 + 32 scint./cerenkov fibers protoype $\sigma(E)/E \approx 10(30)\%/VE + 1\% \text{ for } e/\gamma(\pi)$

State-of-the-Art in Silicon Photomultipliers (SiPM)

Calorimetry is the dominant area of the SiPM use in particle physics

A. Gasanov, V. Golovin, Z. Sadygov, N. Yusipov (1989)

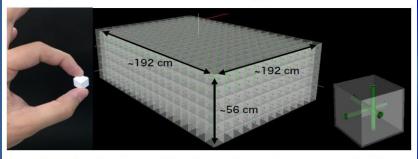


Significant progress in understanding of SiPM physics was achieved during last 5 years:

Breakthrough in SiPM production:

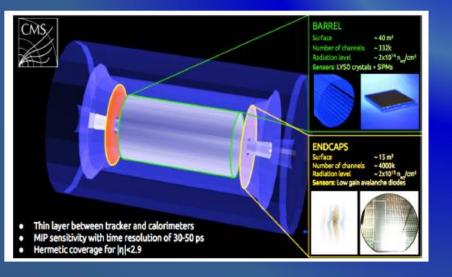
- Reduced correlated noise
 - → cross-talk, afterpulsing
- Improved PDE (50-65 %, blue-green light)
- Reduced dark noise

Y. Musienko, PH Detector Seminar, 30/06/2017 G. Kollazuol, PH Detector Seminar, 13/11/2020 F. Simon, NIM926 (2019) 85 Encouraging results with 15 μ m cells (FBK, HPK) and operation at -30C indicate ability to operate up to very high neutron flux o $\simeq 2x1014 \text{ neg/cm2}$



The HPK and FBK SiPM are still operational after $\simeq 2 \times 10^{14} \text{ neq/cm}^2 \rightarrow \text{main limitation is due to}$ high power dissipation, caused by dark current increase, limiting to operation at $\Delta V \sim 1V$

Some Examples of SiPM Applications in Experiments


T2K Near Detector: Large scale (~60 000) use of SiPMs: 3D Sci-Tracker with WLS fibers

A novel plastic scintillator detector with new structure • Proposed in 2017 for the T2K near detector upgrade [JINST 13 (2018) P02006]

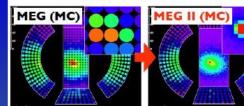
- · Optically independent ~2,000,000 scintillator cubes (1 cm³) w/ 3 holes
- Three orthogonal projections with ~60,000 MPPCs via WLS fibers
- \rightarrow Large active target (~2 t), Fine granularity, 4π acceptance

CMS Barrel Timing layer (BTL): 36 m² area, 250000 LYSO tiles readout by 330000 SiPM; operation @ -30C between tracker and calorimeter

CMS HCAL Phase I Upgrade: replacement of HPDs with 20 000 SiPMs – higher QE, better immunity to magnetic fields, depth segmentation, timing (kill bkg)

MEGII Experiment: SiPM will replace PMT (large surface Cryogenic SiPM readout – VUV)

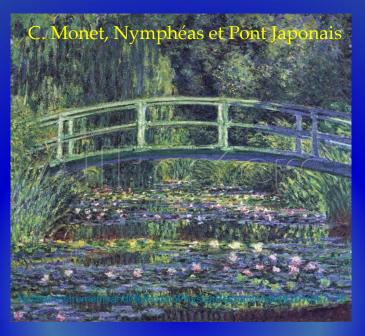
LXe scintillation light detection (175nm) by VUV-MPPC


MEG-II • Highly granular readout w 4092 × VUV-MPPC (140mm² each)


Covering 0.92m² area with coverage of 62%

→ MPPC development Hamamatsu

S10943-4372

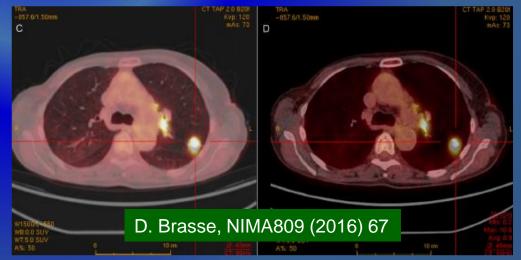

Requirements and constraints

- High granularity
- Need both good S/N (energy)
- Need high speed (timing)
- No amplification at cryogenic T

From SiPM-based ILC Imaging Calorimeter to Advanced PET Systems

2006: ILC Developemnt CALICE-AHCAL (8k ch.): First large experience with SiPM operation (2006):

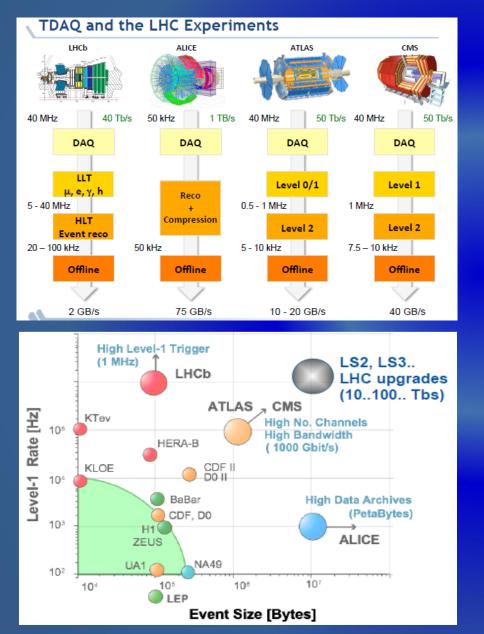
Today's PET imaging platforms using SiPMs:


 GE clinical PET/MR uses analog SiPM
 VEREOS Philips PET/CT uses digital SiPM

Multi-channels arrays of crystals + SIPM:

- minimum dead material between crystals
- SiPM packaging is crucial → up to 50% sensitivity improvement
- Monolithic arrays/high density of channels;

SiPMs represent today the future of Nuclear Medical Imaging → the slowing down factor at the moment being the high associated cost. Multi-modality approach (PET/CT,PET/MR) will be more and more requested in the clinical practice.


Advanced Concepts in TRIGGER / DAQ, ELECTRONICS and COMPUTING

MI AIr B

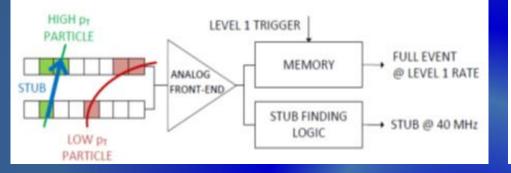
UGT S1 504-32

Advanced Concepts in TRIGGER and DAQ (TDAQ)

Massive amounts of data coming of upgraded and next generation experiments

- Optical data transmission is key in readout modern HEP detectors:
- ✓ Current links at 10 Gb/s, and limited to 5 x 10¹⁵ n_{eq}/cm², 100 Mrad in radiation tolerance;
 → current state-of-the art VCSEL;
- ✓ Silicon photonics for optical conversion and multiple amplitude modulation can provide high bandwidth;
- Wireless transmission (60 GHz), could allow ondetector data reduction (e. g. for trigger readout of trackers) → promising upcoming alternative

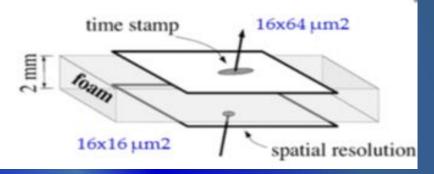
Trigger Architecture:


→ multi-layered (event building, event processing); triggerless, multi-level trigger;

Trigger Tools:

- → ASICs, ATCA, FPGA, CPU, GPU
- General trend: progressive replacement of the complex multi-stage trigger system with a single level trigger system and a large farm of Linux computers for the final online selection:
- ATLAS TDAQ → single-level hardware trigger (max. rate 1 MHz and 1 um latency);
- ALICE and LHCb will be triggerless (no hardware trigger) after LHC Phase I upgrade

"Intelligent Trackers": Frontier Application for HEP ?

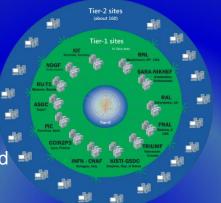

"Track-Trigger" Concept for CMS @ HL-LHC:

 ✓ Cannot send all hits to trigger at 40 MHz → local "intelligence" is based on recognition of high-p_T tracks using hit correlation in 2 closely-spaced layers:

- Store billion(s) of patterns in dedicated associated memory for L1 Track-Trigger;
- Region of Interest Builders;
- Advanced FPGS for data processing/transmission;
- ✓ 65 nm CMOS ASIC allows to satisfy power requirem. Despite of large amount of necessary logic @ 40 Mhz
- Particle Flow" approach now possible at L1 trigger use information from all detectors:
 - trigger on secondary vertices using NN
 - "anomaly detection" by machine learning)
- ✓ Issues: L1 latency, backhround

"Mini-Vectors" Concept for ILC:

- ✓ ILC will run without trigger
- ✓ Develop concept of 2-sided ladders using 50 µm thin CPS → "mini-vectors" providing high spatial resolution & time stamping
- Realization of double-sided ultra-light ladders (PLUME) equipped with two complementary types of CPS
- Introduce NN in CPS to mitigate data flow from beam-related background
- Issues: high precision alignment & power cycling in high magnetic field (ILC)


M. Winter, R. Zhao, Dev. of CMOS sensors with on-chip artificial NN, PhD, Univ. Strasbourg, 2019

Worldwide LHC Computing Grid (WLCG) Collaboration

Initiated in 2001, an International collaboration was launched to distribute/analyse LHC data (Belle II, LBNF/DUNE and Linear colliders)

Challenges on HL-LHC computing:

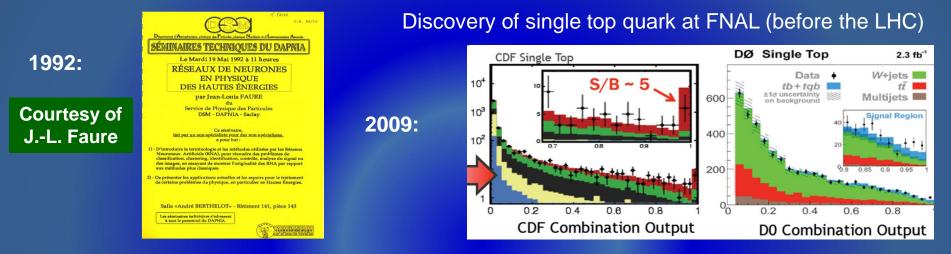
- ✓ HEP computing much more capacity is needed
- New computing models and more efficient software have to be developed

WLCG Grid & Computing power:

- ✓ ~170 sites, 42 countries
 ✓ 2 million jobs / day
- ✓ CPUs: 6.500.000 of today's fastest cores

Additional resources are needed – Cloud computing, High-Performance Computing (HPC)

Cloud resources are much more competitive in terms of cost than in the past
Increasing usage of HPC resources in the mid-term to long term future


- HPC often employ GPU architectures to achieve record breaking results (towards exa-scale) this will requite a fundamental re-write/optimization of the LHC software
- Modern tools and methods are used Big-data, Machine Learning - Deep learning (monitoring, analysis optimization, particle classification)

2018 HEP Software Fondation White paper: https://cerncourier.com/a/time-to-adapt-for-big-data/

LHC Computing - Towards a Change of Paradigm ...

Machine Learning algorithms (NN, BDT, ...) in particle physics has a long history:

Bringing modern advances in machine learning from offline to online/trigger is a major challenge: Machine Learning in High Energy Physics Community Paper: arXiv: 1807.02876

Computing infrastructure so far has been largely based exclusively on X86 architecture using CPUs. GPUs are gaining a lot of popularity as co-processors due to the success of Machine Learning and "Artificial Intelligence":

- ✓ ALICE will employ a GPU based Online/Offline system (O2)
- ✓ CMS is porting part of their trigger software to run on GPU processors
- ✓ LHCb is exploring GPUs for their online data reduction
- ✓ ATLAS is developing algorithms to run on GPUs

SUMMARY and OUTLOOK

The progress in experimental particle physics was driven by the advances and breakthrough in instrumentation, leading to the development of new, cutting-edge technologies:

- The detrimental effect of the material budget and power consumption represents a very serious concern for a high-precision silicon vertex and tracking detectors;
- CMOS sensors offers low mass and (potentially) radiation-hard technology for future protonproton and electron-positron colliders;
- MPGDs have become a well-established technique in the fertile field of gaseous detectors;
- Several novel concepts of picosecond-timing detectors (LGAD, LAPPD) will have numerous powerful applications in particle identification, pile-up rejection and event reconstruction;
- The story of modern calorimetry is a textbook example of physics research driving the development of an experimental method;
- The integration of advanced electronics and data transmission functionalities plays an increasingly important role and needs to be addressed;
- Bringing the modern algorithmic advances from the field of machine learning from offline applications to online operations and trigger systems is another major challenge;
- ✓ The timescales spanned by future projects in HEP, ranging from few years to many decades, constitute a challenge in itself, in addition to the complexity and diversity of the required R&D.