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[Eligio Lisi]

A new field is born/re-branded

Electroweak Nuclear Physics
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[Eligio Lisi]

A new field is born/re-branded

Electroweak Nuclear Physics

“multifaceted and interdisciplinary”
= a mess of different communities

_ Intersection of neutrino cross-sections,
/ Wf "\"J electron scattering, nuclear physics, ...
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[Eligio Lisi]

Learn from Astroparticle Physics

Particle physics, Astrophysics, Cosmic ray physics,
Cosmology were in a similar position at the end of the
last century

Realised that they needed to join communities to
tackle important problems

— dark matter, baryon asymmetry and stability, neutrino
masses, ...

Came together under the umbrella term “Astroparticle

Physics”

Dedicated journals, schools soon emerged, leading to

a common language, flourishing field
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[Eligio Lisi]

Electroweak Nuclear Physics

f X X\

electron scattering, neutrino cross-sections, nuclear physics, ...
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[Aaron Bercellie]

MINERVA

MINERVA Detector
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[Jeffrey Kleykamp]

New measurements with new
beam energy

Neutrinos/m?/GeV/POT
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[Xianguo Lu]

Generator tuning on CC-inc

[Phys.Rev.Lett. 116 (2016) 071802]
Neutrlno 3 33&2{) LE- bearn POT MINEHvA F'r-'s.-llmmar'yr

[Phys.Rev.Lett. 120 (2018) 221805]

An‘u Neulrmo 1 02820 LE beam POT MINEHVA Prehmmar-,r
I

3 04<q/GeV<08| o000  — " 0.4<q/GeV<08]
« 30000 V . == MC Total o 4 vV == MC Total
p .o' * — MC QE + RPA p — MC QE + RPA
5 — M Delta % 1500 — MC Delta ]
o [ = 2p2h valencia_| | [=—2p2n valencia_]
€ 2000} + Data = ¢ Data
S 2 ¢
w w 1000
1000 500-
. |
g 1.5 ' g 1.5f Pt
; es ' * E
5 10 °° . . 5 1.0f
L] . . +
0.5 . 0.5¢ .
0.0 0.2 0.0 U' 1 0 2

2p2h = 2 particles 2 holes = correlated

04
Reconstructed available energy (GeV)

Reconstructed available energy (GeV)

nucleon pair as initial state
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[Xianguo Lu]

Generator tuning on CC-inc

[Phys.Rev.Lett. 116 (2016) 071802] [Phys.Rev.Lett. 120 (2018) 221805]
Neutnno 3 33&20 LE- beam POT MINEHVA Prellmlnaw : Antl Neutrmo 1 02620 LE beam PC'T MINEHVA Prellmlnary
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Theorists say this should not work, but it doe
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[Rob Fine]

Double transverse variables
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Momentum imbalance
transverse to neutrino direction
can teach us something about
the nuclear interactions, e.qg.

binding energy
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[Ciro Riccio]

Super-Kamiokande ¢ J : ]
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2,924 m
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Target & horns
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0 beam dump 11
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[Ciro Riccio]

High-acceptance
COTT Vv-v comparison

High angle
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[Daniel Cherdack]

CC11 measurement favours
new MK pion model
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[Benjamin Quilain]

On-axis CC11T measurements

CCl17r cross sections
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[Tsutomu Fukuda]

“NINJA

* Neutrino Interaction research with Nuclear emulsion
and J-parc Accelerator

film

Stc‘ael plate

——

. 2Zmm

" Ay
support: 500um steel ECC
59 sets (500um steel)

‘,- Iron 2.0cm

Proton identification

Proton momentum threshold

dE/dx measurement = Proton (CCQE)
o o1 == Proton {2pZh}
N TEu & High momentum
bR it bibnivi i st e 2 i . R s 3 £ P 2p2h
Precision tracker with timing information i 6.5cm B o g L plbniapan).
Proton (0.40 GeV/e) ——“2__| Proton (0.74 GeV/c) £ |
Emulsion Cloud Chamber (ECC) is a sandwich structure v . 2 0.05] ]
v Il of emulsion films and materials. - Bl e st
el [ B85S ECC is placed in front of T2K near detector, INGRID. ) T ot O
Precise Tracker is placed between ECC and INGRID to Proton (0.60 GeV/c) —————| Proton (1.14 GeVic) ———f5
give a timing information to emulsion tracks. ] I j
*  Muon ID is possible by combined analysis with INGRID. < % MeV/c
Event detection,
ENEEEEREIEEE Precise Tracker - 2 options (Emulsion Shifter/ Scintillating Fiber Tracker)
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[Stephen Dolan][Lukas Koch]

Method questions

2 90F
* Unfolded results can produce strongly < 801 =
correlated data "2 70E -
L] - a
— Difficult to impossible to interpret by eye 360; =
* Regularisation reduces correlation but & 50 =
introduces bias 40F- -
— Need to choose a regularisation strength, 305_ -
e.g. data-driven L-curve method 20§ =
* ALWAYS also provide unregularised 10§ :
reSUItS :1 111 I 1111 | L 111 | L1l | L i1 | | 111 1 | 11 1 l 11 1 l 111 ::

0 100 200 300 400 500 600 700 800 900

— Most correct/useful for global fits o x2 of fit

* Alternative to unfolding, provide raw data

and forward-folding matrix

— Response Matrix Utilities (ReMU) \

software package provides needed
functionality
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[Jeremy Wolcott]
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Sampling
calorimeter
detectors
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[Leo Aliagat]

CC 1 inclusive

NOVA Prellrnlnary NOVA Prelrmmary
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[Leo Aliagat]

NC coh 1

NOVA Preliminary
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[Anne Schukraft]

q

MiniBooNE
Target: C MicroBooNTI
Technology: Mineral Qil Cherenkov Target: Ar
Operating since 2002 - Technology:
] 4 : LArTPC

—i . s=as o R Operation: Started

i -4

| S

SBND

Target: Ar

T600 Technology:

Target: Ar LAFTRC
Technology: LArTPC Operation: 2020
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[Anne Schukraft]

Vv interaction vertex

Run 5192 Event 1218, February 28th, 2016
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[Marco Del Tutto]

CC inclusive (u + X)

MicroBooNE Preliminary
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[Joel Mousseau]

CC % inclusive

MicroBooNE Preliminary 1.62e20 POT -
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[Colton Hill]

Preparation for v. measurement

NuMI: Run 5280 Subrun 66 Event 3329 Plane 2
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[Raquel Castillo Fernandez]

Protons in MicroBooNE

-
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Work is on-going to lower the threshold
towards the technical limit of ~20 MeV KE (wire pitch).
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[Kate Scholberg]

* Coherent Elastic Neutrino-Nucleus Scattering

Vv

26

A%

ZO

J. Monroe & P. Fisher, 2007 J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013). ]
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[Kate Scholberg]

Stopping pion neutrino beam

Siting for deployment in SNS basement e

down “Neutrino Alley”
(measured neutron backgrounds low,
~ 8 mwe overburden)

Isotropic v glow from Hg SNS target
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[Kate Scholberg]
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[Kate Scholberg]

But much more to do
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[Kate Scholberg]

AR ]’; B ﬂl‘%

SHIELDING MONOLITH
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[Afroditi Papadopoulou]

Electron scattering

*Generator vs (e,e’) data

When we got started ... ... Today
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[Afroditi Papadopoulou]

32

e4dnu
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[Artur Ankowski]

E04'001 @ JLab (e,e)

New data covers QE,
resonances,
and beginning of DIS

Targets: D, C, Al, Fe, some H Beam Energies: 1.2, 2.3, 3.5, 4.6 GeV
560 MeV, 36 deg 1204.4 MeV, 16.0 deg
~ 331 MeV, 0.10 GeV? ~ 333 MeV, 0.11 GeV® A peak

U 400 |
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[Hongxia Dai]

E12-14-012 @ JLab

(e,e’) Cross Section Results at E,= 2.222 GeV and 6,= 15.541 deg
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Phys. Rev. C98, 014617 (2018)
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(e,e’p) coming soon
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Conclusions

* Electroweak Nuclear Physics is a very active
“‘multifaceted and interdisciplinary” field

— but we can handle it

* Wide array of experimental endeavours ongoing
— Model development is driven by experiments

* Will re-branding be successful?

— Might hear the term “electroweak nuclear physics”
more in the future

* Exciting times to be a neutrino/nuclear physicist

* All Nulnt 18 presentations are online:
https://indico.cern.ch/event/703880/contribution
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The cross-section cave

5 ” _‘- L \"

What we see is not what we are interested Iin
— Lost events due to efficiency
— Added events due to background
— Different event properties due to smearing
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cross-section extractlon

* The canonical way:
Unfolding

— “Undo” the detector and
selection effects

— Challenging to do right
without introducing bias

* Another way:
Forward-folding

— Apply detector effects to
theory

— Brings its own sets of
challenges

s &Thly
ilities Coundll
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HOW |t Works truth expectation
data
\l N - BEEN -

reco expectahon .

N—

* Every event belongs in exactly one truth bin
and up to one reconstructed bin (if it gets reconstructed)

« P(reco bin =i | truth bin = j) = R; = efficiency x smearing

— Response matrix describes average detector response to true events
* reco expectation = response matrix x truth expectation

— Can (and truth usually must) be binned in multiple variables
* The data is the data is the data

— No uncertainty on the data points, 4 is exactly 4!

— All systematics in response matrix or physics model

* All comparisons between data and theory (likelihoods, chi-squares, chi-by-
eye) are done in reco space.

response matrix

Science & Technology U K Resea rc h
@ Facilities Council and |nnovation
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Reasons to do it: Flexible binning
B
|

Bl B
N X

* Flexible number of bins

B B
| | M=
* reco bins # truth bins B B e B
N
p-g-mmmm <R B:0- B
N NN B
L
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Reasons to do it: Flexible binning

* Flexible number of bins
* reco bins # truth bins

reco binning with fine truth binning
— Great for analyses with low statistics
— Admit we are not able to constrain truth completel
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Reasons to do it: reco level data

* No data point correlation
— Theory predictions will be correlated, but probably much less
than what unregularised unfolding might do
— Chi-by-eye
* Robert D. Cousins, Samuel J. May, Yipeng Sun, [arXiv:1607.07038]
Should unfolded histograms be used to test hypotheses?:

“It seems remarkable that, even though unfolding by matrix
inversion would appear not to lose information, in practice
the way the information is used (linearizing the problem via
expressing the result via a covariance matrix) already
results in some failures of the bottom-line test of GOF. This
IS without any reqularization or approximate EM inversion.”

“‘D’Agostini”

& Science & Technology U K ReSGaI‘C h
@ Facilities Council and Innovation
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https://arxiv.org/abs/1607.07038
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Detector uncertainties

Matrix only describes single possible detector

— True detector probably behaves slightly differently
Cover detector uncertainties with “toy simulations”
— Variations and weights of same events

Each toy yields own
response matrix == Il-.

Each response matrix L I.
yields own reco prediction

Compare to data w/ marginal, i.e. average, likelihood

. UK Research
acilities Council and Innovation



The data usage cycle

Use for likelihood tests to

Experiment takes data, _ _
reject models / fit parameters

builds response matrix

Inside experiment collaborati

Publish parameter fits as
well as raw data and

matrix /

Use published data and Fits inform building of
matrix for likelihood tests to ‘ new models
reject models / fit parameters

UK Research
and Innovation
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https://remu.readthedocs.io https://github.com/ast0815/remu

Response Matrix Utilities

. T,

* Implements all of this (and then some)
* Input:
— Toy variations of selection (detector systematics)
— Truth and reco binning
* Provides methods to:
— Build matrix
— Evaluate statistical detector uncertainty
— Forward-fold truth (i.e. model)
— Compare to data (e.g. compute likelihoods, p-values, MCMC)
* Pure python (+ standard scientific packages numpy, etc)
— Easy to install and use
— $ pip install remu
* Tell me what you expect/want/need!

& Science & Technology U K Resea rc h
@ Facilities Council and Innovation
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https://github.com/ast0815/remu
https://remu.readthedocs.io/
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The hard part for the analyser

* Make the response matrix model-independent!

What:
— Matrix elements depend only on detector properties
* Why:
— A model-dependent matrix defeats the purpose of
being able to test arbitrary models with it

* How:
— Understand your detector and analysis

— Choose an appropriate truth binning
(variables to bin in, granularity of binning)

— See backup slides

cience & Technology U K Resea rc h
acilities Council and |nn0vation
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To conclude

Forward folding is every bit as challengingas
unfolding / AN

— Need to really understand the detector /
to decide which variables to bin in and how |

— High MC statistics requirements \ \ReMU
ReMU implements the necessary machinery N
Method promises some advantages over unfolding

— Works with low real data statistics
— Best model separation power in reco space [arXiv:1607.07038]

Method paper in preparation

& Science & Technology U K Resea rc h
@ Facilities Council and Innovation



https://arxiv.org/abs/1607.07038

A few things to think about

* How to best handle backgrounds
— Backgrounds are just another set of truth bins
— Can be handled organically (simultaneous fits)
* Provide background templates

* Provide experiment/analysis specific convenience
functions
* Plot release — data release — algorithm release
— $ pip install t2k-results
>>> t2Kk_results.thisorthat xsec result.fit(my_ model)
— No more manual overlaying plots copied from papers

& Science & Technology U K Resea rc h
@ Facilities Council and Innovation
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https://github.com/ast0815/remu
https://remu.readthedocs.io/
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Statistical uncertainty

Generating MC costs time and money

— In theory we could have arbitrarily precise matrices
— In practice we don’t

Quantify statistical uncertainty of matrix elements
Generate random matrices according to stats

Handle just like systematic uncertainties

— In a way the statistical
uncertainty is just
another detector
systematic

UK Research
and Innovation



Three step matrix building model

R;; = eff; x smear; x weight;
* Efficiency
— Binomial process
— Parameters ~ conjugate distribution: Beta
* Smearing
— Multinomial process
— Parameter ~ conjugate distribution: Dirichlet
* Weighting
— What matters are the average weights
— Use standard error of the mean: Normal

& Science & Technology U K Resea rc h
@ Facilities Council and |nnovation
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What to bin In

* |deal:
— Bin in all truth variables that affect reconstruction

* This goes beyond the variables of physical interest, i.e
reco variables!

— Measuring muon momentum distribution, but true
cos(theta) affects efficiency? You must bin in true
cos(theta)!

— Might lead down some weird rabbit holes (angular
separation of tracks, total particle multiplicity, ...)

* Realistic:
— Bin in most important variables that affect reconstruction

& Science & Technology U K Resea rCh
@ Facilities Council and |nn0vat|on
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What not to bin In

Never ever use truth variables that need a “physics” model to
propagate to the reco level!

Neutrino energy? Bad choice.

— Measurable effect depends on interaction model, nuclear model,
FSI...

Muon momentum? Good choice.
— Directly accessible by detector (track curvature)
HMN momentum? Even better choice!

— Do you assume the muon to be selected as HMN?

— What about confusion with high-momentum pions?

Rule of thumb:

— Bin in variables as “close” to low-level reconstructed quantities
— “Could you see it in an event display?”

& Science & Technology U K Resea rCh
@ Facilities Council and |nn0vat|on



The exponential #bins problem

* #bins = (#bins/variable) * (#variables)
* MC stats are cheap (compared to data) but not free

* Need to compromise
— Bin coarsely (but beware in-bin variations!)
— Concentrate on most important truth variables
— Reduce #reco bins
— #response matrix bins = #truth bins x #reco bins
* Aim: Reduce model-dependence to a negligible level
— Will never remove it completely

* Constraint: Sufficient MC events in bins

& Science & Technology U K Resea rc h
@ Facilities Council and Innovation
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The bitter truth

There will be truth bins with not enough events

Constrains the phase space of testable models
— Neest < (Ngeneratea / Safety factor) in all truth bins

Best way to avoid this:

— Build response matrix with MC covering the full phase
space (“particle parties”)

Realistic way to mitigate this:

— Build response matrix with MC from multiple
generators, turn dials to widest possible phase space

Response matrix depends only on detector properties
— Mix and merge all the models!

& Science & Technology U K Resea rc h
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Gas interaction example (WIP)

* Reco binning: 16 bins

— 2 bins in main MIP (muon or pion) angle (forwards vs.
backward)

— 2 bins in particle multiplicity (1 track vs. n tracks)
— 4 bins in selection (main, control samples 1, 2, 3)

& Science & Technology U K Resea rCh
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Gas interaction example (WIP)

* Reco binning: 16 bins

— 2 bins in main MIP (muon or pion) angle (forwards vs.
backward)

— 2 bins in particle multiplicity (1 track vs. n tracks)
— 4 bins in selection (main, control samples 1, 2, 3)

* Truth binning: 11760 bins (5353 w/ >0 I\\/)IC events)
— 7 bins in true MIP momentum -
— 7 bins in true MIP cos(theta)
— 5 bins in true forward separation of MIP
— 6 bins in true backwards separation of MIP
— 8 bins in event category (4 in FV + 4 out

Science & Technology U K Resea rCh
@ Facilities Council and |nnovat|on
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The other hard part

Getting everyone on board to use this

— This will mean extra work for theorists/model-builders
But it is worthwhile

— Better model separation power

— Works with low statistics

— Endorsed by actual statisticians!

This is not just dumping work on theorists

— This is hard for experimentalists too!

— Have to work together for better physics results
Make this as painless as possible

— There will be some pain...

— Tell me what you want/need/expect!

& Science & Technology
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