Hashing and Metric Learning

for particle tracking

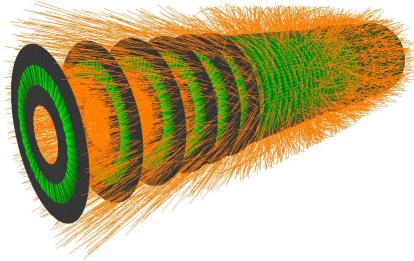
Rutherford Appleton Laboratory Seminar, 21st Oct 2020

<u>Sabrina Amrouche</u>, T.Golling (UniGe) A.Salzburger, N.Calace, M.Kiehn (CERN)

<u>c.amrouche@cern.ch</u>

The context

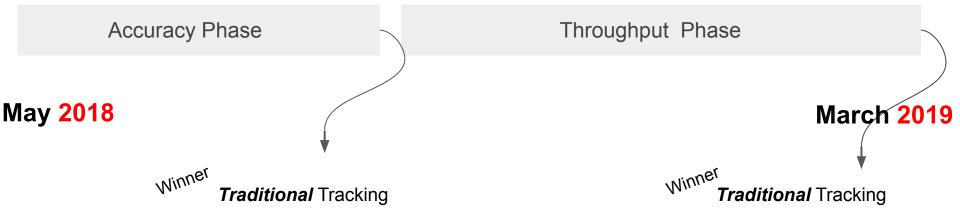
Combinatorial approach Try all combinations, > 90% are discarded



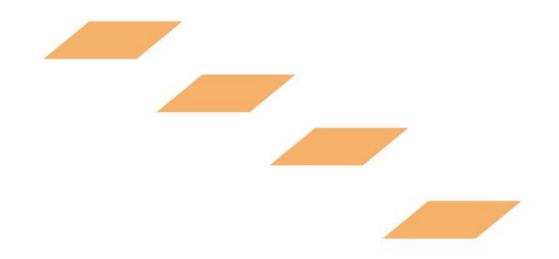
- High-luminosity LHC (and future FCC) will bring very high pile-up scenarios
- Optimization of combinatorics *limits* the physics

What makes it interesting !

TrackML : Solving The Tracking Challenge with Machine Learning



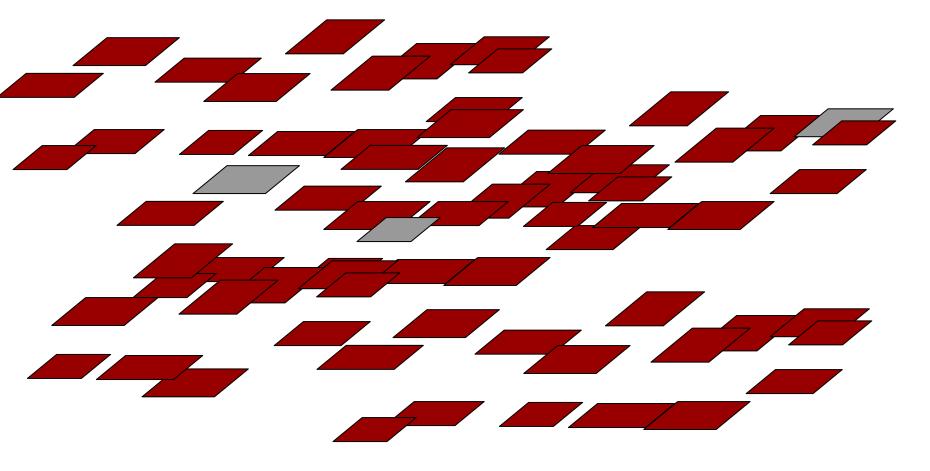
Charged Particle



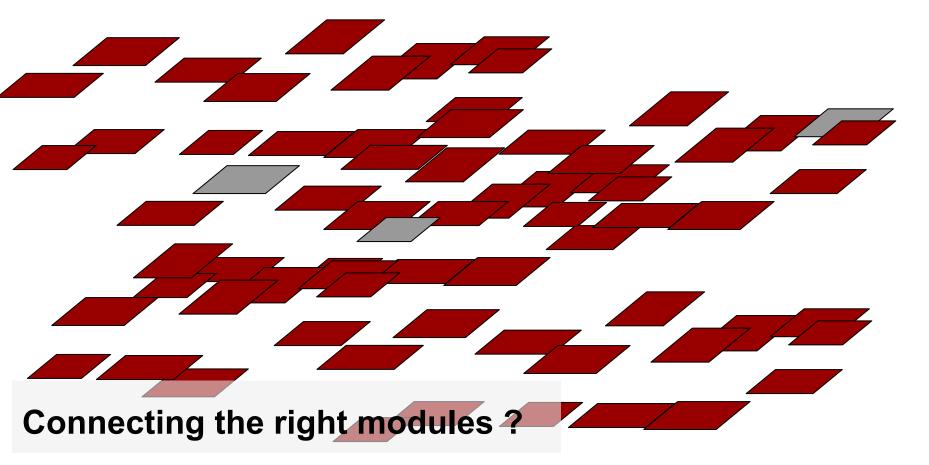
Reconstruction

- Offline tracking
- Partial information : traces
- Connecting the right parts

What we get from the detector

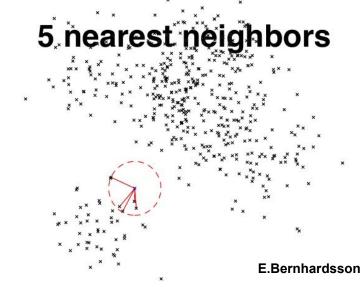


What we get from the detector



Fast Similarity Search

Approximate Nearest Neighbors or Hashing

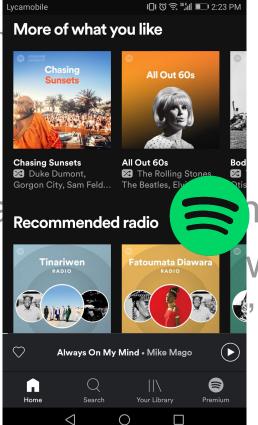


"Given a query point in a large dataset, returns the set of points with the smallest distance"

Fast Similarity Search

Approximate Nearest Neigh

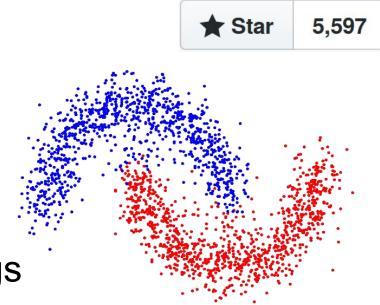
" Given a returns the



- "Many millions of songs"
- < 0.1ms to get n similar songs

[high-dimensional space]

• Unsupervised



ANN Strategy

1. Index building using a *metric*

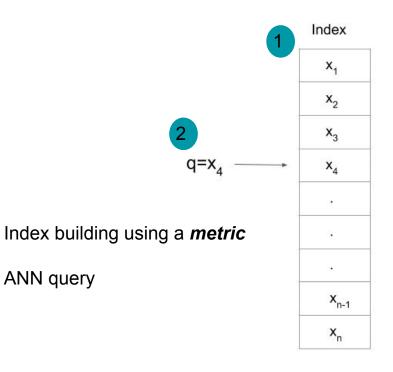
Index
x ₁
 x ₂
x ₃
x ₄
•
x _{n-1}
x _n

ANN Strategy

1.

2.

ANN query

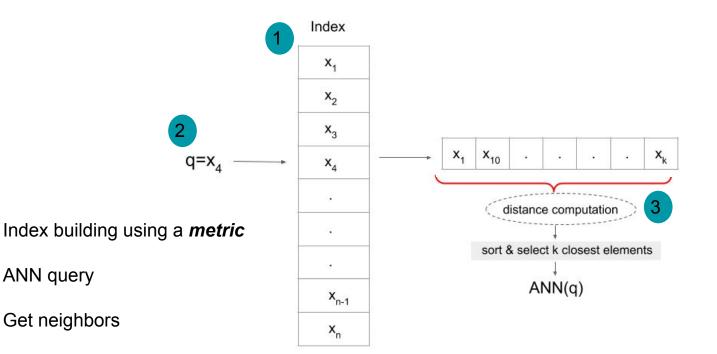


ANN Strategy

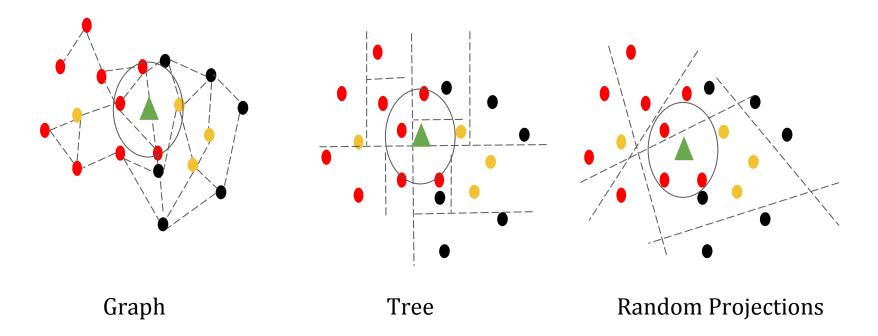
1.

2.

3.



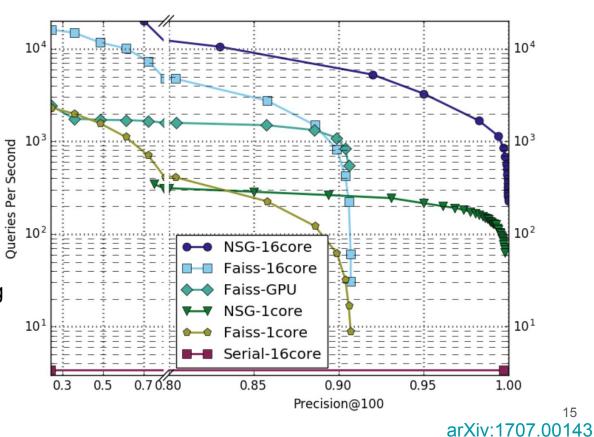
ANN Strategy : Data structure



Fast Similarity Search : State of the Art

Benchmark

- 100 million vector dataset
- 96 dimensions
- 1 core, 16 core and GPU
- Precision is irrelevant in tracking
- > 10⁴ queries per second

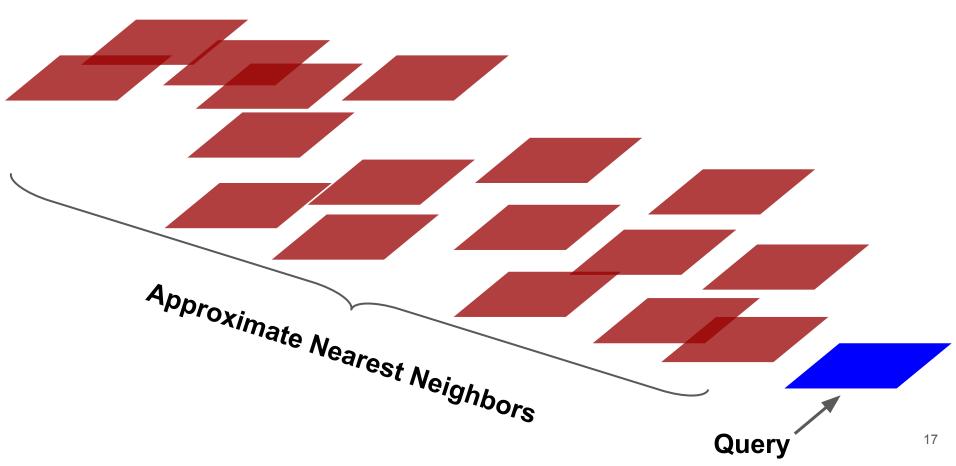


ANN Applied To

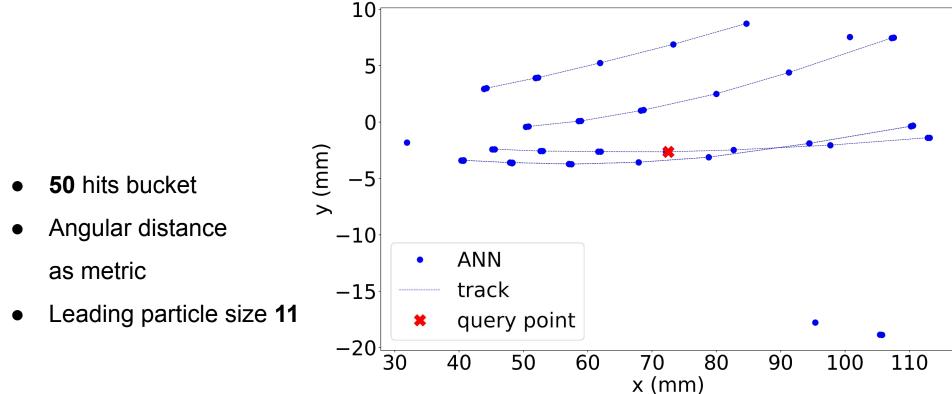
Charged Particle Tracking

TrackML dataset

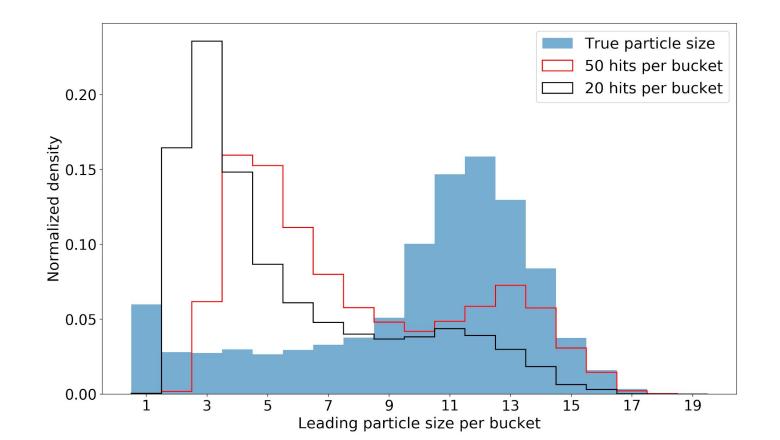
ANN Buckets



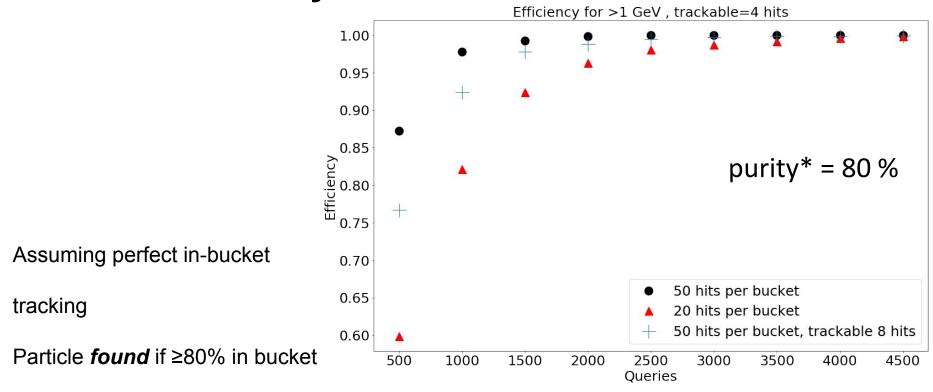
ANN Buckets



Buckets Quality



ANN Efficiency



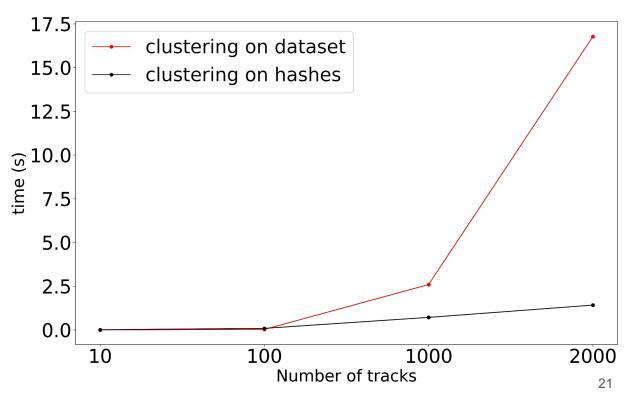
• Trackable = Min particle size

•

* A track will be marked as reconstructed if 80 % of its hits are found inside the same bucket

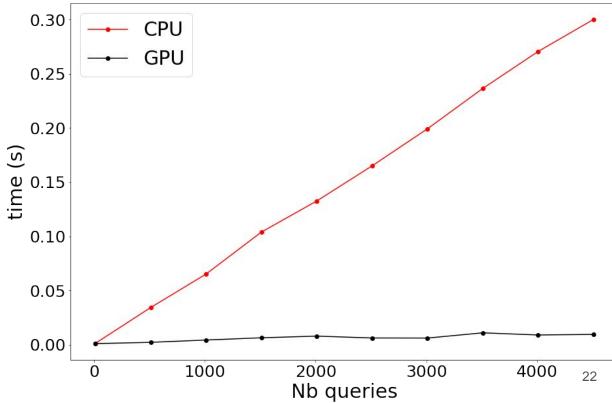
Clustering Scaling Of Tracking : Full Event vs Buckets

- Agglomerative Clustering (AC) as proxy for standard tracking
- AC is O (n²), it computes
 ~all pairwise distances



ANN batch mode for GPU - CPU

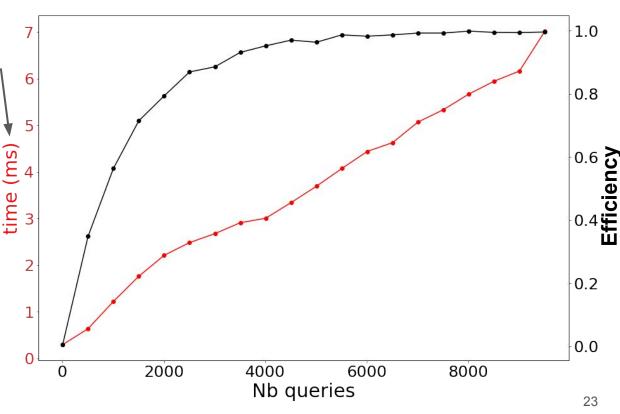
- Bucketing (only) scaling on CPU vs GPU.
- Implementation in Python.
- Hardware: NVIDIA Tesla
 K40m, 12 GB RAM,
 2880 CUDA core.



ANN batch mode for GPU

- Bucketing (only) scaling on GPU.
- Implementation in Python.
- Hardware: NVIDIA Tesla K40m, 12 GB RAM, ¹ 2880 CUDA core.
- Assuming perfect in-bucket

tracking. Purity 80%.



Tracking in ANN Buckets

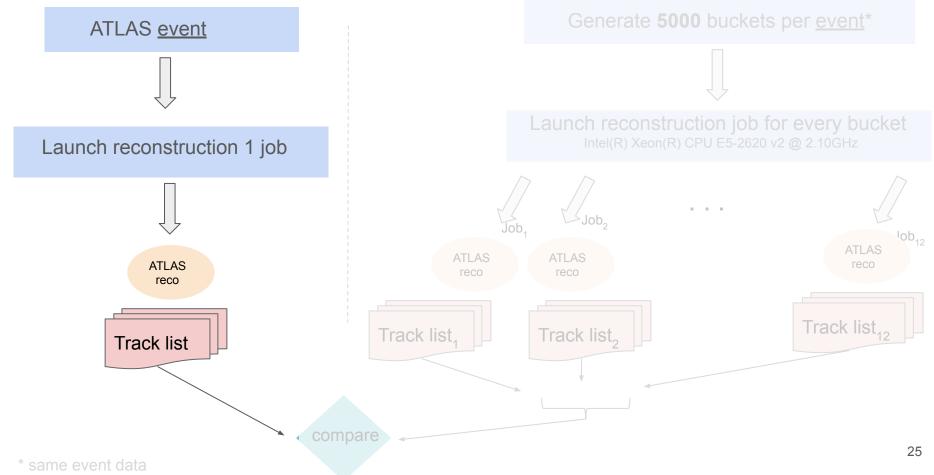
1. Standard Tracking

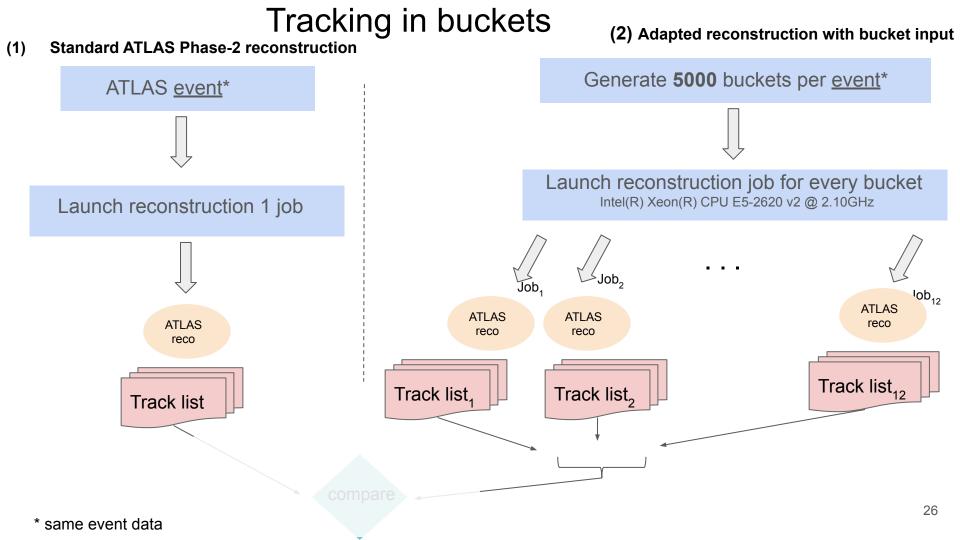
2. ML based Tracking

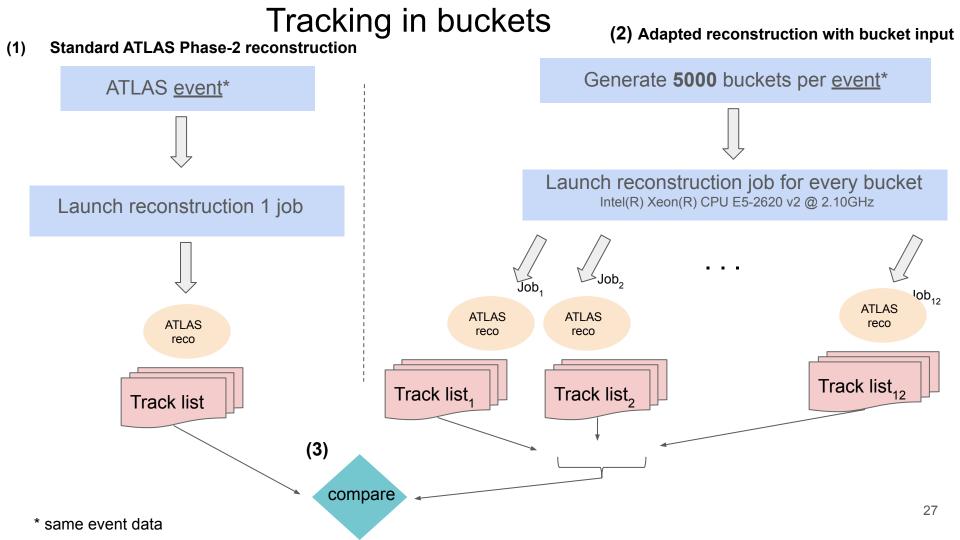
ITk dataset

Tracking in buckets

(1) Standard ATLAS Phase-2 reconstruction

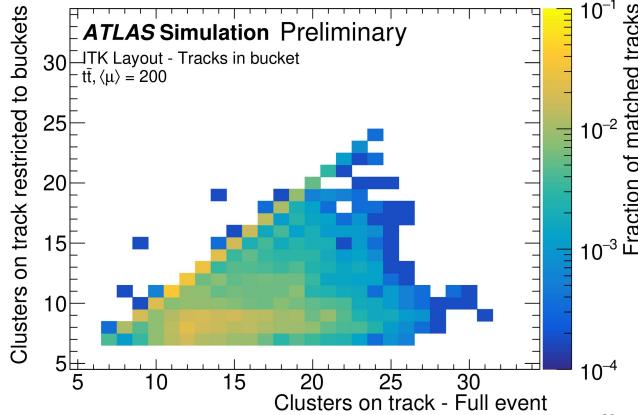






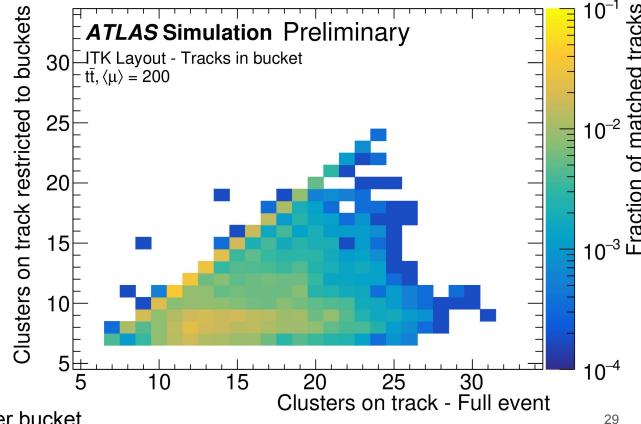
ATLAS Reconstruction in bucket

Number of clusters on tracks running the full event reconstruction versus restricting the track reconstruction algorithms to a bucket of 50 hits.



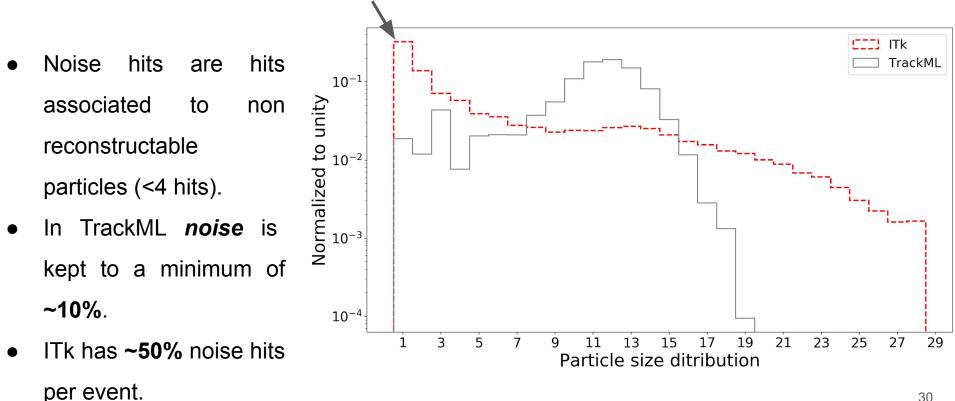
ATLAS Reconstruction in bucket

Number of clusters on tracks running the full event reconstruction versus restricting the track reconstruction algorithms to a bucket of 50 hits.

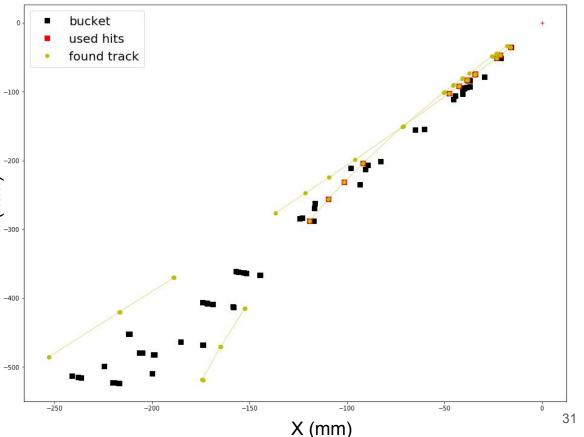


ATLAS Tracking takes ~ 2ms per bucket

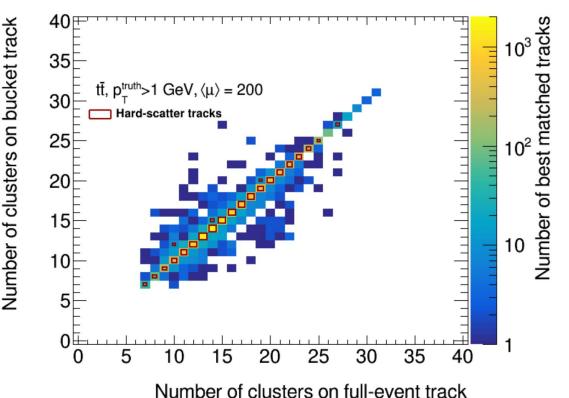
Tracks in Buckets : TrackML vs ITk



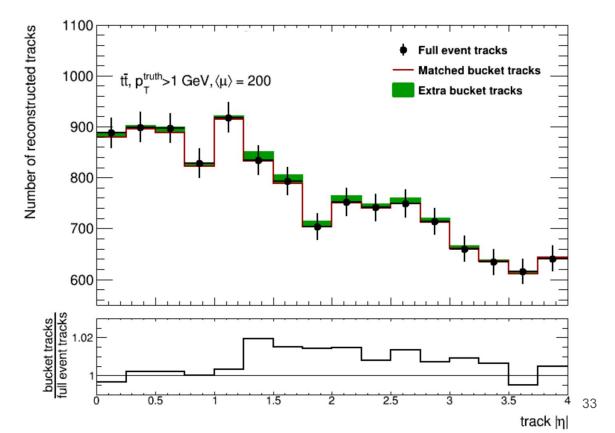
- Only pixel seeds built from the bucket.
- The Track Finder $finder \\ completes the trajectory \\ finder \\$
- **75K** buckets (filtering mechanism can help)



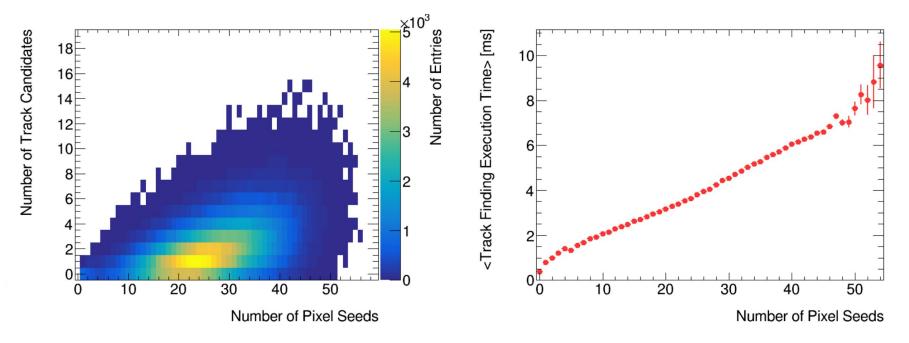
Number of clusters on tracks running the full event reconstruction versus restricting the seeding to a bucket of 70 hits.



- Seeding cut in P⊤ reduced compared to Standard Tracking (900MeV → 400MeV).
- Extra tracks as a result of cuts loosening and *more pure* seeding environment.
- Mostly in the low P⊤ spectrum.



Pixel Seeds to Track Candidates

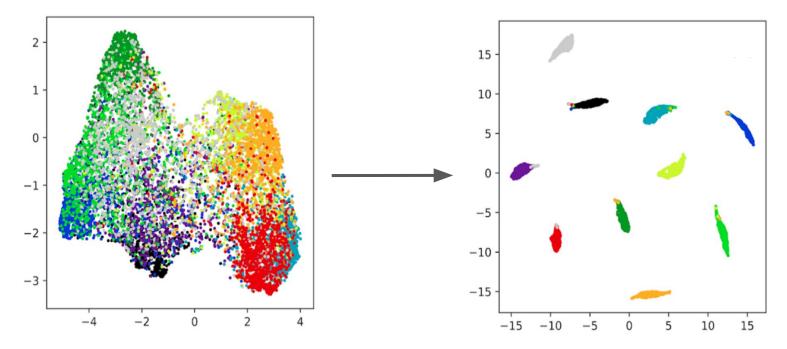


ML Based Tracking

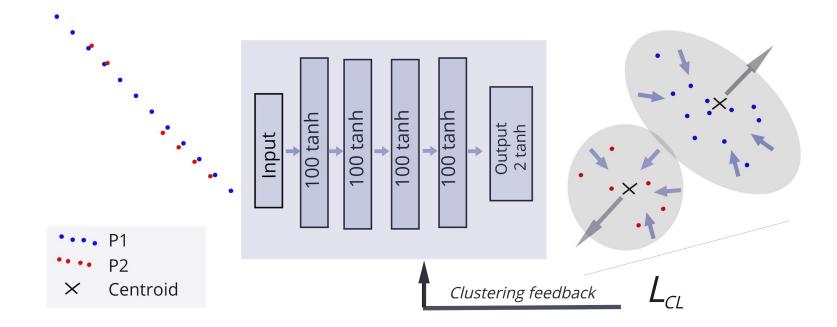
TrackML dataset

Metric (similarity) Learning

Knowing the truth association from simulation, we can **learn** the patterns to map **hits to particles**.



TrackNet : Tracking aware ML



TrackNet : Tracking aware ML

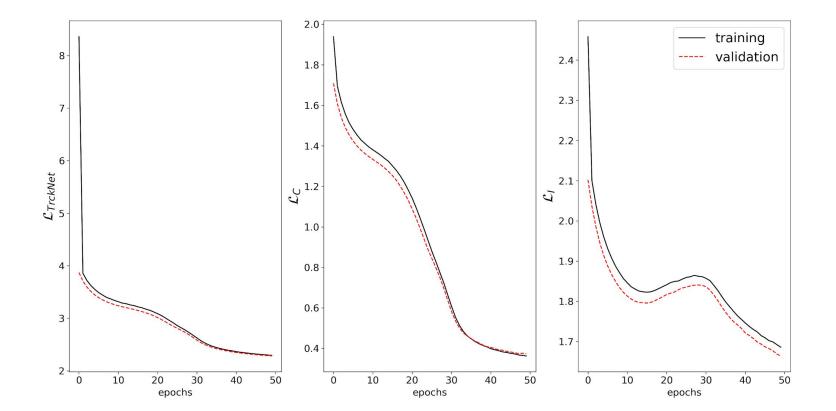
The Loss Function Design : How to **communicate** our **preferences** to the model.

$$\mathcal{L}_{TrackNet} = (\alpha \mathcal{L}_C + \beta \mathcal{L}_I + \gamma \mathcal{L}_{CL})^{\zeta}$$

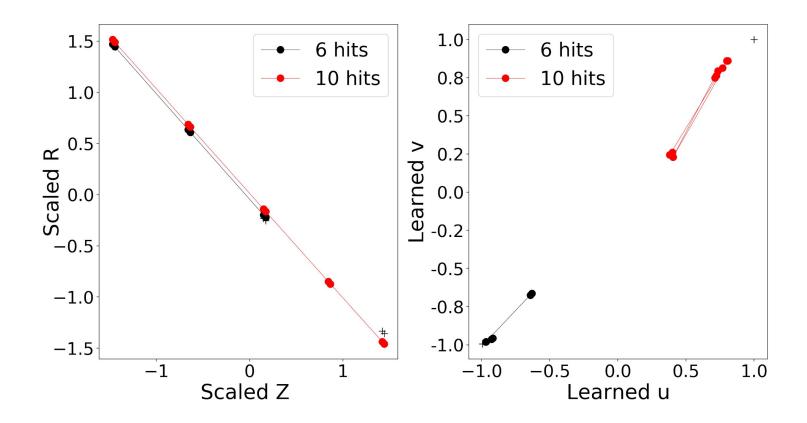
$$\mathcal{L}_{C} = \sum_{\substack{i=0\\ \uparrow}}^{K} S(c_{i}) \; ; \; \mathcal{L}_{I} = \frac{1}{S(\mu_{[1..k]})} \; ; \; \mathcal{L}_{CL} = \sum_{\substack{i=0\\ \uparrow}} \frac{b-a}{\max(a,b)}$$
Compactness Isolation Compact Isolated Clusters

38

Loss Evolution Over the Epochs

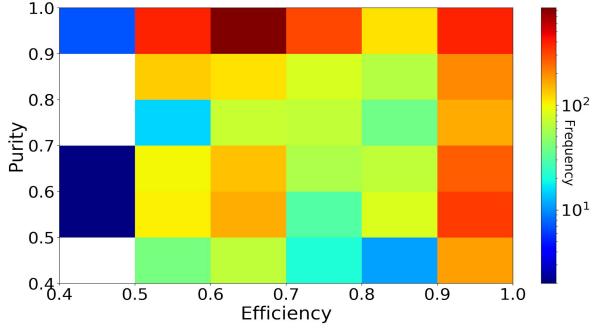


Example on a 20 hits Bucket



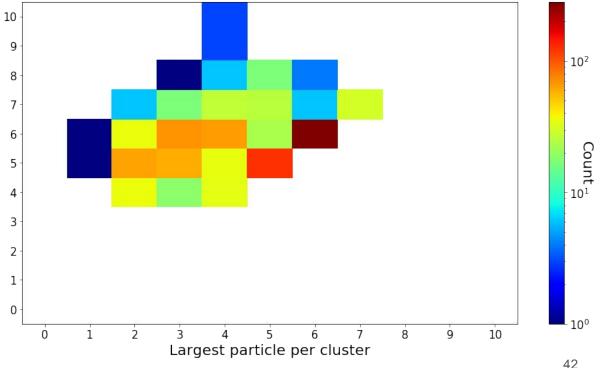
Cluster Efficiency and Purity

- Cluster Efficiency : how many hits of the particle are contained in the cluster.
- Cluster Purity : how many hits of the cluster belong to the same particle.



Cluster Size and Particle Size

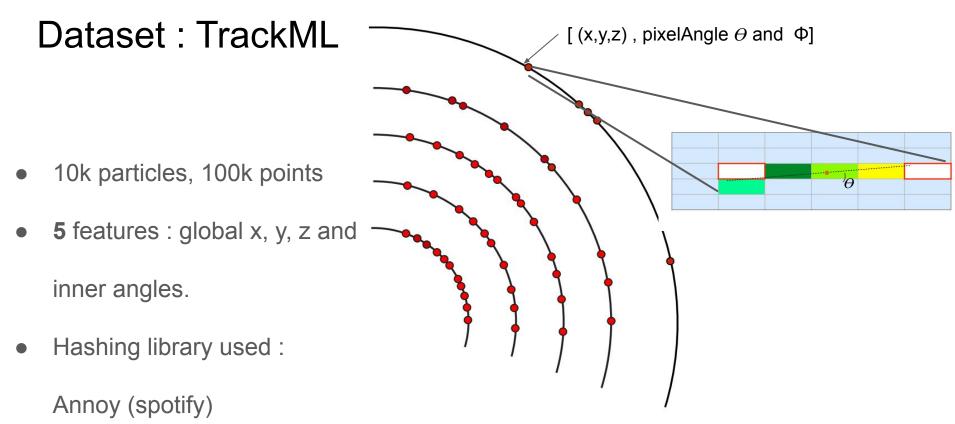
- developments Current to filter small clusters -argest cluster (particles).
- 6 hits clusters allow good track parameter estimates.



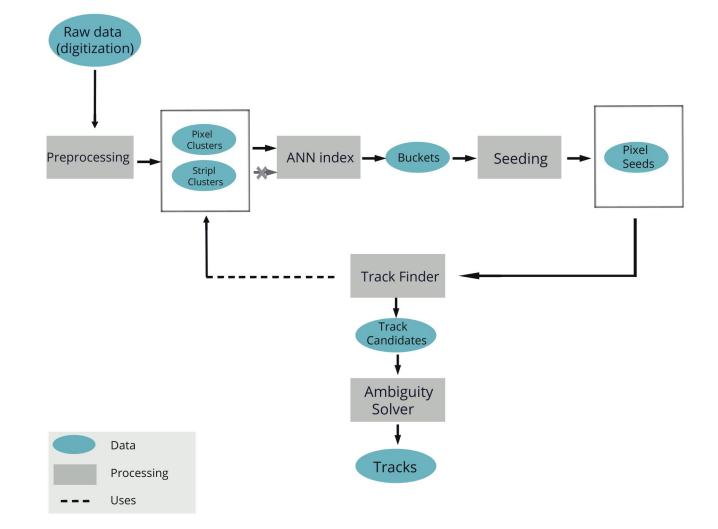
Summary

- ANNs : Data-driven, unsupervised, flexible tracking
- Significant speed-up potential.
- Full event mapping with TrackNet significantly faster than combinatorics.
- Current tests of TrackNet on ITK : Promising results.
- Material on ANNs for Tracking <u>Neurips-ML4PS</u>, <u>IEEE Big Data</u>

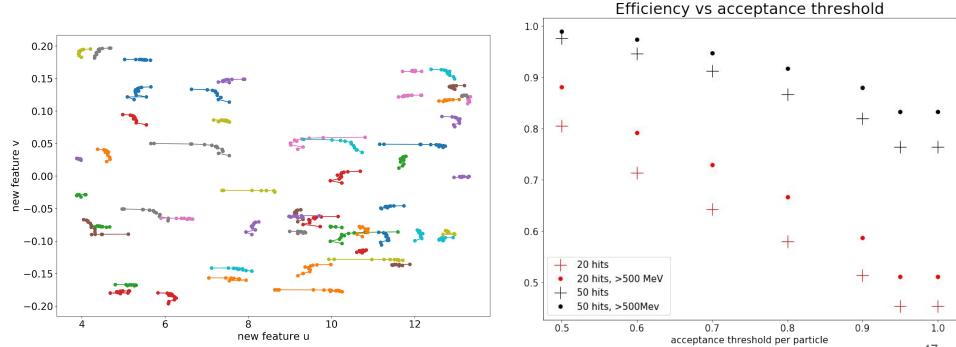
Backup



Simulated with ACTS, Ttbar event, mu 200



Metric Learning : LFDA on TrackML Local Fisher Discriminant Analysis



Buckets Filtering- TrackML - 10 events

