

Study on heat transfer between the High-Luminosity LHC beam screens and the He II-cooled beam tube

P. Borges de Sousa, M. Morrone, C. Garion, R. van Weelderen, T. Koettig and J. Bremer

27th International Cryogenic Engineering Conference, 2018 Oxford, England

06/09/2018

E-06: 030 - P. Borges de Sousa

Outline

- Introduction to the HL-LHC beam screen
- Overview of requirements
- Thermal validation test stand: emulating HL-LHC conditions
- Summary of first measurement run
- Results & discussion
- Conclusions and outlook

High-Luminosity upgrade of the LHC

Source: CERN

Motivation: from the LHC to the HL-LHC

LHC beam screen

- 4 K 20 K operating T
- Low mass flow (1 g/s)
- He gas at 3 bar
- No absorber (just screen)

HL-LHC beam screen

- 60 K 80 K operating T
- High mass flow (10 g/s)
- Supercritical He at 20 bar
- Tungsten-based absorber

HL-LHC beam screens: overview

HL-LHC Beam Screen mock-up (D1) after pressure test

0.8 m full-scale prototype

Piping & Instrumentation Diagram

Requirements and first measurement run

- Operating *T* of beam screen (inner surface): **60 K to 80 K**
- Maximum allowed Δ*T* over 60 m: 15 K (5 K in radial direction)
- Operating T of the helium flow: 55 K to 75 K
- Nominal heat load on the tungsten blocks: **15 W/m**
- Working fluid: supercritical helium, 20 bar 23 bar
- Mass flow rate of helium circuit: ≈ 11 g/s
- Maximum heat load to 1.9 K bath: 0.5 W/m

Results: beam screen temperature profile

- **Steady-state** measurements
- Homogeneously distributed heat load on all four quadrants (0 to 20 W/m)
- Varied base (helium) temperature between 40 K and 80 K
- Pressurised He II bath (beam tube) actively controlled at 1.9 K ± 1 mK

Measuring the heat load to the 1.9 K beam tube

- Heat load transmitted to the 1.9 K bath (beam tube) by radiation and conduction
- Requirement < 0.5 W/m
- Conduction through each of the 32 spring + sphere sets
- Radiation from the tungsten and beam screen surfaces

Results: heat load to the 1.9 K beam tube

Heat load from beam screen to 1.9 K bath vs. tungsten block temperature

200 mW/m if beam screen is at 60 K, 375 mW/m if beam screen is at 80 K \rightarrow 17 W over the 60 m

Results: heat load to the 1.9 K beam tube

850 550 800 500 **Total** 450 conditions (mW/m) by Conduction 400 by Radiation Heat load from 350 beam screen to 300 cold bore in HL-250 LHC environment 200 in LHC (150 100 .⊑ 350 ¥ 6. 300 50 \mathbf{x} <u>6</u> 0 zirconium Base T = 26 - 37.5 K oxide -50 00 -100 001--150 Heat load 10 -200 H <u>_</u> 250 Base T = 40 K sphere 9 Base T = 50 K Heat load t 150 100 100 Base T = 60 K Static heat load 3D-printed Base T = 70 K on BS test stand titanium sprin Base T = 80 K Base T = 88 K Fitted model - conduction through springs + radiation Contribution from conduction through springs -250 50 Contribution from radiation cold end -300 0 0 10 20 30 40 50 60 70 80 90 100 110 Tungsten blocks mean temperature (K)

Heat load from beam screen to 1.9 K bath vs. tungsten block temperature

200 mW/m if beam screen is at 60 K, **375 mW/m** if beam screen is at 80 K \rightarrow **17 W** tover the 60 m

For operational beam screen (and Inermet block) temperatures, **most of the heat load to the 1.9 K beam tube is transferred via conduction** through the springs (90% at 60 K and 70% at 80 K)

Results: thermal time constants "beam ON \rightarrow beam OFF"

- Time constants of the tungsten blocks rise with rising base temperature
- Steady state in $\approx 5T$:
 - ≈ 43 min at 60 K
 - \approx 75 min at 80 K (tungsten at 90 K)

Results: thermal time constants "beam ON \rightarrow beam OFF"

- Time constants of the tungsten blocks rise with rising base temperature
- Steady state in $\approx 5T$:
 - ≈ 43 min at 60 K
 - \approx 75 min at 80 K (tungsten at 90 K)

Conclusions & Outlook

- ✓ Maximum temperature rise on inner BS: 0.5 K
 - Factor 10 lower than max. allowed, nominal conditions
- ✓ **Maximum temperature rise on tungsten blocks:** 9 K (nominal conditions)
 - Independent of base temperature
 - Highly linear with increasing heat loads
- ✓ Heat load to 1.9 K beam tube: 200 mW to 375 mW per meter (nominal conditions, 60 K to 90 K tungsten blocks temp.)
- ✓ Thermal time constants Inermet blocks 0-15 W/m: 9 min to 15 min, temperature-dependent
- ✓ Uneven heat loads **show no instabilities** in the flow

Further reproducibility tests are needed but results thus far validate the thermal design of the HL-LHC beam screens

www.cern.ch

Results: uneven heating on Beam Screen quadrants

- Nominal overall heat load on beam screen (15 W/m)
- Unevenly distributed heat load
- Base temperature kept constant
- Influence of heat load distribution on Inermet and beam screen temperatures
- Influence of heat load distribution on 1.9 K bath

Results: uneven heating on Beam Screen quadrants

	Nominal heating			Uneven "South"			Uneven "Northeast"		
	60 K	70 K	80 K	60 K	70 K	80 K	60 K	70 K	80 K
Min. ΔT to base T	7.8 K (S)	7.8 K (S)	7.7 K (S)	5.7 K (W)	5.7 K (N)	5.8 K (N)	0	0	0
Max. ΔT to base T	9.0 K (E)	8.9 K (E)	8.9 K (E)	15.9 K (S)	15.8 K (S)	15.5 K (S)	18.2 K (E)	18.0 K (E)	18.0 K (E)
Heat load to 1.9 K	189 mW	243 mW	282 mW	198 mW	261 mW	289 mW	180 mW	242 mW	280 mW

Even though heat load on BS is the same, heat load transferred to 1.9 K bath changes \rightarrow south quadrant dominates heat transfer (2 rows of springs)

