

ATLAS

Mark Owen on behalf of ATLAS UK PPAP Meeting 20 November 2020

ATLAS

- General purpose detector with wide ranging physics programme: QCD, EW, Higgs, Top, B, Heavy Ion, Searches.
 - 968 papers to date (~7 / month).
 - Data analysis is not finished when the data is on tape big effort ongoing to exploit the run-2 data (67 papers use the full run-2 dataset).
 - In parallel, preparing for run-3 and the upgrade of ATLAS for HL-LHC.

ATLAS

- General purpose detector with wide ranging physics programme: QCD, EW, Higgs, Top, B, Heavy Ion, Searches.
 - 968 papers to date (~7 / month).
 - Data analysis is not finished when the data is on tape big effort ongoing to exploit the run-2 data (67 papers use the full run-2 dataset).
 - In parallel, preparing for run-3 and the upgrade of ATLAS for HL-LHC.

ATLAS UK

- UK is one of the leading countries in ATLAS.
- Consistently hold leadership roles across all areas of the experiment above our weight (10.5% of authors).
- Recent roles held by UK people in the last year:
 - Conveners of 6/10 physics groups (typically >200-300 physicists in each group).
 - Chair of collaboration board (~180 institutes).
 - Trigger coordinator.
 - ITK deputy project leader, ITK pixels project leader.
 - SCT project leader.
 - Deputy run coordinator.
- Impossible to cover the huge breadth of work done by >500 ATLAS UK people in 20 mins.

	2021				2022				2023				2024				2025			
	Q1	Q2	Q3	Q4																
LHC Injectors	LS2	-											1					L	S3	

Analysis of run-2 data

Install & commission phase-1 upgrades

Analysis of run-2 data

Maintain & operate detector

Install & commission phase-1 upgrades

Analysis of run-2 data

Maintain & operate detector

Install & commission phase-1 upgrades

Analysis of run-2 data

Build phase-2 upgrades

Maintain & operate detector

Install & commission phase-1 upgrades

Analysis of run-2 data

Build phase-2 upgrades

Analysis of run-3 data

Outline

- Recent physics highlights
- Preparations for run-3
- Upgrading ATLAS for HL-LHC

UK continues to lead many activities in the experiment Everything shown here has strong UK leadership

Physics highlights

Η→γγ

• Full dataset allows us to probe the different Higgs production modes:

Η→γγ

• Full dataset allows us to probe the different Higgs production modes:

2x improvement in sensitivity above luminosity increase for VH and top.

Vital to have strong level of effort to exploit the run-2/3 data.

ATLAS

Lepton Universality

- Legacy result from LEP:
 - $Br(W \rightarrow \tau v)/Br(W \rightarrow \mu v) = 1.070 \pm 0.026$
 - 2.7σ away from 1.
- Exploit huge LHC tt production rate to get sample of 500k muons.

Lepton Universality

arXiv:2007.14040, submitted to Nature Physics

e; μ;

- Legacy result from LEP:
 - $Br(W \rightarrow \tau v)/Br(W \rightarrow \mu v) = 1.070 \pm 0.026$
 - 2.7σ away from 1.
- Exploit huge LHC tt production rate to get sample of 500k muons.

Lepton Universality

- Legacy result from LEP:
 - $Br(W \rightarrow \tau v)/Br(W \rightarrow \mu v) = 1.070 \pm 0.026$
 - 2.7σ away from 1.
- Exploit huge LHC tt production rate to get sample of 500k muons.

Factor 2 improvement in precision over LEP

Searching for new physics

• Two examples of recent ATLAS searches:

Search for new invisible particles in mono-jet events

First time searching for lepto-quarks with "crossgeneration" decays

Searching for new physics

• Two examples of recent ATLAS searches:

Searching for new invisible particles in mono-jet events

Searching for lepto-quarks with "cross-generation" decays

Searching for new physics

• No evidence yet for new physics, but many channels have only fully analysed 36 fb-1 - ~factor of 10 in luminosity to go to end of run-3.

ATL AC Dualination

A Ju	TLAS SUSY Sea	rches*	- 95%	% Cl	L Lo	wer Limits						ATLAS Preliminary
	Model	s	ignatur	e j	<i>L dt</i> [fb ⁻	⁻¹] Ma	ss limit					Reference
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [10× Degen.] <i>q</i> [1×, 8× Degen.] 	0.43	0.71	1	1.9	m($\tilde{\chi}_{1}^{0}$)<400 GeV m(\tilde{q})-m($\tilde{\chi}_{1}^{0}$)=5 GeV	ATLAS-CONF-2019-040 1711.03301
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	100		Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e,µ	2-6 jets		139	ĝ				2.2	m(\tilde{t}_{1}^{0})<600 GeV	ATLAS-CONF-2020-047
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	ee,µµ	2 jets	E _T miss	36.1	8			1.2	1.07	m(g)-m($\tilde{\chi}_{1}^{0}$)=50 GeV	1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1$	SS e, μ	6 jets	LT	139	g ĝ			1.15	1.97	m($\tilde{\chi}_1$) <600 GeV m($\tilde{\chi}_1$)=200 GeV	1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	Î Î			1.25	2.25	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple		36.1 139	<i>b</i> ₁ Forbidden <i>b</i> ₁	Forbidden	0.9	-	m($\tilde{\chi}_{1}^{0}$)=200 ($m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ GeV, $m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{+})=1$	1708.09266, 1711.03301 1909.08457
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	139 139	b_1 Forbidden b_1		0.13-0.85	0.23-1.35	$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0.000 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0.0000 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0.0000000000000000000000000000000000$		1908.03122 ATLAS-CONF-2020-031
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 e, µ	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1			1.25		m($\tilde{\chi}_{1}^{0}$)=1 GeV	ATLAS-CONF-2020-003, 2004.14060
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 \tilde{t}_1$	1 e,µ	3 jets/1 b	ET ET	139	i1 7	0.44-0.5	9	1 16		m(ℓ ₁ ⁰)=400 GeV	ATLAS-CONF-2019-017
	$\tilde{h}\tilde{h}, \tilde{h} \rightarrow c\tilde{X}^{0}/\tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{X}^{0}$	0 e.u	2 c	E_T E_T^{miss}	36.1	č		0.85	1.10		m(ž ⁰)=0 GeV	1805.01649
	ini, il soll'ec, e soll	0 e. u	mono-iet	Emiss	36.1		0.46				$m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1^0)=50 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1^0)=5 \text{ GeV}$	1805.01649
	z z z z ⁰ z ⁰ . zu z ⁰	1-2	1 4 5	Fmiss	120	7		0.067	1 10		m(r), r) m(r) = 0 GeV	SUSV 2019 00
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t} \chi_2, \chi_2 \rightarrow Z/\hbar \chi_1$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,µ	1 <i>b</i>	E_T^{miss}	139	Ĩ ₂	Forbidden	0.86	-1.10	$m(\tilde{\chi}_1^0)$	=360 GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=40$ GeV	SUSY-2018-09
	${\widetilde{\chi}}_1^{\pm} {\widetilde{\chi}}_2^0$ via WZ	3 е, µ ее, µµ	≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205	C	0.64	_		$m(\tilde{k}_{1}^{\pm})=0$ $m(\tilde{k}_{1}^{\pm})-m(\tilde{k}_{1}^{0})=5 \text{ GeV}$	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e,µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	0.42				$m(\tilde{\chi}_{1}^{0})=0$	1908.08215
*	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 e, µ	$2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden		0.74			m($\tilde{\chi}_{1}^{0}$)=70 GeV	2004.10894, 1909.09226
i V	$\tilde{\chi}_1^* \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e,µ		E _T miss	139		0.40.0.00	1.0			$m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{\ell}_{1}^{\pm})+m(\tilde{\ell}_{1}^{0}))$	1908.08215
- 5	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau X_1$ $\tilde{t}, p \tilde{t}, p \tilde{t} \rightarrow \ell \tilde{Y}^0$	2 T 2 e.u	0 iets	E _T E ^{miss}	139	7 I'L, 'R,LI U.10-U.3	0.12-0.39	0.7			$m(\chi_1)=0$ $m(\chi_1^0)=0$	1911.06660
	L,RCL,R, C-CC1	ее, µµ	≥ 1 jet	E_T^{Tmiss}	139	ℓ ℓ 0.256		0.7			$m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 139	Й 0.13-0.23 Й	0.55	0.29-0.88			$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 ATLAS-CONF-2020-040
li ved cles	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} = 0.15 $	0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
arti	Stable g R-hadron		Multiple		36.1	ĝ				2.0		1902.01636,1808.04095
20	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	m($\tilde{\chi}_{1}^{0}$)=100 GeV	1710.04901,1808.04095
RPV	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.6	25 1.0	5		Pure Wino	ATLAS-CONF-2020-009
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ	0 into	rmiss	3.2	$\tilde{\nu}_{\tau}$		0.00	1.00	1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\chi_1 \chi_1 / \chi_2 \rightarrow W W / Z \ell \ell \ell \ell \nu \nu$ $\tilde{a} \tilde{a} \rightarrow a a \tilde{v}^0, \tilde{v}^0 \rightarrow a a a$	4 e,µ	-5 large- <i>R</i> is	ets.	36.1	$\tilde{x}_1/\tilde{x}_2 = [A_{133} \neq 0, A_{12k} \neq 0]$ $\tilde{a} = [m(\tilde{x}^0) = 200 \text{ GeV} + 1100 \text{ GeV}]$		0.82	1.33	19	m(X1)=100 GeV	1804.03602
	$gg, g \rightarrow qqx_1, x_1 \rightarrow qqq$		Multiple	010	36.1	$\tilde{g} = [\mathcal{X}'_{112}=2e-4, 2e-5]$		1.0	5	2.0	m($\tilde{\chi}_{1}^{0}$)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	<i>i</i> [<i>X</i> ^{''} ₃₂₃ =2e-4, 1e-2]	0.55	1.0	5		$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		139	ĩ	Forbidden	0.95			m($\tilde{\chi}_{1}^{\pm}$)=500 GeV	ATLAS-CONF-2020-016
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2	2 jets + 2 l	6	36.7	$\hat{t}_1 [qq, bs]$	0.42 0.6	61	0.4.4.4		DD/2	1710.07171
	$i_1i_1, i_1 \rightarrow qt$	2 e,μ 1 μ	2 b DV		136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k}	<3e-9]	1.0	0.4-1.45	1.6	$BR(\tilde{t}_1 \rightarrow q\mu) = 100\%$, $cos\theta_l = 1$	2003.11956
									_			
						L			1			l
*Only	Inly a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]											

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

.

* * *

. . .

†Small-radius (large-radius) jets are denoted by the letter j (J).

Preparing for run-3

Preparing for run-3

- Run-3: higher average pileup than run-2 & hopefully higher energy:
 - L1 calorimeter: all new hardware with better performance.
 - HLT & offline software: new framework for fully-parallel processing.
 - SCT: Maintenance & operation of ~16 year-old system.
 - Muon: new detectors to cope with trigger rates.

Run-2 typical Run-3 plan

L1 Calorimeter Trigger

- Improved granularity of calorimeter data -> better performance.
- UK responsible for electron & tau finding board & readout modules for full system.

 Important to have sufficient effort for all the software needed to actually run the system!

Software trigger & offline computing

- Trend in modern computing: more cores and less memory / core.
- Motivated rewrite of software framework to support parallel processing.

- Good progress: both trigger and offline reconstruction are running with n(threads) > 1.
- Computing system must be as efficient as possible to cope with run-3 demands.
- Run-4 will mean a step-change for computing need additional effort looking to meet this through SWIFT-HEP bids and working in collaboration through IRIS-HEP

Upgrading ATLAS for HL-LHC

The successful completion of the high-luminosity upgrade of the machine and detectors **should remain the focal point of European particle physics**, together with continued innovation in experimental techniques. The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited.

(European strategy update 2020)

Physics at HL-LHC with ATLAS

- HL-LHC aims to provide 10x more luminosity than LHC.
- Headline goals are Higgs self-coupling, precision Higgs measurements and extending new physics search reach.

 Requires a detector performing as well as current ATLAS, in much higher pile-up environment.

Upgrading for HL-LHC

- All new Inner Tracking Detector ITk
 - Strips and Pixels
- Muon system upgrade.
- Upgrades to the LAr & Tile Calorimeters
 - & associated Triggering
- Upgraded TDAQ System
 - DAQ
 - Event triggering & filtering,
- Computing
 - Offline software
 - Simulation & reconstruction
- High Granularity Timing Detector HGTD

ITK

ITK Strips

- Barrel strip detector constructed of staves, with ~10x10cm modules, strip pitch ~70µm. UK responsible for ~220 (half) of the staves.
- Design & prototyping largely complete, pre-production next year.

ITK Pixel

• Pixel end-cap detectors constructed from half-rings, cell size 50 x 50 μ m² or 25 x 100 μ m². UK responsible for 1 of 2 endcaps.

- Prototype ring-0 built & operated. Lessons learned incorporated into final design.
- Various design features under study & final chip is to be produced.

Trigger & Data Acquisition

- Keep two level trigger system, output rates up by x10.
- Need improved hardware and software triggers to cope with rates:

UK responsibilities & leadership

Trigger & Data Acquisition

- Keep two level trigger system, output rates up by x10.
- Need improved hardware and software triggers to cope with rates:

Hardware Track Trigger

- Track finding implemented in AM ASICs will provide tracks to be used in the software stage of the trigger (EF).
- Goals:
 - Regional: 10% of detector @ 1 MHz
 - Global: full detector @ 100 kHz

• Status: testing HW demonstrators and submitting smaller but fully functional version of final ASIC.

Summary

- ATLAS UK continues to produce important physics results & make vital contributions to the future of ATLAS.
- Next 5 years look to be as busy as any 5 before.

Backup

L1 evolution decision

• TDR included potential evolution from L0+HLT to L0+L1+HLT system, with tracks reconstructed at L1.

• Recent decision: do not proceed with the evolved setup, will build only the baseline system.

