Dipole moments and CLFV Joseph Price, University of Liverpool PPAP November 20th, 2020

Motivation

- High intensity muon beams herald new era of precision measurements to probe SM
- MDM, EDMs and CLFV offer new avenues for BSM models

Joe Price I g-2 and CLFV 24/09/19

PSI: Mu3e

UK involvement in all 3

Fermilab: g-2, Mu2e

g-2 experiment at FNAL

3 24/09/19 Joe Price I g-2 and CLFV

- magnetic storage ring
- precession and cyclotron frequencies

• If
$$g = 2, \omega_a = 0$$

•
$$g \neq 2, \omega_a \approx (e/m_\mu)a_\mu B$$

Precession plot

- Data from subset of run 1
- ~1 billion positrons
- 24 parameter fit
- Includes terms that account for beam oscillations...

Tracking detectors

- Tracking detectors (UK built) major improvement w.r.t. BNL
- Precise measurement of beam
- Beam oscillation frequencies can be removed from fit for more accurate measurement

Run 1 Overview

- Data taking period: April—July 2018
- Accumulated ~ 1.1 x BNL statistics (after data quality cuts) — $\delta \omega_a$ (stat) ~ 450 ppb
- Field uniformity ~ 2x better than BNL

- New result imminent based on run 1 data
- Accuracy comparable to BNL
- See if discrepancy between theory and experiment holds...

Run 2 and 3 Overview

- More data taken during '19,'20
- Field uniformity expected to be similar to run 1

Azimuthal average 250-ppb contours

Can take 5% of a BNL per day! Runs 4 and 5 approved for 21xBNL target

Charged Lepton Flavour Violation (CLFV)

CLFV: motivation

arxiv 1303.4097

24/09/19 Joe Price I g-2 and CLFV 10

CLFV: channels

- Require muons p < 50 MeV and stopping target (thickness ~1mm)
- Look for $\mu \rightarrow e$ in 3 channels, UK involvement in 2

Can use high intensity muon beams to look for charge lepton flavour violation

$\mu^- N \rightarrow e^- N$ Mu2e and COMET

- Measure rate of conversions to nuclear muon capture (R_{ue}(AI))
- Signal: monoenergetic electron at $E_e = 104.394$ MeV/c
- COMET Phase I will improve current limit by 2 orders of magnitude

Enhancement in sensitivity to CLFV due to small orbital radius of trapped μ • Mu2e and COMET Phase II will both get to $R_{ue}(AI) = 7 \times 10^{-17}$ (@90% CL)

100

Mu3e $\mu^+ \rightarrow e^+ e^+ e^-$

- Located at PSI
- Signal: 3 simultaneous e (1MeV < E < $m_{\mu}/2$), same vertex
- Accidental and can be kept down with energy and vertex resolution
- Aiming for BR($\mu^+ \rightarrow e^+ e^+ e^-$) < 5 × 10⁻¹⁵ (@90% CL) in Phase I

13 24/09/19 Joe Price I g-2 and CLFV

$E < m_{\mu}/2$), same vertex ith energy and vertex resolution $^{-15}$ (@90% CL) in Phase I

 $\sigma(t) < 1 \text{ ns}$

- 10 10⁴ improvement in current limits in all 3 channels within 10 years
- upgrades, and possible tau flavour violating experiments

Physics program extends beyond the next 10 years with COMET and Mu2e

EDM Measurements

- EDMs offer a source of CP violation
- Search for a μEDM underway at FNAL (g-2), publish first results after MDM measurement
- UK involvement in EDM:
 - Liverpool/Manchester/UCL: muon
 - Imperial: electron
 - Sussex/RAL: neutron
 - Future proton storage ring measurement?
- New EDM-UK group meeting set up to explore common goals and complimentary techniques

Summary

The Fermilab Muon g-2 Experiment

- Completed Run 1: result planned for 2021. Statistic ~1.1 x BNL
- Run 2 and 3 completed March 2020 another ~4 x BNL, Run 4 begins next month
- Aiming for $>5\sigma$ result (if central value remains the same as BNL) in 2021

Charged Lepton Flavour Violation

- COMET: beam in Feb 2021, full Phase-I running Spring 2023
- Mu2e: commissioning beam 2023 (after g-2 has ended)
- **Mu3e**: Test beam in April combining UK-trackers and with Scintillators
 - Operation with complete phase-I detector expected in 2023
- COMET upgrade (PRISM) and Mu2e upgrade (Mu2e-II) to push sensitivity by > factor of 10
- Mu3e-II reaches 10⁴ sensitivity, factor of 20 improvement on Phase-I

17 24/09/19 Joe Price I g-2 and CLFV

18 24/09/19 Joe Price I g-2 and CLFV

Standard Model Components of muon g-2

Joe Price I g-2 and CLFV 24/09/19

Standard Model Uncertainties

aSM

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

- The SM value of a_{μ} is dominated by QED
- But its uncertainty is dominated by Hadronic contributions

Joe Price | g-2 and CLFV 24/09/19

Split into Hadronic Vacuum Polarisation (HVP) & Hadronic Light by Light (HLbL)

a_µ Theoretical Status

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of (-93 \pm 13) x 10⁻¹¹ lattice making big strides

ь. <i>J</i>)	6933 ± 25	PRD 97 1
HVP (NLO)	-98.7 ± 0.7	EPJ C 7
HVP (NLO)	-98.2 ± 0.4	PRD 97 1
HVP (NNLO)	12.4 ± 0.1	PLB 734
	101 ± 26	PLB 73 EPJ Web Cor
Builds confidence in HLbL term HVP (LO): Lowest-Order Hadro $91\ 818 \pm 43$ $91\ 821 \pm 36$ Recent data-dr 		
• Progress on the lattice $\delta a_{\mu}^{HVP} \sim 1 - 2\%$ in a feature	e: Calculations at physicant with with the second s	al π mass; go ι e+e- data)

dominance calcs [PRD 65 073034

EDM measurements at muon storage rings

- Precession plane tilts towards center of ring
- Causes an increase in muon precession frequency

 Oscillation is 90° out of phase with the a_{μ} oscillation

- JPARC g-2/EDM is more sensitive possible 100 x improvement

24/09/19 Joe Price | g-2 and CLFV

10 x improvement to current limit expected at FNAL - trackers improved since BNL

Measuring the muon spin...

 e⁺ preferentially emitted in direction of muon spin $s_{
u_e}$ μ^+

 p_{ν_e}

 s_{e^+}

 Asymmetry is larger for high momentum e+ Optimal cut at E~1.8 GeV

Run 1 Analysis Status: ω_a

Joe Price I g-2 and CLFV 24/09/19 24

Simple five-parameter fit

Mu2e Solenoid completed (assembled in old CDF hall)

25 24/09/19 Joe Price I g-2 and CLFV

COMET timeline

- Early 2020: Proton beam line to COMET area completed February 2021: 8 GeV-running tests and inter-bunch extinction measurements upgrades transport solenoid etc. Spring 2023: Phase-I data-taking
- Phase-II on KEK Roadmap 2021 **Development of Phase-II sensitivity** improvements to approximately a factor 10 better than original design goal to $O(10^{-18-19})$

Mid 2021-Mid 2022: Long shutdown for COMET construction and Main Ring

Autumn 2022: "Phase-a" running with full proton beam line, target, muon

COMET UK

- Significant roles in planning all data-taking campaigns; intend to be directly involved in all, including February 2021 runs
- Leads software and computing effort for collaboration
- Pioneering incorporation of machine-learning techniques into simulation, reconstruction and DAQ designs and firmware
- Working closely with several Malaysian groups on all of the above via Newton Fund UK Collaboration Board Chair since 2013

Background events in main Phase-I detector produced using a Generative Adversarial Network (M. Dubouchet)

