

E01: 110 – Large scale refrigeration SCL3 cryoplant process design for RAON

Sungwoon Yoon Oxford, September 4th, 2018

Content

- 1. Rare Isotope Science Project
- 2. SCL3 requirements
- 3. SCL3 cryogenic plant
- 4. Summary

Rare isotope Accelerator complex for ON-line experiments

Rare Isotope Science Project

* Isotope Separator On-Line ** In-Flight separator

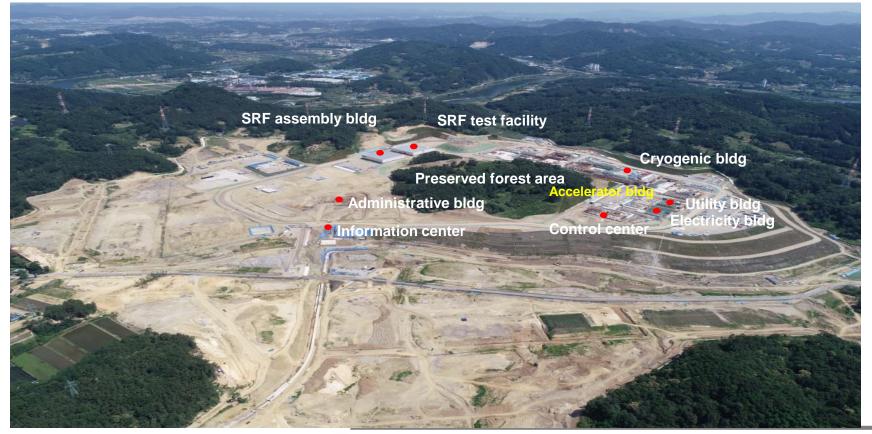
- RISP belongs institute for basic science.
- RISP is the name of our project.
- The project was launched in Dec. 2011 and the target date for the project is 2021.
- The goal of the project is to construct a **heavy ion linear** accelerator.
- The name of our accelerator is "RAON".

Rare isotope Accelerator complex for ON-line experiments

- RAON is pure Korean word meaning "delightful"
- RAON has three superconducting linear accelerators.
- First Linac(SCL1) will usually accelerate the **stable** ion beams.
- Third Linac(SCL3) will usually accelerate the **stable** and **unstable** ion beams.
- Second Linac(SCL2) will reaccelerate all ion beams.
- Rare isotope ion beams are produced by ISOL* and IF separator**.

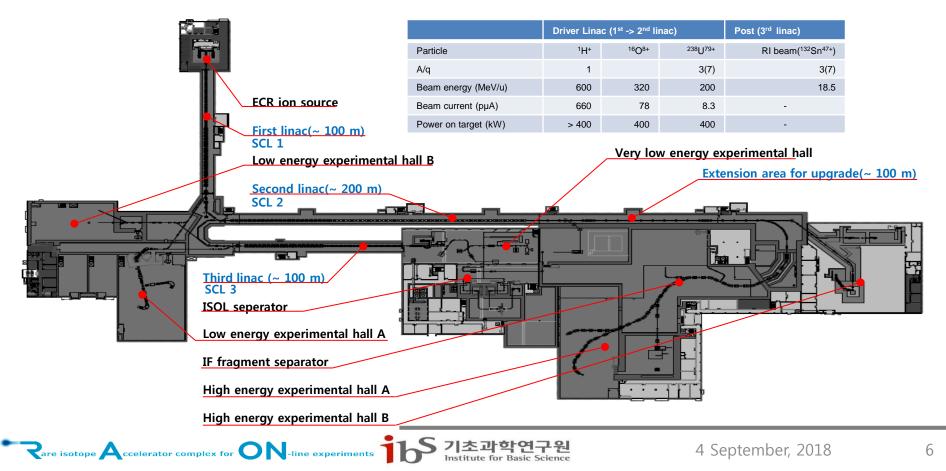
Rare Isotope Science Project RAON facility

Rare isotope Accelerator complex for ON-line experiments



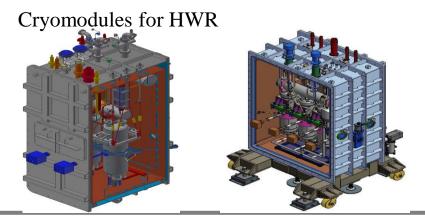
Institute for Basic Science

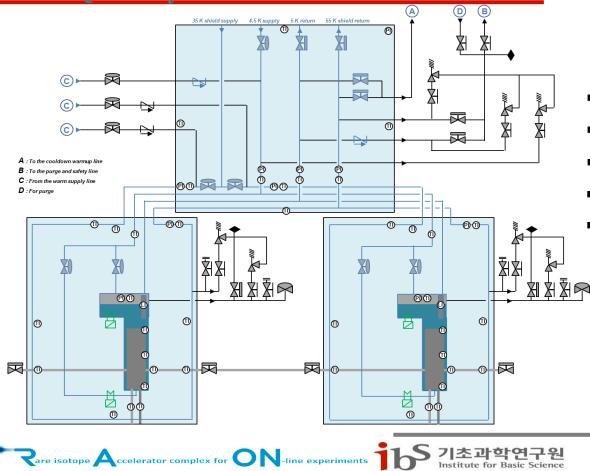
Rare Isotope Science Project RAON facility(16 June, 2018)



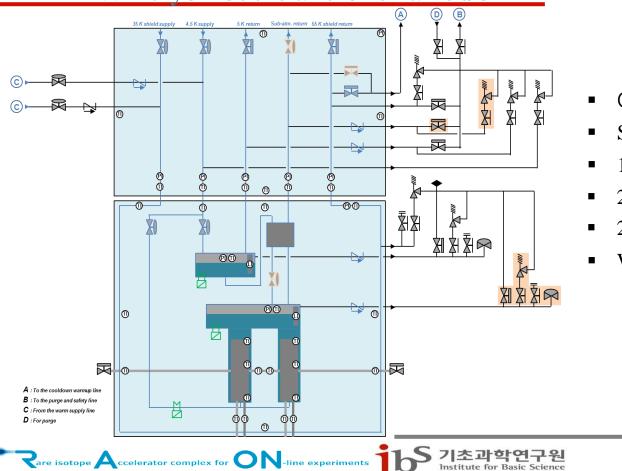
Rare Isotope Science Project RAON layout

Rare isotope Accelerator complex for ON-line experiments


Cryomodule for QWR

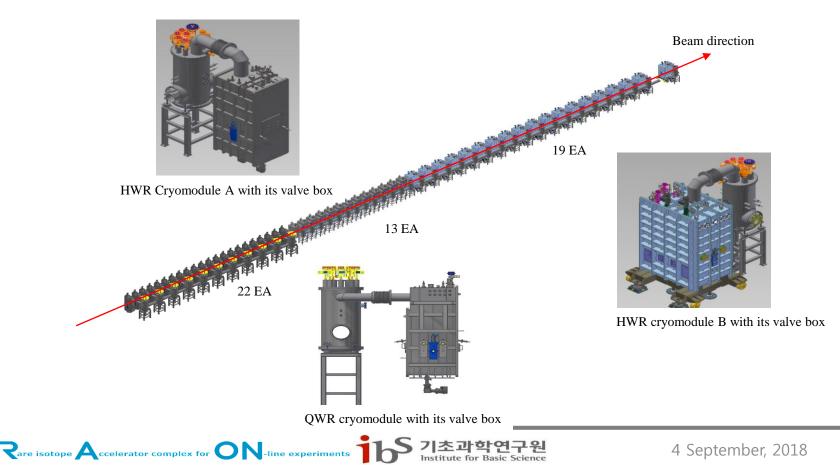

Half Wave Resonator (2.05 K)

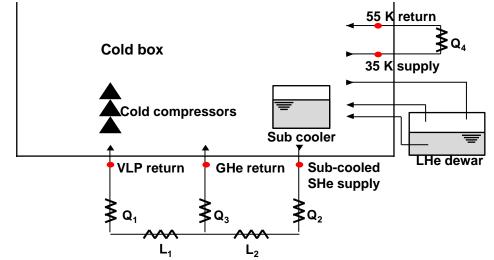
Institute for Basic Science


SCL3 requirements PFD - QWR cryomodules and valve box

- One valve box for two modules
- Sub-cooled SHe supply
- 1st J-T valve in each module
- 4.5 K, 1.3 bara LHe
 - Warm GHe for cooldown/warm-up

SCL3 requirements PFD - HWR cryomodule and one valve box




- One valve box for one module
- Sub-cooled SHe supply
- 1st J-T valve in each module
- 2K-4K heat exchanger in each one
- 2nd J-T valve in each module
- Warm GHe for cooldown/warm-up

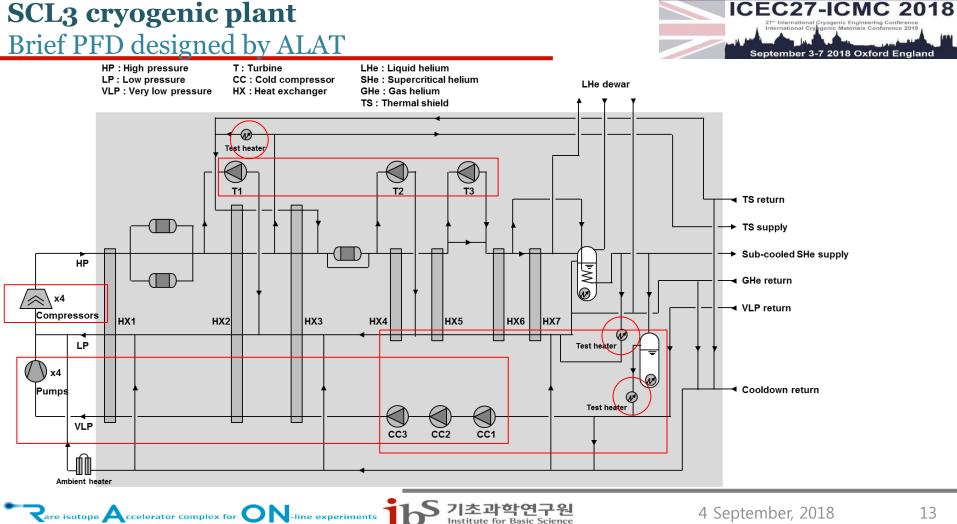
SCL3 requirements SCL3 assembly

SCL3 requirements Heat loads of SCL3

Rare isotope Accelerator complex for ON-line experiments

- Isothermal : L₁ and L₂
- Bath cooling for L₁ and L₂
- L₂ including thermal interceptors
- Non-isothermal: $Q_1 \sim Q_4$
- Forced helium cooling for shield

Mode (w/ margin)		2.05 K [W	/]		4.5 K [W	/]	35 – 55 K [W]		
	Isothermal		Non-isothermal	Isothermal		Non-isothermal	Non-isothermal	Remark	
	Static	Dynamic	Non-isothermai	Static	Dynamic	Non-isothermai	Non-isothermai		
Nominal	199	519	176	378	401	259	10,172		
Beam commissioning	199	191	176	378	113	259	10,172		
Turndown	199	-	176	378	-	259	10,172		
4.5 K standby mode	-	-	-	577	-	435	10,172		
TS standby mode	-	-	-	-	-	-	10,172		


11

SCL3 requirements Cold end conditions

		Unit	Mode	2.05 K	4.5 K	35 – 55 K	Remark
				2.05 K			Kemark
From cold box			Nominal	-	3.0	Max. 15	
	_		Beam commissioning	-	3.0	Max. 15	
	Pressure	bar	Turndown	-	3.0	Max. 15	
			4.5 K standby	-	3.0	Max. 15	
			TS standby	-	-	Max. 15	
			Nominal	-	4.5	< 35	
			Beam commissioning	-	4.5	< 35	
	Temperature	K	Turndown	-	4.5	< 35	
			4.5 K standby	-	4.5	< 35	
			TS standby Nominal	-	-	< 35	
				-	82.4	> 95.3	
			Beam commissioning	-	51.5	> 95.3	
	Mass flow rate	g/s	Turndown	-	36.4	> 95.3	
			4.5 K standby	-	37.8	> 95.3	
			TS standby	-	-	> 95.3	
		bar	Nominal	< 0.032	1.25	ΔP > 0.5	
To cold box			Beam commissioning	< 0.032	1.25	ΔP > 0.5	
	Pressure		Turndown	< 0.032	1.25	ΔP > 0.5	
			4.5 K standby	-	1.25	ΔP > 0.5	
			TS standby	-	-	ΔP > 0.5	
		к	Nominal	> 4.5	> 4.8	ΔT > 20	
			Beam commissioning	> 5.3	> 4.9	ΔT > 20	
	Temperature		Turndown	> 7.1	> 5.0	ΔT > 20	
			4.5 K standby	-	> 5.5	ΔT > 20	
			TS standby	-	-	ΔT > 20	
		g/s	Nominal	33.7	48.7 33.2	> 95.3	
			Beam commissioning	18.3	33.2	> 95.3	
	Mass flow rate		Turndown	9.3	27.1	> 95.3	
			4.5 K standby	-	37.8	> 95.3	
			TS standby	_	_	> 95.3	
			Nominal	894	1,038	10,172	
			Beam commissioning	566	750	10,172	
Power		W	Turndown	375	637	10,172	
			4.5 K standby	_	1,012	10,172	
			TS standby	-	-	10,172	

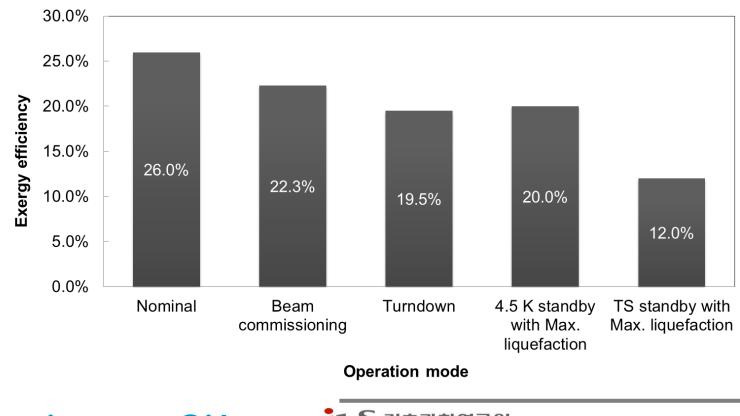
SCL3 cryogenic plant Warm compressors

- 5 Keaser standard compressors in parallel
- FSD575(3ea) and <u>FSD575 SFC(2ea)</u>
- Including one back-up compressor
- Maximum operating mass flow rate: 331.3 g/s
- Maximum power consumption: 1038 kW
- To save CAPEX and OPEX

14

SCL3 cryogenic plant Process vacuum pumps

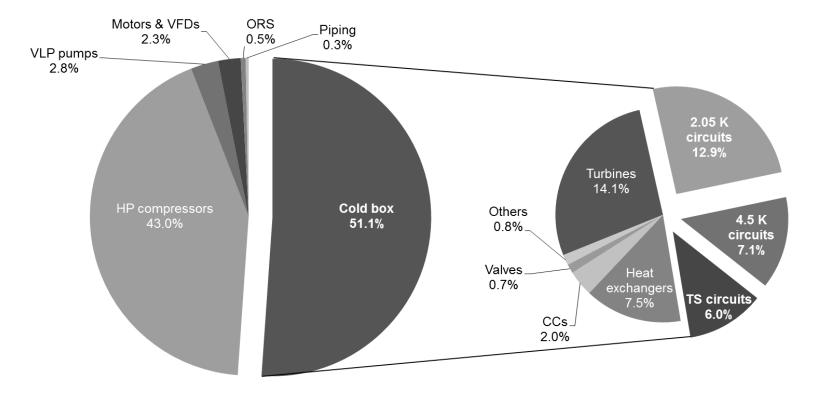
- 4 oil sealed rotary vane pumps in parallel
- Model SV630(Leybold) including one backup
- Same oil as compressors'
- Maximum operating \dot{m} : 34.7 g/s at 0.37 bara
- Maximum power consumption: 55.5 kW
- To save CAPEX and OPEX



15

SCL3 cryogenic plant Exergy efficiency

Rare isotope A ccelerator complex for ON-line experiments



Institute for Basic Science

4 September, 2018

SCL3 cryogenic plant Exergy destruction at nominal mode

- Kick off meeting was held in the middle of this January.
- There were two basic design reviews in the end of this April and June.
- There will be a detail design review in the end of this year.
- The compressors will be delivered until the middle of the next year.
- The cold box will be delivered until the early of 2020.
- The site acceptance test will be finished until the middle of 2020.

- RAON is a facility for rare isotope beams in Korea.
- RAON has three SC linear accelerators and three cryogenic plants
- "Mixed" compression cycles are chosen for variable 2.05 heat loads.
- SCL3 cryogenic plant will be designed and manufactured by ALAT.
- The plant has five standard compressors including a back-up compressor.
- It has four process vacuum pumps including a back-up pump.
- The exergy efficiency at the nominal mode is about 26.0%.
- Installation of the plant will be finished until the middle of 2020.

