



## Kaons: NA62 and beyond

### Evgueni Goudzovski

(University of Birmingham)

### Outline:

- 1) Introduction: rare kaon decays
- 2) NA62 status and UK leadership
- 3) The flagship  $K^+ \rightarrow \pi^+ \nu \nu$  measurement
- 4) Short-term and long-term plans
- 5) Summary

PPAP community meeting 20 November 2020

### $K \rightarrow \pi \nu \nu$ in the Standard Model



"Golden modes": ultra-rare decays, precise SM predictions.

- Aaximum CKM suppression:  $\sim (m_t/m_W)^2 |V_{ts}^*V_{td}|$ .
- $\clubsuit$  Hadronic matrix element extracted from measured **BR**(K<sub>e3</sub>) via isospin rotation.
- Complementarity to measurements in the B-sector.
- An essential scientific activity according to European strategy update 2020.

| Mode                            | Expected BR <sub>sm</sub>                                     | Experimental status                |
|---------------------------------|---------------------------------------------------------------|------------------------------------|
| $K^+ \rightarrow \pi^+ \nu \nu$ | (8.4±1.0)×10 <sup>-11</sup>                                   | BR=(11±4)×10 <sup>-11</sup>        |
|                                 |                                                               | (NA62 Run 1 data: 20 candidates)   |
| $K_L \rightarrow \pi^0 \nu \nu$ | (3.4±0.6)×10 <sup>-11</sup>                                   | BR<300×10 <sup>-11</sup> at 90% CL |
|                                 |                                                               | (KOTO 2015 data)                   |
| <b>PP</b> • Buras at al         | IHER 1511 (2015) 32: trop lovel determination of CKM elements |                                    |

BR<sub>SM</sub>: Buras et al., JHEP 1511 (2015) 33; tree-level determination of CKM elem

E. Goudzovski / PPAP meeting, 20 Nov 2020

# $K \rightarrow \pi \nu \nu$ beyond the SM

- ✤ Correlations between BSM contributions K<sup>+</sup> and K<sub>L</sub> BRs. [JHEP 1511 (2015) 166]
- Need to measure both K<sup>+</sup> and K<sub>L</sub> to discriminate among BSM scenarios.
- Correlations with other observables ( $\epsilon'/\epsilon$ ,  $\Delta M_{K}$ , B decays). [arXiv:2006.01138]



# NA62 status and UK leadership

### NA62 experiment at CERN



### NA62 status: Run 1 completed



- Commissioning run 2015: minimum bias data (~3×10<sup>10</sup> protons/pulse).
- Physics run 2016 (30 days, ~1.3×10<sup>12</sup> ppp): 2×10<sup>11</sup> useful K<sup>+</sup> decays.
- Physics run 2017 (160 days, ~1.9×10<sup>12</sup> ppp): 2×10<sup>12</sup> useful K<sup>+</sup> decays.
- Physics run 2018 (217 days, ~2.3×10<sup>12</sup> ppp): 4×10<sup>12</sup> useful K<sup>+</sup> decays.
- Run 2 to start after the LS2 in 2021 (~3×10<sup>12</sup> ppp).

### UK leadership in NA62

### Key UK roles in the Collaboration:

- The spokesperson and a deputy spokesperson.
- Two (out of four) physics analysis conveners.
- Three (out of 12) Editorial Board members.
- Full responsibility for the KTAG subdetector.
- Coordination of the High Level Trigger.
- Leadership in distributed computing (in-kind support via GridPP), central MC productions, and key parts of offline software.

### Firm UK leadership in NA62 Run 1 physics analysis:

- 75% of the NA62 physics papers published 2018–20 have UK corresponding authors, including
  - ✓ K<sup>+</sup>→ $\pi^+\nu\nu$  measurement and search for K<sup>+</sup>→ $\pi^+S$ ;
  - $\checkmark$  searches for lepton number violating K<sup>+</sup> decays;
  - $\checkmark$  searches for heavy neutral lepton production in K<sup>+</sup> decays.



# NA62: $K_{\pi\nu\nu}$ signal regions



Main K<sup>+</sup> decay modes (>90% of BR) rejected kinematically.

Resolution on  $m_{miss}^2$ :  $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$ .

Measured kinematical background suppression:

 $\checkmark K^+ \rightarrow \pi^+ \pi^0: 1 \times 10^{-3};$  $\checkmark K^+ \rightarrow \mu^+ \nu: 3 \times 10^{-4}.$ 

Further background suppression:

- ✓ PID (calorimeters & Cherenkov detectors):
  μ suppression 10<sup>-8</sup>,
  π efficiency = 64%.
- ✓ Hermetic photon veto:  $\pi^0 \rightarrow \gamma\gamma$  rejection factor = 1.4×10<sup>-8</sup>. 8



### $K^+ \rightarrow \pi^+ \nu \nu$ : historical perspective

#### Time evolution of BR(K<sup>+</sup> $\rightarrow \pi^+ \nu \nu$ )



### Short-term plans: NA62 Run 2



KOTO result with 2015 data:  $BR(K_L \rightarrow \pi^0 \nu \nu) < 3.0 \times 10^{-9}$ PRL 122 (2019) 021802

### NA62 Run 2 (2021–24):

- Improved trigger: higher beam intensity.
- Optimized beamline, new veto detectors: reduced upstream background, higher acceptance.
- Fourth kaon beam tracker station.
- Aim to reach O(10%) precision on K<sup>+</sup>→π<sup>+</sup>νν.

# Long-term plans

A possible next step after LS3 (~2028): an in-flight  $K^+ \rightarrow \pi^+ \nu \nu$  experiment with ×4 beam intensity, aiming at ~5% precision.

 ✓ Challenge: 20–40 ps time resolution for key detectors to keep random veto under control, while maintaining other performances.

#### New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm<sup>2</sup>; efficiency: >99% per plane (incl.fill factor); material budget : 0.3–0.5% X<sub>0</sub>; beam Intensity: 3 GHz on 30×60 mm<sup>2</sup>; peak intensity: 8.0 MHz/mm<sup>2</sup>.



A current NA62 GTK station

E. Goudzovski / PPAP meeting, 20 Nov 2020

#### New STRAW spectrometer:

operation in vacuum; straw length/diameter: 2.2 m/5 mm; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); material budget: 1.5%X<sub>0</sub>.



A current NA62 STRAW chamber

### Summary

#### UK participation in NA62 since 2011:

- ✓ Funding during the construction phase:
  ERC Advanced Grant & Starting Grant, Royal Society Fellowships.
- ✓ Exploitation phase funded by the STFC Consolidated Grant.
- $\checkmark$  Consolidation of leadership via two STFC Rutherford fellowships.
- ✓ Strong UK leadership: excellent value for STFC investment.

#### Analysis of Run 1 (2016–18) data:

- ✓ UK-led first observation of the K<sup>+</sup>→ $\pi^+\nu\nu$  decay: BR(K<sup>+</sup>→ $\pi^+\nu\nu$ ) = (11±4)×10<sup>-11</sup>, based on 20 candidates.
- $\checkmark\,$  A broad UK-led rare decay and hidden-sector programme.

### Next steps:

- ✓ Run 2 (2021–24) approved by CERN management and SPSC: upgraded detector, trigger and analysis to reach O(10%) precision on BR(K<sup>+</sup>→ $\pi^+\nu\nu$ ) by 2025.
- ✓ A high-intensity (NA62x4) K<sup>+</sup> experiment is foreseen after LS3; NA62-UK are considering a future Sol.





# **KOTO** at J-PARC: $K_L \rightarrow \pi^0 \nu \nu$

- Primary beam: 30 GeV protons; 50 kW = 5.5×10<sup>13</sup> p/5.2 s (in 2019).
- Neutral "pencil" beam (at 16°):
  <p(K<sub>L</sub>)> = 2.1 GeV, with 50%
  in the (0.7–2.4) GeV range.
- Beam composition:
  K<sub>L</sub>, neutrons, photons.
- Fiducial decay region length: 3 m.
- Csl calorimeter + hermetic photon veto.







E. Goudzovski / PPAP meeting, 20 Nov 2020

### **KOTO** status



- 3×10<sup>19</sup> POT collected.
- ✤ Final 2015 result: BR(K<sub>1</sub> $\rightarrow \pi^0 \nu \nu$ )<3.0×10<sup>-9</sup> at 90% CL. PRL 122 (2019) 021802
- 4×10<sup>19</sup> POT collected.
- Preliminary results reported in 2019/20.

### 2019 run

Analysis in progress.

E. Goudzovski / PPAP meeting, 20 Nov 2020

### KOTO: 2016–18 data

#### Preliminary results (N.Shimizu at ICHEP 2020)

0

 $P_{T}(\pi^{0})$  vs  $Z_{vertex}$ 

Single-event sensitivity:  $BR_{SFS} = 71 \times 10^{-11} (= 20 \times BR_{SM})$ 

| Aain backgrounds: |                                   |                   | -                 |                                                                                                                        |
|-------------------|-----------------------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|
| source            |                                   | #BG (90%<br>C.L.) | #BG (68%<br>C.L.) | $\begin{array}{c c} \pm 0.04 \\ \pm 0.00 \\ \hline \\ K_{I} \rightarrow \pi^{0} \vee \nu \text{ endpoint} \end{array}$ |
| K+/-              | $K^{\pm} \to \pi^0 \pi^{\pm}$     | 0.09±0.09         | 0.09±0.09         | a 300<br>250 1.01 ± 0.16 (whole blinded region)                                                                        |
|                   | $K^{\pm} \to \pi^0 e^{\pm} \nu$   | 0.90±0.27         | 0.90±0.27         |                                                                                                                        |
|                   | $K^{\pm} \to \pi^0 \mu^{\pm} \nu$ | <0.21             | <0.12             |                                                                                                                        |
| Neutron           | Upstream $\pi^0$                  | $0.001 \pm 0.001$ | $0.001 \pm 0.001$ | $150$ . $150$ . $100$ $\pm 0.08$                                                                                       |
|                   | Hadron cluster                    | $0.02 \pm 0.00$   | $0.02 \pm 0.00$   | $\begin{array}{c c} 100 \\ 473.5 \pm \\ 0 \end{array}  K_{L} \rightarrow 3\pi^{0} \text{ endpoint} \end{array}$        |
|                   | CV-pi0                            | <0.10             | <0.05             | 1.2 0.08 ± 0.05 0.00 ± 0.00                                                                                            |
|                   | CV-eta                            | $0.03 \pm 0.01$   | $0.03 \pm 0.01$   | °≈ 1000 2000 3000 4000 5000 6000                                                                                       |
| Total             | central value                     | $1.05 \pm 0.28$   | $1.05 \pm 0.28$   | Z ( $\pi^0$ decay vertex) [m]                                                                                          |
|                   |                                   |                   |                   |                                                                                                                        |

heV/c]

**500**E

450

After a blind analysis, four candidate events in the signal region.

- One event demonstrated to be background (timing in a veto counter).
- Background estimate (revised):  $1.05\pm0.28$  events, mainly from K<sup>±</sup> decays. \*\*
- The result on BR( $K_1 \rightarrow \pi^0 vv$ ) is to be reported soon. \*\*