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My Background
● PhD On T2K At Imperial College London
● PDRA at Michigan State since July 2017

○ T2K
■ Neutrino Interactions Working Group Convener

○ DUNE
■ DUNE-PRISM working group convener
■ A leader analyzer for the recent TDR oscillation sensitivity study
■ Motivating DUNE beam neutrino flux uncertainties

○ NUISANCE
■ Lead developer of framework for comparing and tuning neutrino 

interaction generator predictions to published cross section data.
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This Talk

● Primer: Neutrino Oscillations

● State of the Nation: A T2K Perspective

● Introduction to DUNE

● The DUNE-PRISM Concept
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the neutrino oscillation 

parameters?
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Primer: Neutrino Oscillations
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Neutrinos
● Three generations of matter:

○ Three neutrinos paired with charged 
leptons: electron, muon, tau.

● Neutrinos are:
○ Electro-magnetically neutral
○ Massless within the standard model
○ Interact via mainly via the weak force.
○ Absurdly abundant
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Neutrino Sources

PhysRevLett.113.101101
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Neutrino Oscillation: PMNS

Pontecorvo–Maki–Nakagawa–Sakata
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Neutrino Oscillation: PMNS

Pontecorvo–Maki–Nakagawa–Sakata

Flavor eigenstate defined by 
paired charged lepton.
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Neutrino Oscillation: PMNS

Pontecorvo–Maki–Nakagawa–Sakata

Journal of Physics G: Nuclear and Particle Physics. 43. 10.1088/0954-3899/43/8/084001
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Which mass ordering?

Neutrino Oscillation: PMNS

Pontecorvo–Maki–Nakagawa–Sakata

Journal of Physics G: Nuclear and Particle Physics. 43. 10.1088/0954-3899/43/8/084001
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Neutrino Oscillation: PMNS
Start with a beam of muon 
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Neutrino Oscillation: PMNS

Propagate as 
superposition of 
mass/energy  
eigenstates.

Pontecorvo–Maki–Nakagawa–Sakata

L = 295 km

Start with a beam of muon 
neutrinos

Later measure some 
superposition of flavor states
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Neutrino Oscillation: PMNS

Pontecorvo–Maki–Nakagawa–Sakata
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● Unitarity lets us re-parameterize PMNS matrix in terms of:
○ Three mixing angles: Cij = cos(θij)
○ CP violating phase: 0<δCP<2𝛑

Re-parameterizing the PMNS
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● Unitarity lets us re-parameterize PMNS matrix in terms of:
○ Three mixing angles: Cij = cos(θij)
○ CP violating phase: 0<δCP<2𝛑

Re-parameterizing the PMNS

SolarReactorAtmospheric
/Accelerator
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Muon Neutrino Disappearance

● To leading order, muon 
neutrino survival probability 
depends on mixing angles, 
and mass-squared splittings.
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𝚫m2

● To leading order, muon 
neutrino survival probability 
depends on mixing angles, 
and mass-squared splittings.

Muon Neutrino Disappearance

L = 295 km
𝚫m32 = 2.56 x10-3 eV2
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𝚫m2

● To leading order, muon 
neutrino survival probability 
depends on mixing angles, 
and mass-squared splittings.

● Choose L/E for                           
maximum effect: 

Muon Neutrino Disappearance

L = 295 km
𝚫m32 = 2.56 x10-3 eV2

First maximum
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Disappearing Act
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Disappearing Act

● Mass-squared splitting shifts 
the ‘dip’

● Mixing angle determines the 
depth of the ‘dip’
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Oscillation Channels
● Long baseline experiments study two oscillation channels:

Muon neutrino disappearance

Electron neutrino appearance
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● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter.
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Electron Neutrino Appearance

● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter. No CPV

Maximal CPVWhat is the value of δCP?
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Electron Neutrino Appearance

● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter. No CPV

Maximal CPV

Most sensitive to δCP when other 
parameters are known precisely
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Measuring Neutrino Oscillations 
with  
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Measuring Neutrino Oscillations
Produce 
neutrino 
beam

Sample 
unoscillated 
beam

Sample oscillated 
beam at Far Detector
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Measuring Oscillation Parameters
● Look for signature ‘oscillation’ shape in flux at the far detector

Unoscillated
Oscillated
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Measuring Oscillation Parameters
● Look for signature ‘oscillation’ shape in flux at the far detector
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Unoscillated
Oscillated
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Measuring Oscillation Parameters
● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the neutrino flux, only the event rate

𝛎

𝛎

𝛎

Flux
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Measuring Oscillation Parameters

Number of 
events = Flux Cross 

section∙

𝛎

𝛎

𝛎

● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the neutrino flux, only the event rate

𝛎
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Measuring Oscillations: Interactions

CC-Res
Single 𝛑
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Measuring Oscillation Parameters

Number of 
events = Flux Cross 

section∙

● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the neutrino flux, only the event rate

𝛎

𝛎

𝛎
But...
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Measuring Oscillation Parameters
● Look for signature ‘oscillation’ shape in flux at the far detector…

● We cannot observe the neutrino flux, only the event rate

● We have to reconstruct the energy from observables

Number of 
observed 

events
= Flux Cross 

section∙ ∙ Detector 
effects

𝛎

𝛎
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The T2K Oscillation Analysis

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 
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The T2K Oscillation Analysis

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 
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The T2K Oscillation Analysis

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 

● Infer oscillation parameters from observed data

Far 
detector 
dataNear 

detector 
data

Traditional Oscillation Analyses: Tune model with near 
detector data, and have to assume it is correct at the far 
detector.
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Model-driven Extrapolation
● What if the model isn't correct? We can end up:

○ ⇒ Attributing data/MC discrepancy to the wrong energy range at the near detector
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Model-driven Extrapolation
● What if the model isn't correct? We can end up:

○ ⇒ Attributing data/MC discrepancy to the wrong energy range at the near detector
○ ⇒ Predicting an incorrect observed far detector spectrum 
○ ⇒ Exacting biased oscillation parameters.
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● Uncertain 'missing energy' for 
interactions with bound nucleons.

An Example from
Neutrino CCQE

Nucleus
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● Uncertain 'missing energy' for 
interactions with bound nucleons.

● More missing energy → less 
visible lepton energy for the same 
true neutrino energy.

Neutrino CCQE

Nucleus

An Example from
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● Uncertain 'missing energy' for 
interactions with bound nucleons.

● More missing energy → less 
visible lepton energy for the same 
true neutrino energy.

● Incorrect prediction at far detector 
induces significant biases in 𝚫m23 

Neutrino CCQE

Nucleus

E
ve

n
ts

/5
0

 M
eV

Expected 
sensitivity

Mis-modelled 
missing energy

𝚫m2

An Example from
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State of the Nation
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overwhelming: c.f. 2015 Nobel Prize
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Neutrino Oscillation: Where are we now?

● Evidence for neutrino oscillation is 
overwhelming: c.f. 2015 Nobel Prize

● We know: all mixing angles and 
both mass-squared splittings ≠ 0.

PDG 2020: 
Neutrino Masses, Mixing, and Oscillations
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Neutrino Oscillation: Where are we now?

● Evidence for neutrino oscillation is 
overwhelming: c.f. 2015 Nobel Prize

● We know: all mixing angles and 
both mass-squared splittings ≠ 0.

● Search for CP violation in the 
neutrino sector—i.e. measure δCP

○ Current generation experiments have 
some sensitivity to δCP, but disagree on 
the value…

○ Most sensitivity when other parameters 
are well known

○ Need new experiment for definitive  
'five sigma' result...
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The Deep Underground Neutrino 
Experiment
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The Deep Underground Neutrino Experiment

● Unprecedented 
sensitivity to osc. 
params.

● Measurement of 𝛅CP 
and mass ordering

● Solar 𝛎’s
● Geo 𝛎’s
● SN 𝛎’s
● Banana 𝛎’s

● NSI
● Sterile 𝛎’s
● Cross 

sections

● >1100 Collaborators
● 34 Countries

Collaboration PMNS Oscillations Rich Physics Program
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The Deep Underground Neutrino Experiment

● Unprecedented 
sensitivity to osc. 
params.

● Measurement of 𝛅CP 
and mass ordering

● >1100 Collaborators
● 34 Countries

Collaboration PMNS Oscillations Rich Physics Program
● NSI
● Sterile 𝛎’s
● Cross 

sections

● Solar 𝛎’s
● Geo 𝛎’s
● SN 𝛎’s
● Banana 𝛎’s

Expected to take data at the 
end of the decade
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The Deep Underground Neutrino Experiment
● Far Detector ● Near Detector ● Neutrino beam
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Producing a Beam of Neutrinos

Proton beam

Fixed target
π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons
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Fixed target

Focussing horn 1 Focussing horn 2

π+
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● Proton beam strikes a fixed target producing secondary hadrons: 
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● These are sign-selected and focussed by one or more magnetic 
horns.
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Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+
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𝛎
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● These are sign-selected and focussed by one or more magnetic 
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● This secondary beam of particles decays to produce neutrinos.
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Producing a Beam of Neutrinos

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos

Neutrino mode, focussing positive particles

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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Producing a Beam of Neutrinos

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

Anti-neutrino mode, focussing negative particles

𝛍-

𝛎
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Off Axis Fluxes

π
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Off Axis Fluxes

𝛎
𝛍

π



L. Pickering    84

Off Axis Fluxes

K. Duffy Thesis

𝛎
𝛍

π

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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Off Axis Fluxes
● Boosted π decay kinematics result in lower energy neutrinos off beam 

axis.

K. Duffy Thesis

𝛎

𝛍𝛎
𝛍

π

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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Off Axis Fluxes
● Boosted π decay kinematics result in lower energy neutrinos off beam 

axis.
○ Exploited by T2K and NOvA to achieve narrow-band beam for maximal oscillation signal 

at first oscillation maximum

Phys. Rev. D 87, 012001

K. Duffy Thesis

J-PARC neutrino flux

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.012001
https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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LBNF: The DUNE Neutrino Beam
● By contrast, DUNE will use an on axis, wide band beam:

○ Access to physics at higher order oscillation maxima where 
non-standard oscillations expected to be stronger.

First maximum

Second maximum
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LBNF: The DUNE Neutrino Beam

Numus.

. Beam .

● By contrast, DUNE will use an on axis, wide band beam:
○ Access to physics at higher order oscillation maxima

● Unprecedented neutrino rate
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The Deep Underground Neutrino Experiment
● Far Detector ● Near Detector ● Neutrino beam
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DUNE Near Detector Concept
● NDLAr: LAr TPC

○ Primary target, similar to FD

NDLAr

𝛎

NDLAr FV NDGAr FVDUNE Preliminary

𝛎
𝛎

𝛎

𝛎
SAND

NDGAr
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DUNE Near Detector Concept
● NDLAr: LAr TPC

○ Primary target, similar to FD

● NDGAr: GAr TPC + ECal + 
Low mass magnet

○ Charge/momentum/PID
○ Low threshold neutrino 

target

MPD FVDUNE Preliminary

𝛎
𝛎

𝛎

𝛎

𝛎
SAND

NDGAr FVNDLAr FV

NDGAr
NDLAr
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DUNE Near Detector Concept
● ArgonCube: LAr TPC

○ Primary target, similar to FD

● MPD: GAr TPC + ECal + 
Low mass magnet

○ Charge/momentum/PID
○ Low threshold neutrino 

target

● SAND: 3D plastic 
scintillator detector inside 
a superconducting 
solenoid:

○ Beam monitor
○ Neutrino interaction physics

MPD FVDUNE Preliminary

𝛎
𝛎

𝛎

𝛎

SAND

𝛎 NDGAr

NDGAr FVNDLAr FV

NDLAr
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The Deep Underground Neutrino Experiment
● Far Detector ● Near Detector ● Neutrino beam
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Far Detector 
● 4x10 kT LAr TPCs

SURF underground
facilities

R. Patterson FNAL, JETP

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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Far Detector 
● 4x10 kT LAr TPCs:

○ Unprecedented FD event resolution

Surviving 𝜈𝜇

SURF underground
facilities

R. Patterson FNAL, JETP

𝜈
𝜇

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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Far Detector 
● 4x10 kT LAr TPCs:

○ Unprecedented FD event resolution

SURF underground
facilities

Appeared 𝜈e

R. Patterson FNAL, JETP

Surviving 𝜈𝜇

𝜈
𝜇

𝜈 e

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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Far Detector 
● 4x10 kT LAr TPCs:

○ Unprecedented FD event resolution and event rate!

SURF underground
facilities

R. Patterson FNAL, JETP

DUNE Preliminary DUNE Preliminary

Appeared 𝜈eSurviving 𝜈𝜇

𝜈
𝜇

𝜈 e

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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Oscillation Analysis On DUNE
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● Why can we not just look at near/far ratio?

Oscillations at the Far Detector

Number of near 
detector events = Flux Cross 

section
Detector 
effects∙ ∙

Number of far 
detector events = Flux Cross 

section
Detector 
effects∙ ∙Oscillation 

probability ∙

Want to know this
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● Why can we not just look at near/far ratio?
○ Because it isn't that simple...
○ Convolution of detector effects with flux ∙ cross section
○ Cannot directly compare near and far observables to extract oscillations

Oscillations at the Far Detector

But what if we could make near detector 
measurements, in an oscillated flux...?

Want to know this
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Precision Reaction-Independent 
Spectrum Measurement
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Off Axis at the Near Detector

DUNE Preliminary
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33 m

Off Axis at the Near Detector
● Use a mobile Near Detector

○ Sample different neutrino energy spectra 
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Off Axis at the Near Detector

33 m

𝛎

𝛎 𝛎
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DUNE Near
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● Use a mobile Near Detector
○ Sample different neutrino energy spectra 

at different positions
○ Build up 2D measurement
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Discrete Fourier Transforms

● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075
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Discrete Fourier Transforms

● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075
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Maybe we can play a similar game with 

the DUNE near detector...
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Building an Oscillated Flux

DUNE Preliminary

● Want to measure oscillated flux at the near detector
○ Try to decompose into a linear sum of off-axis near detector fluxes (c.f. Discrete FT)
○ Solve for weights at each off axis position
○ How good is the approximation?

DUNE Near
Flux
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Building More Oscillated Fluxes
● Can construct oscillated fluxes over the allowed parameter space

○ Each set of oscillation parameters requires a different set of weights
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How does that help?
● Use the PRISM method to build:
● Cross sections are not position dependent
● When we pick the correct oscillation hypothesis:

○ Signal event rates are the same near and far! 
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● Linear sum only depends on off axis position and flux prediction.

○ The same weights can be applied to sampled interactions
○ in any observable quantity
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Building a Far Detector prediction
● Linear sum only depends on off axis position and flux prediction.

○ The same weights can be applied to sampled interactions
○ in any observable quantity

● The Power of PRISM:
○ Predicted the far detector observable signal event rate for some oscillation hypothesis
○ Have not yet invoked a neutrino interaction model!

X =
Measured
ND Event Rate
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○ Imperfect flux matching
○ Backgrounds in the near and far 

selection
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The Full PRISM prediction

● Do have to correct for:
○ Imperfect flux matching
○ Backgrounds in the near and far 

selection

● Majority of oscillated far 
prediction is rearranged near 
detector signal data.

○ PRISM transfers near detector 
'constraint' even if the near 
detector sample is mis-modelled.

● In a traditional analysis, the 
whole spectrum would be a 
predicted by a model.
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Putting PRISM Into Practice
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A 'mock' data Study

On axis

● What if the interaction model is wrong but it 
was missed?

● Can imagine a world where the model can be 
fit to near detector data, but E𝛎

True⇒E𝛎
Obs  is 

wrong.

● Case Study:
○ Move 20% of proton KE to neutrons but fit model to 

on-axis ND data.
○ Not able to simultaneously describe on an off axis data 

with incorrect model
○ But not obvious how to incorporate this in a traditional 

analysis...

DUNE Preliminary

DUNE Preliminary
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Mock Data Spectrum

● If we had trusted the on axis 
near detector fit:

○ E𝛎
True⇒E𝛎

Obs would be wrong

○ For the correction oscillation 
hypothesis the tuned model would 
not predict the observed data
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Mock Data Spectrum

● If we had trusted the on axis 
near detector fit:

○ E𝛎
True⇒E𝛎

Obs would be wrong

○ For the correction oscillation 
hypothesis the tuned model would 
not predict the observed data

○ Would extract biased oscillation 
parameter values

■ We wouldn't know we were 
wrong

■ More data wouldn't help

● What if we ask PRISM?



L. Pickering    146

Let PRISM Have a Go

● PRISM Predicts far detector 
observation well even with 
incorrect interaction model!



L. Pickering    147

Let PRISM Have a Go

● PRISM Predicts far detector 
observation well even with 
incorrect interaction model!

○ The direct extrapolation of near 
detector data largely side-steps 
the modelling problem.
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PRISM Prediction

● Oscillation parameters can absorb 
poor interaction modelling.

● As expected, the traditional analysis 
would be badly biased.

● For this study, PRISM showed no such 
bias.

True 
value

True 
value
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DUNE-PRISM Summary
● DUNE-PRISM is the critical analysis 

innovation that will enable DUNE to 
meet its oscillation physics goals.

● A moveable near detector is now part of 
the DUNE design

● The DUNE-PRISM oscillation analysis will 
produce minimally biased results even 
without precise neutrino interaction 
models.



Thanks for listening

L. Pickering    
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DUNE-PRISM



L. Pickering    152

Flux Uncertainties
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● For each step of an oscillation analysis: 
○ flux systematic parameters may move
○ flux predictions change
○ must re-determine PRISM coefficients.

Flux Systematics

Example rate 
variation from 
flux parameter
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● For each step of an oscillation analysis: 
○ flux systematic parameters may move
○ flux predictions change
○ must re-determine PRISM coefficients.

● Different coefficients change the flux 
matching residual

○ The residual correction uses FD MC
○ This sets the scale that signal cross-section 

uncertainties enter.

Flux Systematics
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● Flux systematics introduce 
cross-section dependence at the 
level that the PRISM prediction and 
the FD prediction don't 'track' each 
other.

Flux Systematics
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● Flux systematics introduce 
cross-section dependence at the 
level that the PRISM prediction and 
the FD prediction don't 'track' each 
other.

● Take a given systematic variation 
and study how much the FD flux 
prediction and the PRISM prediction 
vary relative to nominal to each 
other.

○ e.g. one systematically varied hadron 
production universe.

○ e.g. 100 hadron production universes

Flux Systematics
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Other Oscillation Parameters
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Does it work everywhere? Try it yourself!

NuFit 4.0
T2K2018
NOvA2018

DUNE Preliminary
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Does it work everywhere? Try it yourself!

NuFit 4.0
T2K2018
NOvA2018

DUNE Preliminary

http://ursaminorbeta.org.uk/neut/osc/osc.html
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Analysis Flow: Disappearance

ND data

FD prediction

ND NC 
prediction
ND WSgnB
prediction
ND WLepB
prediction

ND 
background 
subtracted 

signal

ND corrected 
signal

FD data-driven 
signal 

prediction

Match residualMatch 
coefficients
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prediction
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Mis-match 
correction
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Efficiency + 
Resolution 
Correction

ND Data, ND MC, Corrected Data, FD MC

ND predicted 
right sign 
numu Flux

FD predicted 
right sign 
numu Flux
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Narrow-band fluxes
● Also of interest to construct 

narrow band flux 
measurements.

Gaussian
Best match
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Narrow-band fluxes
● Also of interest to construct fine 

band flux measurements.
○ Can be used to probe the ‘true’ 

reconstructed energy bias and 
inform simulation improvements

E. Smith, NOvA, NUFACT2019

Gaussian
Best match

DUNE Preliminary

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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Appearance
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Fixing for an appearance
● For appearance, cannot 

match ND 𝛎e ⇒ FD 𝛎e
● Instead: 

○ Use ND 𝛎𝛍 sample
○ Build appeared FD 𝛎e flux 

FD 𝛎𝛍→𝛎e

FD 𝛎𝛍→𝛎𝛍
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Fixing for an appearance
● For appearance, cannot 

match ND 𝛎e ⇒ FD 𝛎e
● Instead: 

○ Use ND 𝛎𝛍 sample
○ Build appeared FD 𝛎e flux 

● Have to correct for 
electron/muon 
reconstruction & 
cross-section differences.

FD 𝛎𝛍→𝛎e

FD 𝛎𝛍→𝛎𝛍

DUNE Preliminary

DUNE Preliminary
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ND nue fits

ND  𝛎e/𝛎𝛍

● Sample ND 𝛎e flux while 
scanning off axis angle.

● 𝛎e produced in 3-body decay: 
relative rate rises off axis.

○ Match ND 𝛎𝛍 to ND 𝛎e

● Use to check simulation of 
cross-section and 
reconstruction for 𝛎𝛍 and 𝛎e in 
a similar flux

DUNE Preliminary
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ND fits
● Sample ND 𝛎e flux while 

scanning off axis angle.
● 𝛎e produced in 3-body decay: 

relative rate rises off axis.
○ Match ND 𝛎𝛍 to ND 𝛎e
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ND  𝛎e/𝛎𝛍

DUNE Preliminary

DUNE Preliminary



L. Pickering    179

Near Far Differences
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● Want to understand selection efficiency in an 
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● Want to understand selection efficiency in an 
as-model-independent-way-as-possible.

○ For a selected data event, can estimate the probability of selecting an equivalent 
event geometrically.

○ Not just a model-based average as in current generation analyses

Geometric Efficiency Estimate
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Vertex selection region
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Geometric Efficiency Estimate

● Exploit symmetry of interactions in LAr ND:
○ Translation around an off axis bin
○ Rotation around beam axis.

● How often would we have selected this 
event?

○ Does a rotation move observed hadronic deposits 
into the veto region?

○ For the Muon, train an NN to predict 
containment/selection by tracker.

○ Average over many toys to estimate efficiency.

● Ongoing work at Stony Brook and CERN, 
see talk by Cris Vilela for more details.

https://indico.fnal.gov/event/22617/contributions/197804/attachments/135051/167328/cv_DataDrivenEfficiency_20200924.pdf
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● Exploit symmetry of interactions in LAr ND:
○ Translation around an off axis bin
○ Rotation around beam axis.

Hadronic Shower Selection

XY View YZ View

C. Vilela
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Hadronic Shower Selection

C. Vilela
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Muon Selection Efficiency

C. Vilela
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ND/FD Efficiency Differences
● There will be some regions of kinematical 

phase space that are not well sampled by the 
near detector.
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ND/FD Efficiency Differences
● There will be some regions of kinematical 

phase space that are not well sampled by the 
near detector.

○ High energy/very inelastic events result in large 
showers that are rarely well contained by the ND

○ Never get a good constraint on such events from the 
data.

○ This is true regardless for any analysis, not just PRISM.

● Can apply event-by-event efficiency 
algorithms on FD data and determine which 
events are not well-constrained by the ND

○ Separate these into a separate sample which is 
compared to FD MC (as in a traditional analysis).

C. Vilela

WIP
>10%   
ND Eff.

<10%   
ND Eff.
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𝛎PRISM

● DUNE-PRISM born out of earlier work to build 
a mobile Water Cherenkov detector in the 
J-PARC beam for Hyper-K.

● J-PARC PAC Proposal

arXiv:1412.3086 [physics.ins-det]

4o

1o

50
 m

https://j-parc.jp/researcher/Hadron/en/pac_1507/pdf/P61_2015-5.pdf
https://arxiv.org/abs/1412.3086
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Hand Picked Fake Data
C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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Multivariate ReWeighting
● Reweighting/Fake data 

technique that is being used 
more on T2K and DUNE 
(originated in Collider land).

● Get BDT to give you event 
weights that make your 
nominal MC look like 
something else in many 
distributions at once (but get 
the correlations correct).

C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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Missing Proton Fake Data C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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More Observables
● There are limits to this 

technique, but they’re much 
further off than 
multi-dimensional histogram 
reweighting.

● It’s still reweighting, cannot 
change total phase space.

● Doesn’t always produce a 
consistent model, for medium 
sized sets, weights can be 
noisey.
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Horn Current
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Flux Mismatch Correction

● Have to correct for this mismatch 
by using far detector simulation:

○ Want to minimize model assumptions 
wherever possible…

● This happens because no off axis 
fluxes peak higher than on axis

DUNE Preliminary

DUNE Preliminary

But what if we could use some that did 
peak higher?
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Special Horn Current Runs

● If we vary the current in the magnetic horns, we change their 
momentum acceptance
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Special Horn Current Runs

● If we vary the current in the magnetic horns, we change their 
momentum acceptance:

○ For a lower current, some higher energy pions might not be well focussed...

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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Special Horn Current Runs
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Ratio to 293 kA● Small variations are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 
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Special Horn Current Runs

Ratio to 293 kA● Small variation are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 

● 280 kA looks useful
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Special Horn Current Runs

● Including an on-axis run at 
280 kA drastically improves 
the flux matching!

○ Much less far detector model 
correction required.
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Parent Species Off axis.
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Special Horn Current Runs

● Can make flux predictions under 
different beam conditions:

○ e.g. Varied horn currents

● Seems to really change the game 
in terms of reducing the need for 
FD MC!

● Only need an on-axis sample: 
minimal disruption of FD data 
taking.

D. Douglas, T. Lord


