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The context

● High-luminosity LHC (and future FCC) will bring very high pile-up scenarios

● Optimization of combinatorics limits the physics 

                Combinatorial approach 

    Try all combinations, > 90% are discarded
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TrackML  : Solving   The   Tracking Challenge with  Machine   Learning

May 2018

              Accuracy Phase                Throughput  Phase

  Traditional Tracking   Traditional TrackingWinner
Winner

What makes it interesting !

March 2019

arXiv:1904.06778v2 3



Charged Particle 
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Reconstruction

● Offline tracking

● Partial information : traces

● Connecting the right parts
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What we get from the detector
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What we get from the detector

Connecting the right modules ?
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Fast Similarity Search
Approximate Nearest Neighbors or Hashing

“ Given a query point in a large dataset, 
returns the set  of points with the smallest 

distance”

E.Bernhardsson
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https://www.slideshare.net/erikbern?utm_campaign=profiletracking&utm_medium=sssite&utm_source=ssslideview
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Fast Similarity Search
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https://www.slideshare.net/erikbern?utm_campaign=profiletracking&utm_medium=sssite&utm_source=ssslideview
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● “Many millions of songs” 

● < 0.1ms to get n similar songs     

    [high-dimensional space]

● Unsupervised

Spotify / Annoy
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1. Index building using a metric
3

ANN Strategy
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1. Index building using a metric

2. ANN query
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ANN Strategy
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1. Index building using a metric

2. ANN query

3. Get neighbors
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ANN Strategy



Graph Tree Random Projections

ANN Strategy  : Data structure
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Fast Similarity Search : State of the Art

arXiv:1707.00143

Benchmark 

● 100 million vector dataset

● 96 dimensions

● 1 core, 16 core and GPU

● Precision is irrelevant in tracking

● > 104 queries per second
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https://arxiv.org/abs/1707.00143


ANN Applied To 

 Charged Particle Tracking

TrackML dataset
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Query

Approximate Nearest Neighbors

ANN Buckets
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ANN Buckets

● 50 hits bucket

● Angular distance           

as metric

● Leading particle size 11
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Buckets Quality
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ANN Efficiency   

● Assuming perfect in-bucket 

tracking

● Particle found if ≥80% in bucket

● Trackable = Min particle size



Scaling Of Tracking : Full Event  vs Buckets
Clustering

● Agglomerative Clustering 

(AC) as proxy for 

standard tracking

● AC is O (n2) , it computes 

~all pairwise distances
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ANN batch mode for GPU - CPU

● Bucketing (only) scaling on 

CPU vs GPU.

● Implementation in Python.

● Hardware: NVIDIA Tesla 

K40m, 12 GB RAM,       

2880 CUDA core.
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ANN batch mode for GPU

● Bucketing (only) scaling on 
GPU.

● Implementation in Python.
● Hardware: NVIDIA Tesla 

K40m, 12 GB RAM,       
2880 CUDA core.

● Assuming perfect in-bucket 

tracking. Purity 80%.

Ef
fic

ie
nc

y
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Tracking in ANN Buckets

  ITk dataset

1. Standard Tracking

2. ML based Tracking

24



Tracking in buckets
 Generate 5000 buckets per event*

Launch reconstruction job for every bucket                                                                    
Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz  

. . . 
Job1

Job2
Job12

ATLAS
  reco

ATLAS
  reco

ATLAS
  reco

Track list1 Track list2
Track list12

ATLAS event

* same event data

ATLAS
  reco

Track list

compare
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Launch reconstruction 1 job                                                                     

(1) Standard ATLAS Phase-2 reconstruction
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(2) Adapted reconstruction with bucket input
(1) Standard ATLAS Phase-2 reconstruction
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(2) Adapted reconstruction with bucket input

(3)

(1) Standard ATLAS Phase-2 reconstruction
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ATLAS Reconstruction in bucket 

Number of clusters on tracks 
running the full event 
reconstruction versus 
restricting the track 
reconstruction algorithms to 
a bucket of 50 hits.
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ATLAS Reconstruction in bucket 

Number of clusters on tracks 
running the full event 
reconstruction versus 
restricting the track 
reconstruction algorithms to 
a bucket of 50 hits.

ATLAS Tracking takes ~ 2ms per bucket



Tracks in Buckets  :  TrackML vs ITk

● Noise hits are hits 

associated to non 

reconstructable 

particles (<4 hits).

● In TrackML noise is 

kept to a minimum of 

~10%. 

● ITk has ~50% noise hits 

per event. 30



Seeding in Buckets - Standard Tracking

X (mm)

Y 
(m

m
)

● Only pixel seeds built from 

the bucket.

● The Track Finder 

completes the trajectory 

with access to the full 

event.

● 75K buckets (filtering 

mechanism can help)
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Seeding in Buckets - Standard Tracking

Number of clusters on 
tracks running the full 
event reconstruction 
versus restricting the 
seeding to a bucket of 70 
hits.
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Seeding in Buckets - Standard Tracking

● Seeding cut in PT reduced 

compared to Standard 

Tracking                

(900MeV → 400MeV). 

● Extra tracks as a result of 

cuts loosening and more 

pure seeding environment.

● Mostly in the low  PT 

spectrum.
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Seeding in Buckets - Standard Tracking
Pixel Seeds to Track Candidates 

34



ML Based Tracking 

TrackML dataset   
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Metric (similarity) Learning
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Knowing the truth association from simulation, we can learn the patterns to 
map hits to particles.



TrackNet : Tracking aware ML
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TrackNet : Tracking aware ML
The Loss Function Design : How to communicate our preferences to the model.

Compactness     Isolation Compact Isolated Clusters
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Loss Evolution Over the Epochs
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Example on a 20 hits Bucket
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Cluster Efficiency and Purity

● Cluster Efficiency : how many 

hits of the particle are 

contained in the cluster.

● Cluster Purity : how many 

hits of the cluster belong to 

the same particle.
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Cluster Size and Particle Size

● Current developments to 

filter small clusters 

(particles).

● 6 hits clusters allow good 

track parameter estimates.
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Summary

● ANNs : Data-driven, unsupervised, flexible tracking

● Significant speed-up potential.

● Full event mapping with TrackNet significantly faster than 

combinatorics. 

● Current tests of TrackNet on ITK : Promising results.

● Material on ANNs for Tracking Neurips-ML4PS, IEEE Big Data
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https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_31.pdf
http://bigdataieee.org/BigData2019/AcceptedPapers.html


Backup



● 10k particles, 100k points

● 5 features : global x, y, z and 

inner angles.

● Hashing library used :         

Annoy (spotify)

Dataset : TrackML
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[ (x,y,z) , pixelAngle 𝛳 and  Φ]

𝛳

Simulated with ACTS, Ttbar event, mu 200
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Metric Learning :  LFDA on TrackML
Local Fisher Discriminant Analysis
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Buckets Filtering- TrackML  - 10 events
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better


