

(Higgs) physics at a muon collider

Nicholas Wardle

07/08/2020

Future Higgs

Higgs physics played a large role in the Strategy update discussions

"An electron-positron Higgs factory is the highest-priority next collider..."

The LHC program will explore details of the Higgs sector, (most likely) filling in gaps of what we expect in the SM 35.9-137 fb⁻¹ (13 TeV)

Disclaimer : I'm not an accelerator expert, nor a muon physics expert so this is a very "Higgs biased" talk....

State of the Higgs (in 2040)

 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment

Higgs couplings is a focus point of the HL-LHC (and future high-energy program)

Projections from the latest Yellowreport give us some idea as to where we'll be in ~2040 (post HL-LHC)

State of the Higgs (in 2040)

 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment

Higgs couplings is a focus point of the HL-LHC (and future high-energy program)

Projections from the latest Yellowreport give us some idea as to where we'll be in ~2040 (post HL-LHC)

Can't predict how smart we'll get (even in the space of 2 years!)

Nicholas Wardle

Higgs self-coupling

Personal bias – Higgs self-coupling (and in general understanding the Higgs potential) is ***the*** biggest challenge in the Higgs sector ...

Sensitivity from direct (HH) production and indirect (H) measurements ... all have assumptions / model dependencies built in \rightarrow must have multiple angles of attack! This is the strength of a pp collider CMS Phase-2 Simulation Preliminary 3 ab⁻¹ (14 TeV)

The (moving) target to beat

FCC-ee combining ZH + VBF production COMs

Caveat. These numbers change from year to year a little but overall picture is FCC-ee can do precision Higgs (O%), but misses some key channels ...

Line-shape physics (m_H pole)

At $\sqrt{s=125}$, muon coupling and direct mass/width measurements are greatly improved with a muon collider due to m_{μ}/m_{e} coupling enhancement + improved beam energy spread

FCC-hh

FCC is not a complete program (even focused on Higgs) without hh running

Inclusion of HH @ FCC-hh crucial to study Higgs potential in detail

 \rightarrow In my (biased) opinion, this should be a *critical* feature of any high-p_T program

→ We don't *need* 100TeV to study it either

The new physics reach is also clear (but 100TeV is not motivated by physics !)

HH production at a muon collider

Prospects for HH at muon-collider

- For high COM, main production is via WW-HH
- c.f. ggHH @ LHC (40fb), FCC-hh (~1pb)
- Luminosity will be a key to achieving sensitivity

Muon Collider detector

Slide from Massimo Casarsa (ICHEP 2020) https://indico.cern.ch/event/868940/contributions/3813908/

hadronic calorimeter

30x30 mm² cell size;

🧼 7.5 λ_ι.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 50-μm thick, 25x25 μm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 100-μm thick, 50x50 μm² pixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 100-μm thick, 50x50 μm² pixel Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Beam-induced-backgrounds

Dealing with BiB particularly challenging with muon beams. Overcome using

- High-granularity
- Precision timing
- AI/ML algorithms for object reconstruction

All 3 are being pursued at the HL-LHC → eg in CMS : HGCAL, MTD (o(10)ps) and PFvtx@triggers to deal with immense Pile-up

→ HL-LHC will also be a testing ground for these technologies

HH(bbbb) example

Mass scales

Reach of muon collider in terms of energy a clear selling point

Lepton collider X-sections

Higgs/EWK couplings

Timelines

	To		+5					+10					+15					+20				+26
ILC	0.5/ab 250 GeV				1.5/ab 250 GeV							1.0, 500	1.0/ab 0.2/ab 500 GeV 2m _{top} 5				3/ab 500 G	eV				
CEPC	5.6/ab 240 GeV					16, N	/ab 1 _z	2.6 /ab 2M _w								SppC =>						
CLIC		1.0/ab 380 GeV							2.5/ab 1.5 TeV						5.0/ab => until +28 3.0 TeV							
FCC	15 et	150/ab ee, Mz				5/ab 240 (GeV		1.7/ab ee, 2m _{top}										ĥ	<u>h.eh</u> =>		
LHeC		0.06/ab 0.2/ab								0.7	2/ab											
HE- LHC	10/ab per experiment in 20y																					
FCC eh/hh	20/ab per experiment in 25y																					

Comparison table (alone)

JHEP01(2020)139

kappa-0	HL-LHC	LHeC	HE-	LHC	ILC		CLIC			CEPC	FCC-ee		FCC-ee/eh/hh	
			S2	S2'	250	500	1000	380	15000	3000		240	365	
$\kappa_W \; [\%]$	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
$\kappa_Z \ [\%]$	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
$\kappa_g \; [\%]$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
$\kappa_\gamma \; [\%]$	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98 *	5.0	2.2	3.7	4.7	3.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	_	5.7	3.8	99 *	86*	$85\star$	$120\star$	15	6.9	8.2	81*	$75\star$	0.69
$\kappa_c \ [\%]$	—	4.1	_	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
$\kappa_t \; [\%]$	3.3	—	2.8	1.7	—	6.9	1.6	—	_	2.7	—	_	_	1.0
$\kappa_b \; [\%]$	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
$\kappa_{\mu} \; [\%]$	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41
$\kappa_{ au}$ [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

Comparison table (+HL-LHC)

JHEP01(2020)139

lanna 2	HL-LHC &												
карра-з	ILC_{250}	ILC_{500}	ILC_{1000}	$\operatorname{CLIC}_{380}$	$\operatorname{CLIC}_{1500}$	$\operatorname{CLIC}_{3000}$	CEPC	$FCC-ee_{240}$	$FCC-ee_{365}$	FCC-ee/eh/hh			
κ_W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19			
$\kappa_Z[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16			
$\kappa_g [\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5			
$\kappa_\gamma \; [\%]$	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31			
$\kappa_{Z\gamma} \ [\%]$	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7			
$\kappa_c ~[\%]$	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96			
$\kappa_t ~[\%]$	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96			
$\kappa_b \; [\%]$	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48			
$\kappa_{\mu} \; [\%]$	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43			
$\kappa_{ au}$ [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46			
$BR_{inv} \ (<\%, 95\% \ CL)$	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024			
$BR_{unt} \ (<\%, 95\% \ CL)$	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.			

NP scales

Self-coupling vs X-section

