
Meeting Future Software Challenges in
High-Energy Physics

Graeme A Stewart, CERN EP-SFT

RAL PPD Seminar 2020-07-22

HL-LHC, the Intensity Frontier, and beyond
Our mission:

● Exploit the Higgs for SM and
BSM physics

● b, c, tau physics to study BSM
and matter/antimatter

● Dark matter
● QGP in heavy ion collisions
● Neutrino oscillations and mass
● Explore the unknown

Our Tools:
● (HL-)LHC, DUNE, Belle II
● ILC, FCC, CEPC, CLIC

2

FNAL Intensity Frontier

An Overview of HEP Software

● >~50 millions of lines of code, mainly C++, a lot of Python
○ Commercial development cost ~500M CHF

● Critical part of our physics production pipeline, from triggering all the
way to analysis and final plots as well as simulation

● Significant pieces of software are already shared by most experiments:
○ Event generators, Geant4, ROOT

This is the “traditional” view
and how this changes in the
future is an important topic
for our discussions

3

HEP Computing
● Tasks broken into jobs by experiment

production systems (levels of parallelism)
○ Tasks → job → events → algorithms

● LHC experiments use
○ 1M CPU cores every hour of every day
○ Store 1000PB of data (600/400PB tape/disk split)

■ We are in the exabyte era already
○ 100PB of data transfers per year (10-100Gb links)

● This is a huge and ongoing cost in hardware
and human effort

● With significant challenges ahead of us to
support our ongoing physics programme

4

Technology Evolution

● Moore’s Law continues to deliver
increases in transistor density

○ But, doubling time is lengthening

● Clock speed scaling failed around 2006
○ No longer possible to ramp the clock speed as process size

shrinks
○ Leak currents become important source of power consumption

● So we are basically stuck at ~3GHz clocks from the
underlying Wm-2 limit

○ This is the Power Wall
○ Limits the capabilities of serial processing

● Memory access times are now ~100s of clock cycles
○ Poor data layouts are catastrophic for software performance

5

NVIDIA Titan V GPU
US$3000, 1.5GHz

K Rupp

https://github.com/karlrupp/microprocessor-trend-data

Decreasing Returns
over Time

● ACM Conclusion: diversity of
new architectures will only
grow

● Best known example is of
GPUs

○ Also FPGAs, TPUs, …
● A64FX ARM CPU recently

took the #1 crown by fixing
the memory latency issue

6

GPUs dedicate far
more transistors
to arithmetic

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Drivers of Technology Evolution
● Low power devices

○ Driven by mobile technology and Internet of Things

● Data centre processing
○ Extremely large clusters running fairly specialist applications

● Machine learning
○ New silicon devices specialised for training machine learning algorithms, particularly low

precision calculations

● Exascale computing
○ Not in itself general purpose, but poses many technical problems whose solutions can be

general - HEP pushed to use HPC centres, especially in US
■ New Top500 #1 Japanese Fugaku machine is really interesting...

● Energy efficiency is a driver for all of these developments
○ Specialist processors would be designed for very specific tasks
○ Chips would be unable to power all transistors at once: dark silicon is unlit when not used

7

Hardware Evolution in a Nutshell

“We’re approaching the limits of computer
power – we need new programmers now”
John Naughton, Guardian

8

c. 2000

c. 2019

Ye olde
processing
model

Brave new
world

https://www.theguardian.com/commentisfree/2020/jan/11/we-are-approaching-the-limits-of-computer-power-we-need-new-programmers-n-ow

Software Challenges and Opportunities

9

Concurrency
● The one overriding characteristic of modern processor hardware is concurrency

○ SIMD - Single Instruction Multiple Data (a.k.a. vectorisation)
■ Doing exactly the same operation on multiple data objects

○ MIMD - Multiple Instruction Multiple Data (a.k.a. multi-theading or multi-processing)
■ Performing different operations on different data objects, but at the same time

○ SIMT - Single Instruction Multiple Threads
■ GPU running a block of threads in instruction lock-step (masking allowed, more flexible than

SIMD)

● Because of the inherently parallel nature of HEP processing a lot of concurrency
can be exploited at rough granularity

○ Run many jobs from the same task in parallel; Run different events from the same job in parallel

● However, the push to highly parallel processing (1000s of GPU cores) requires
parallel algorithms

○ This often requires completely rethinking problems that had sequential solutions previously, e.g.
finding track seeds via cellular automata (TrickTrack library, CMS and FCC) 10

Heterogeneity
● There are a lot of possible parallel architectures on the market

○ CPUs with multiple cores and wide registers
■ SSE4.2, AVX, AVX2, AVX512, Neon, SVE, Altivec/VMX, VSX

○ GPUs with many cores; FPGAs
■ NVIDIA (many generations - often significantly different), AMD, Intel, ...

● In addition there are ‘far out’ architectures proposed, like Intel’s Configurable
Spatial Architecture

● Many options for coding, both generic and specific:
○ CUDA, HIP, TBB, HPX, OpenACC, OpenMP, OpenCL, SYCL, Alpaka, Kokkos, oneAPI, ...

● Frustratingly no clear winner, mutually exclusive solutions and many niches
○ One option for now is to isolate the algorithmic code from a ‘wrapper’ that targets a particular

device or architecture - approach of ALICE for their GPU/CPU code
○ Hiding details in a lower level library (e.g. VecCore) also helps insulate developers

11

Data Layout and Throughput
● Original HEP C++ Event Data Models were heavily inspired by the Object Oriented

paradigm
○ Deep levels of inheritance
○ Access to data through various indirections
○ Scattered objects in memory

● Lacklustre performance was ~hidden by the CPU and we survived LHC start
● In-memory data layout has been improved since then (e.g. ATLAS xAOD)

○ But still hard for the compiler to really figure out what’s going on
○ Function calls non-optimal
○ Extensive use of ‘internal’ EDMs in particular areas, e.g. tracking

● iLCSoft / LCIO also proved that common data models help a lot with common
software development

● Want to be flexible re. device transfers and offer different persistency options
○ e.g. ALICE Run3 EDM optimised for message passing and the code generation approaches in FCC-hh

PODIO EDM generator (being used at the implementation of common EDM4hep project)

12

Machine Learning

● Machine learning, or artificial intelligence,
used for many years in HEP

○ Algorithms learn by example (training) how to
perform tasks instead of being programmed

● Significant advances in the last years in
‘deep learning’

○ Deep means many neural network layers
○ Fast differentiability and use of GPUs have made

this practical

● Rapid development driven by industry
○ Vibrant ecosystem of tools and techniques
○ Highly optimised for modern, specialised

hardware
13

ML minimisation problem - do this
minimisation with 106 variables...

An example of a modern ML
architecture

Machine Learning in HEP
● Better discrimination

○ Important input for analysis (see improvements with Higgs)
○ Also used at HLT as inference can be fast (N.B. training can be

slow!)
○ HEP analogies to image recognition or text processing

● Replace expensive calculations with trained output
○ E.g. calorimeter simulations and other complex physical

processes

● There are significant opportunities here
○ Need to combine physics and data science knowledge
○ Field evolves rapidly and we need to deepen our expertise
○ New HSF initiative on differentiable computing

● Integration into our workflows is not at all settled
○ Resource provision, efficient use, heterogeneity and

programming models pose problems
○ Training deep models may require significant resources

■ Especially when hyper-parameter scans are needed
14

Machine learning at the energy and intensity frontiers
of particle physics,

https://doi.org/10.1038/s41586-018-0361-2

Use of Generative
Adversarial
Networks to
simulate
calorimeter
showers, trained on
G4 events (S.
Vallacorsa)

https://hepsoftwarefoundation.org/activities/differentiablecomputing.html
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2

HEP Software and Computing and the
HSF Initiative

15

Software at the HL-LHC
● Pile-up of ~200 ⇒ particularly a challenge for

charged particle reconstruction
○ Inner trackers and high-granularity calorimeters

● Increase of event rates by up to x10 means the
computing budget per event just went down by x10…

● Additional problem is how to store these events
○ Keeping today’s event formats and volumes will not work

● Classical HEP software typically executes one instruction at a time (per thread)
○ Major SW re-engineering required (but rewriting everything is not an option)
○ Co-processors like GPUs require that this problem is solved

● Increased amount of data requires to revise/evolve our computing and data
management approaches

○ We must be able to feed our applications with data efficiently

● HL-LHC salvation will come from software improvements, not from hardware

16

Challenges for the Next Decade
● HL-LHC brings a huge challenge to

software and computing
○ Both rate and complexity rise

● No reasonable extrapolation of Run 2
software and computing
○ Resources needed would hugely

exceed those from technology
evolution alone

○ Considerable progress made
from naive estimates, but still a
large resource gap

17

HEP Software Foundation (HSF)

● The LHC experiments, Belle II and DUNE face the same challenges
○ HEP software must evolve to meet these challenges
○ Need to exploit all the expertise available, inside and outside our community, for parallelisation
○ New approaches needed to overcome limitations in today’s code

● Cannot afford any more duplicated efforts
○ Each experiment has its own solution for almost everything (framework, reconstruction

algorithms, …)
○ New experiments should not be starting from scratch, but building on best-of-breed

● HSF started with a number of workshops and working groups on common
topics (packaging, licensing)

● The goal of the HSF is to facilitate coordination and common efforts in
software and computing across HEP in general

○ Our philosophy is bottom up, a.k.a. do-ocracy
18

http://hepsoftwarefoundation.org/

Community White Paper

● We wanted to describe a global vision for software and
computing for the HL-LHC era and HEP in the 2020s

● Formal charge from the WLCG in July 2016
○ Anticipate a "software upgrade" in preparation for HL-LHC
○ Identify and prioritize the software research and development investments

i. to achieve improvements in software efficiency, scalability and performance and to make use of the advances in CPU,
storage and network technologies

ii. to enable new approaches to computing and software that could radically extend the physics reach of the detectors
iii. to ensure the long term sustainability of the software through the lifetime of the HL-LHC

● Long process of 1 year, with many working groups and 2 major workshops
● Community engagement: 310 authors from 124 institutes, 14 chapters
● Published in Computing and Software for Big Science,

https://doi.org/10.1007/s41781-018-0018-8 (and on arXiv)
19

http://hepsoftwarefoundation.org/assets/CWP-Charge-HSF.pdf
https://doi.org/10.1007/s41781-018-0018-8
https://arxiv.org/abs/1712.06982

Software Advocacy

● HSF has continued to advocate for
software at the highest levels of the
field

● Paper submitted and talk at the
European Strategy Process

● Paper on Common Tools and
Community Software reviewed by the
LHCC in May

○ Positive feedback in LHCC minutes

20

https://zenodo.org/record/2413005
https://zenodo.org/record/3779250
https://zenodo.org/record/3779250
https://zenodo.org/record/2413005
https://zenodo.org/record/3779250

21

int main {
 cout << “write software” << endl;
 return 0;
}

22

HSF Working Groups
● The Roadmap established what challenges the community faced

○ But it did not spell out how to face them in detail

● HSF had working groups from its earliest days
○ These were open groups of people in the community, motivated enough to organise around a common

topic, usually at their own initiative

● This model was a good one for moving forwards on the key topics
○ We setup new working groups for Detector Simulation, Reconstruction and Software Triggers, and Data

Analysis
○ HSF Coordination group setup a search committee, whole community could nominate convenors

● The HSF’s role here is one of an information conduit and meeting point
○ Report on interesting and common work being done
○ Forum for technical comments and discussion
○ Encourage cooperation across experiments and regions

● This model was a real success and was expanded last year to all working groups

23

https://hepsoftwarefoundation.org/what_are_WGs.html
https://hepsoftwarefoundation.org/workinggroups/detsim.html
https://hepsoftwarefoundation.org/workinggroups/recotrigger.html
https://hepsoftwarefoundation.org/workinggroups/dataanalysis.html
https://hepsoftwarefoundation.org/workinggroups/dataanalysis.html

Some important practical matters!
Copyright and Licensing

● Long neglected inside collaborations
○ Code was arbitrarily licensed or unlicensed, copyright assigned to random

authors and institutes
○ Yet this is essential to be able to

■ Open source our software properly
■ Combine with other open source projects and collaborate

● Copyright
○ Advice to keep this as low a number as practicable as copyright holders

decide the licence
○ LHC experiments: © CERN for the benefit of collaboration X

● License
○ Favour liberal licenses for industry collaboration: LGPL, Apache, MIT
○ Definitely avoid GPL for libraries you want other people to use

24

[HSF-TN-2016-01]

https://hepsoftwarefoundation.org/notes/HSF-TN-2016-01.pdf

Software Nuts and Bolts

● Software Tools and Packaging WG
○ Active group promoting best practice for correctness and performance, developer

productivity
○ There has been a revolution in adopting best open source practice in recent years

■ git, GitHub, GitLab, CMake, VS Code, merge requests, code review, ...
○ HSF has an active group promoting best practice for correctness and performance

■ Profiling, static analysis, project build settings, ...
○ Need a software stack, incorporating many components from the open source

world and HEP community
■ This touches deeply on license and license combinations

○ Preference for tools that are not home grown and have a wider
support base

○ Spack (LLNL) and Conda actively being prototyped, e.g.
Key4hep project in EP R&D and AIDAinnova

25

[HSF-TN-2016-03]

https://hepsoftwarefoundation.org/notes/HSF-TN-2016-03.pdf
https://zenodo.org/record/3634722

Frameworks and Integration
● Increasingly heterogeneous world requires advanced

software support infrastructure
○ Software frameworks support use of different devices as well as insulate

developers from many of the details of concurrency and threading models
■ Adapt to the new heterogeneous landscape
■ Latency hiding is critical to maintaining throughout

○ Framework development has traditionally been quite fragmented, but new experiments should
offer a chance to increase convergence

■ Better to start off together than try to re-converge later (iLCSoft, LArSoft examples of
success, albeit without concurrency; Gaudi for LHCb, ATLAS)

■ ALFA for ALICE and FAIR experiments

● New HSF working group established last year
○ Survey of the community and meetings on topical projects
○ Look at multi-threading
○ Now moving to heterogeneous resources 26

Cartoon of a single job,
processing multiple
events (colours)
through different
modules (shapes)

Issues for Heterogeneous Software
● Code Portability

○ Increasingly large number of possible non-CPU devices available
○ Clear that the community cannot support N codes for N platforms
○ Industry knows this too, hence proliferation of toolkits and projects

● How to assess the best?
○ This is an orthogonal question to redesigning code for at least one parallel architecture

● DOE HEP-CCE Project
○ Portable Parallelization Strategies
○ Assess metrics for toolkits on

real HEP examples:
■ Patatrack (CMS),
■ FastCaloSim (ATLAS)
■ WireCell (Neutrino)

○ Will produce recommendations taking into
account the nature of HEP workflows

27All this changes rapidly

Event Generators

● Event generators are the start of the simulation chain
○ At the LHC Run1 only leading order generators were used
○ Negligible CPU consumption compared with detector simulation

● However, with LHC upgrades coming higher order generators
become much more important

○ These are inherently much more costly to run
○ Problems of negative weights can increase hugely the samples needed for

weighted event samples

● In addition, the theory community, who develop these codes
usually work in small teams

○ Recognition for technical improvements is limited/missing

● HSF/LPCC Workshop in 2018 helped spawned a new working
group active in this area

● Additional paper submitted to LHCC Review [arXiv:2004.13687]
28Many electroweak measurement errors

dominated by theory (red). B. Hinemann

ATLAS 2018 CPU Report

https://hepsoftwarefoundation.org/workinggroups/generators.html
https://indico.cern.ch/event/751693/
https://arxiv.org/abs/2004.13687
https://indico.cern.ch/event/808335/contributions/3365082/attachments/1845504/3028247/SummaryTalk.pdf

Event Generators - Technical Improvements and Porting

● Working group tackling technical challenges
○ Setting a baseline for further comparisons
○ Understanding how to run generators for best efficiency
○ Support for technical improvements (e.g. thread safety)
○ Porting to other architectures

■ Could be very suitable code to do this with (smaller,
self contained code bases, numerically intensive)

● New Architectures
○ Original port of some elements of MadGraph to GPUs by

Japanese Group at KEK
○ Work reinvigorated and now pursued actively by CERN and

UC Louvain
○ Interest also in Sherpa (heavily used by ATLAS)

29

https://indico.cern.ch/event/759388/contributions/3303060/

Detector Simulation

● A major consumer of LHC grid
resources today

○ Experiments with higher data rates will
need to more simulation

● Faster simulation, with no or minimal loss of accuracy, is the goal
○ Range of techniques have been used for a long time (frozen showers,

parametric response)
○ Key point is deciding when it’s good enough for physics

● Machine learning lends itself to problems like this
○ Calorimeter simulations usually targeted
○ Variational Auto Encoders (VAEs) and Generative Adversarial Networks (GANs)

■ This is probably not as easy as we thought - traditional parametric
approaches are hard to beat

○ R&D on lifecycle integration into Geant4 is starting

30

ATLAS VAE and GAN
cf. Geant4 simulation

https://hepsoftwarefoundation.org/workinggroups/detsim.html

Detector Simulation

● Technical improvement programme helps
(and helps everyone)

● GeantV R&D [arXiv:2005.00949] modernises code and
introduces vectorisation

○ Speed-ups observed (VecCore and VecGeom backported to Geant4)
○ Vectorisation introduces small gains, due to costs of “basketisation”
○ Code modernisation seems to help a lot

● HSF Simulation Working Group meetings on Accelerator R&D
○ Reports from successful projects that have used accelerators

■ MPEXS (medical); Opticks (JUNO Optical Photons); ExaSMR (reactor neutron transport); GATE
(medical)

○ Round table of HEP R&D
■ Geometry on GPUs (VecGeom); EM physics (ExCALIBER) (use of native navigation and shaders);

ML Accelerated Calculations (ATLAS EMEC); LHCb RICH Optical Photons using OptiX 31

GeantV and Geant4 execution speeds
for EM physics with and without
vectorisation (Andrei Gheata)

TrackML geometry rendered on GPU

https://arxiv.org/abs/2005.00949
https://indico.cern.ch/category/10916/
https://indico.cern.ch/event/818702/contributions/3559124/attachments/1926504/3189116/Design_implementation_performance_GeantV_final.pdf

● Hardware triggers no longer sufficient for
modern experiments in many cases

○ More and more initial reconstruction needs to happen
in software

○ Especially in the high-signal regime
○ Here the pressure to break with legacy

implementations is very high

● ALICE have used GPUs since Run 2
○ Lessons learned:

■ Keep data model simple
■ Asynchonous
■ Minimise data transfers

● Expansion to Run 3 rates requires
additional Improvements

○ Better hardware helps modern GPUs)
○ Better algorithms are essential

Reconstruction and Software Triggers

32

arXiv:1905.05515

https://hepsoftwarefoundation.org/workinggroups/recotrigger.html

Additional LHC GPU Projects

● CMS Patatrack project developed track
seeding algorithms to run on GPUs

○ Target 30% of trigger compute budget
○ Gain experience in the field and learn for Run 4
○ Physics was also improved!

● LHCb Allen project has demonstrated
the entire HLT1 chain can run on GPUs

○ Great throughput and scalability
○ Now chosen as baseline solution for Run-3

● However, also design your detector
taking software and computing into
account

○ ATLAS ITk reconstruction is faster at 200
pile-up than current reconstruction at 60 (aka
Don’t Panic!) [ATL-PHYS-PUB-2019-041]

33

https://patatrack.web.cern.ch/patatrack/index.html
https://arxiv.org/abs/1912.09161
https://indico.cern.ch/event/882106/contributions/3716461/attachments/1986620/3310499/FastTrackingHSF.pdf
https://cds.cern.ch/record/2693670/files/ATL-PHYS-PUB-2019-041.pdf

Real Time Analysis
● Design a system that can produce analysis useful outputs

as part of the trigger decision
○ If this captures the most useful information from the event, can

dispense with raw information

● This is a way to fit more physics into the budget
● LHCb Turbo Stream has been introduced in Run2 and will

be dominant in Run3
● Whole ALICE data reduction scheme is based around

keeping ‘useful’ parts of events (no more binary trigger)
○ O2 → Online/Offline Data Reduction Farm

● ATLAS and CMS have similar schemes for special handling
of samples for which full raw data is unaffordable (aka.
data scouting)

34

LHCb Run2 Turbo took 25% of
events for only 10% of bandwidth

LHCb charm physics analysis using
Turbo Stream (arXiv:1510.01707)

Analysis

● Scaling for analysis level data also a huge challenge for all LHC
experiments

● Efficient use of analysis data can come with combining many analyses
as carriages in a train like model (pioneered by PHENIX and then
ALICE)

○ Also goes well with techniques like tape carousels (ATLAS scheme for rotating
primary AOD data from tape systems into a disk buffer)

○ Interest in analysis clusters, specialised for analysis operations over the generic grid
resources (WLCG/HSF pre-CHEP workshop)

● Reducing volume of data needed helps hugely
○ CMS ~1kB nanoAOD makes a vast difference to analysis efficiency and “papers per

petabyte”
○ Smaller EDM is easier to make efficient
○ Requires analyst agreement on corrections, scale factors, etc.

■ However the alternative is perhaps that your analysis never gets done
35

https://indico.cern.ch/event/805983/

Analysis

● Improve analysis ergonomics - how the user interacts with the system to
express their analysis

○ Streamline common tasks
■ Handle all input datasets; Corrections and systematics
■ Compute per event and accumulate; Statistical interpretations

○ Declarative models, building on ROOT’s RDataFrame
■ Say what, not how and let the backend optimise
■ E.g. split and merge, GPU execution

● Notebook like interfaces gain ground, as do
containers - lots of high level Python

● Interest in data science tools and machine learning is significant for this
community

36

Many analysis frameworks, multiple
per experiment, not well generalised

A. Rizzi, NAIL prototype

PyHEP (“Python in HEP”) and New Approaches

● Python is ever more popular in Particle Physics
● Impressive developments of a Python scientific ecosystem for HEP in the last few years
● With strong links to the general scientific ecosystem

○ Interest in data science tools and machine learning is significant for this growing community

● Inspiring new approaches for data analysis
○ Exploiting modern approaches - declarative programming,

heterogeneous resources, etc.
○ This is an ecosystem into which HEP can, and does, contribute

■ Fitting, histograms
○ Knowledge transfer goes both ways
○ Various projects under development, inter-communicating

● Yearly PyHEP workshops have been a success
○ This year’s virtual PyHEP had 1000 people register!

37

https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://indico.cern.ch/e/pyhep2020

Training and Careers
● Many new skills are needed for today’s

software developers and users
● Base has relatively uniform demands

○ Any common components help us

● LHCb StarterKit initiative taken up by
several experiments, sharing training material

○ We ran a Software Carpentries tutorial at CERN last year

● New areas of challenge
○ Concurrency, accelerators, data science (upcoming: oneAPI training from openlab, Alpaka training from

openlab/HSF, possible CUDA bootcamp via openlab)
○ Need to foster new C++ expertise (unlikely to be replaced soon as our core language, but needs to be

modernised)

● Working hard to provide training templates for people developing material
○ Making training sustainable is important to maximise the time people invest here

● Careers area for HEP software experts is an area of great concern
○ Need a functioning career path that retains skills and rewards passing them on... 38

https://hepsoftwarefoundation.org/workinggroups/training.html
https://indico.cern.ch/event/834411/
https://indico.cern.ch/event/878418/
https://indico.cern.ch/event/912156/
https://hepsoftwarefoundation.org/training/curriculum.html

Directions for International Efforts

● Particle physics is in inherently international effort, with an
excellent tradition of cooperation in many different domains

○ Detector R&D, Experiments, WLCG, Common Software

● But we have also had incoherent approaches and duplication
● HEP Software Foundation tries to foster much more the shared

vision
○ This encourages diverse R&D!

There is clearly success in attracting funding to this area: IRIS-UK,
ExCALIBER, SWIFT-HEP, IRIS-HEP, ErUM-DATA IDT, CERN EP R&D,

AIDAinnova; links to other sciences and software engineers via SIDIS.
Though overall we believe it is not yet enough!

39

https://hepsoftwarefoundation.org/
https://sidis.web.cern.ch/

Conclusions

● We have a wide ranging and ambitious physics programme in
HEP and in associated disciplines

○ Our experiments are highly data intensive and require high quality software
and computing

● The landscape for software is becoming ever more challenging
○ Working together on common problems is not only the best use of our resources, our funding

agencies will mandate it

● HSF is now established to help HEP achieve that goal and marshalls effort
around the community

○ We had a very successful Virtual Workshop in May
○ Another planned now for November (19-20 + 23-24)

HL-LHC is a challenge and also a great opportunity to improve HEP software
40

https://indico.cern.ch/e/HSFWLCG2020virtual
https://indico.cern.ch/e/HSFWLCG2020virtual2

HSF Getting Involved...

● Join the HSF Forum, hsf-forum@gmail.com
○ Few messages a week with updates, jobs, items of interest
○ Owned by the community - please just post items of relevance

● Join a working group, https://hepsoftwarefoundation.org/what_are_WGs.html
○ Follow the group’s meetings and discussions
○ Suggest a meeting topic

● Annual meetings and Workshops
○ Established a tradition of a joint meeting with WLCG each

Year (next short meeting pre-CHEP, November)
○ Now adapting for more virtual interactions

● Propose a new activity area
○ The HSF is there to help gather interest

41

mailto:hsf-forum@gmail.com
https://hepsoftwarefoundation.org/what_are_WGs.html
https://indico.cern.ch/category/7971/

