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GOAL

To develop cryogenic technologies for cooling superconducting magnets with the
following characteristics:

Light and simple construction
* Low cryogenic fluid consumption

* Transfer heat without any additional power systems
(such as pumping systems, etc...)

* Enough distance between the magnet and the cryocooler
(to avoid any damage in the cryocooler by the magnetic field)

» Able to work at different ranges of temperature

« Able to work under zero-gravity conditions for future space applications
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PULSATING HEAT PIPES (PHP)

Oscillating flow

» Pulsating (or Oscillating) Heat Pipes (PHP or OHP) are P S e N,
tWO-phase thermal links COHSiSting of a long N e e e e e ———— v/

capillary channel bent into many U-turns

 They are thermally driven by an oscillating flow of
liquid slugs and vapor plugs
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CRYOGENIC PHP: EXPERIMENTAL SETUP (1/4)

Characteristics:
* Horizontal position (closest configuration to zero-gravity)

* 1 mlong closed-PHP Cryocooler
« 36 Stainless steel capillary tubes
* Diameters: 1.5 mm (@inner) and 2 mm (@outer)

PHP inlet

Condenser part
(composed of
copper plates)

Evaporator part

(composed of a copper plate with a
heater fixed at its surface
representing the magnet to cool)

Glass epoxy supports

Aluminum structure
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CRYOGENIC PHP: EXPERIMENTAL SETUP (2/4)

Condenser part:

Copper thermal link (with copper

Cryocooler tubes thermalized at its surface):
(with heaters taped at its surface
to control the temperature) = The working fluid, coming from

outside the cryostat (300 K), is
cooled and condensed in the
thermalized copper tube and then
introduced into the PHP.

PHP inlet
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CRYOGENIC PHP: EXPERIMENTAL SETUP (3/4)

Working fluid: Neon (boiling point 27 K @ 1 bar)
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» Specific inlet gas system to control the liquid/gas
filling ratio
* Pumping process before every test to avoid any
impurity inside the system
 Filling process with a buffer volume to achieve
the desired liquid filling ratio
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CRYOGENIC PHP: EXPERIMENTAL SETUP (4/4)

Instrumentation

 Temperature sensors: Pt100 @®and 1070 CX-SD
Cernox (#) __-->z» Temperature measurements

',/ of the copper plate

* Pressure sensors: Kulite (®)

Omega
Kapton
Heater

_. Temperature measurements
_.--="" of the adiabatic tubing part:
temperature of the fluid

PHP inlet
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CRYOGENIC PHP: EXPERIMENTAL RESULTS (1/4)

Characteristics of the test:
* Working fluid: Neon (Ne)
* Range of working temperatures 27 - 40 K

- Initial conditions: AT of 5 K and input power of 5 W Unstable conditions and
: high working pressure
* Condenser temperature fixed @ 27 K 50 - , | |
 Filling ratio: 28 % (Viiquid/Vphp) -- Evaporator
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CRYOGENIC PHP: EXPERIMENTAL RESULTS (2/4)

Adiabatic part =
Saturation temperature =
(from Pressure measurements)

Temperature (K)

- Adiabatic part
== Saturation temperature
(from Pressure measurements)
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CRYOGENIC PHP: EXPERIMENTAL RESULTS (3/4)
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CRYOGENIC PHP: COMPARISON WITH PREVIOUS EXPERIMENTS

Nitrogen* as working fluid:
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CRYOGENIC PHP: EXPERIMENTAL RESULTS (4/4)

Characteristics of the test: -- Evaporator
* Working fluid: Neon (Ne) Adiabatic part
 Range of working temperatures 27 - 40 K N Satu;atlon temperature
« Initial conditions: AT 5 K and input power of 5 W - Londenser
. -- Pressure
* Condenser temperature fixed @ 27 K 0. .
 Filling ratio: 29.5 % (Viiquid/Vphp)
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CRYOGENIC PHP: CONCLUSIONS

 Max. heat load transferred in stable conditions: 50 W
 Stability during long periods of time verified

* Maximum equivalent thermal conductivity
(achieved at 50 W):

Ne 70 000 W/m.K vs Cu (rRRR=300) 3500 W/m.K @ 27 K (20 times higher!!)

* Ne as working fluid shows impressive thermal performance even when the inner diameter of the tubes is
larger than possible according to the most common criterion found in the literature:

(0}
Bo < 4 D, <2
crit Jg(pl — py)

* @inner max theorical= 1.25 mm
* @inner of our experimental setup = 1.5 mm
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FUTURE WORK

* Continue the experimental data analysis

* Numerical simulations to compare with experimental results

* Tests using other working fluids (comparative study)

* Quench tests for magnet applications (transient thermal tests)

* Modification of the test bench:
to increase the length of the adiabatic part
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Thank you !
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