Logic Neural Networks: Ultra-Fast ML for Triggers and
Beyond

RAL seminar 2026

28.01.26

This presentation contains animations - best viewed in .pptx or .key

Lino Gerlach, Thore Gerlach, Elliott Kauffman, Liv Vage

Who I am

Teaching ML since 2017

Who I am not

An FPGA expert

PhD at Imperial College

New directions for particle tracking at the

High-Luminosity LHC

GNNs and reinforcement learning
for tracking

The Peak I [
| _ . ! Confidence gap

/ Ignorant \
1

Cul_tured

Confidence

',.av"'"d
o g
" ol
o

1 r

3 o

i e

o
1 e
X | g
\:-, 1 ”
* s
- R />"
‘\"' — il

7 KnoWIedge |

Working with IRIS-HEP,
based in Geneva

Innovative algorithms

GNNs for tracking
Rapid inference

ML infrastructures in HEP

Motivation /\/\ Logic neural networks —
Y -

ﬁzmij;izgﬁfss Overview of the field
Differentiable logic gate neural networks

Software solutios
New developments
Why we need more

5,

ot Conclusion
Application to HEP
Application to CICADA anomaly detection Summary
Strength and weaknesses How to get started

Future opportunities

Introduction

Low latency inference - evaluating ML fast

Total Number of Papers per Year in HEP-ML Living Review

HEP

When we want ML that 1s: * This plot was made around October 2025

Close to host

Edge computing 1s increasing;: ML use

now at ~ ML use 1s increasing in HEP. We have huge and increasing amounts of data
Cheap and efficient to run Triggers

LLMs, medical devices, space devices etc. The Phase 2 CMS Level 1 Trigger will for instance need to process 63 Tb/s
Pacemakers need ~ with a latency of 12.5 us

Super fast

Financial trading (
), self driving cars and lots more

https://iot-analytics.com/number-connected-iot-devices/
https://pmc.ncbi.nlm.nih.gov/articles/PMC6731626/
https://www.chicagobooth.edu/review/alternative-high-frequency-trading
https://www.chicagobooth.edu/review/alternative-high-frequency-trading

n

“m

How much of the energy consumption and cost does inference account for in an ML pipeline?

10-30%

0%
30-50%

0%
50-70%

0%
70-90%

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Inference devices

Lower latency and power, harder to program With high luminosity LHC
and FCC, we are moving

towards the right to handle our

data quickly
CPU GPU TPU/NPU FPGA ASIC
Latency ms-s HUS—msS Ls—ms ns-us ns
Strength Flexible Parallelism, ML-specific Deterministic Ultimate
5 easy to program ML optimised Low power speed/power
Yy PIRE y b efficiency
Weakness Slow, high power High power Bespoke Hard to program Expensive
Not flexible
Small ML models

Most ML Low inference ML

(e.g. BDTs) -
% -- . rogrammapie
°l | I nterconnect

interconnect
L1 L1 L1 L1
cache || cache cache |[cache

ﬁ,’
/

No matter what chip we use or how

we program it - 1t is ultimately
translated to binary logic

L2 cache

Constant and global memory

e] ——

i Lt BNl __ga A S g |
__ | _ ‘ ‘ 7
Main memory Main memory Main memory

Field Programmable Gate Arrays (FPGAS)

I/0

1/0

I1/0

1/0

I/0

LUT

LUT

LUT

LUT

LUT

LUT

I/0

I/0

BRAM

LUT

LUT

LUT

I/0

I/0

@ LUT — Lookup Tables (thousands!)

LUT

DSP
48

DSP
48

LUT

@ DsSP48 — Digital Signal Processors

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

BRAM

LUT

LuUT

@ BRAM — Block RAM

I/0

I/0

I/0

BRAM

@ 1/0 — Input/Output Blocks

Hardware you can reprogram after manufacturing
Massively parallel — very fast for specific tasks
Deterministic timing (no caches, no surprises)

Programmed using Verilog / VHDL

Can also use high-level tools (e.g. HLS, hls4ml)

Available 1n radiation-tolerant versions for space or HEP detectors

DSPs and LUTs

DSP — Digital Signal Processor

Hardwired arithmetic unit for fast math

A (18-bit) B (18-bit) C (48-bit)
42 17 100
4 R
DSP BLOCK
(e.q., Xilinx DSP48 — 48" = accumulator width)
AxB+C
Multiply-Accumulate (MAC)
_ J

[42x17+1@@=814]

4 Speed

1 cycle throughput (pipelined), ~3-4
cycle latency

@ Capacity
18%18 bit multiply — 48-bit result

@ Purpose

General arithmetic: multiply, add,
accumulate, shifts, pattern detect

Key constraint

Limited count (~2-6k per FPGA) — they'’re

big!

LUT — Lookup Table

A tiny programmable truth table that outputs 1 bit

4 N
3-input LUT (2® = 8 entries)
A B C - Out
C] 0 O 0
A 1 0] 0 1 1
0] 1 O @
B — 0 E—
O 1 1 1 1 bit out
C — 1
1 0 0 1
1 0 1 = O
1 1 O 1
1 1 1 1
. J
4 Speed @ Flexibility
Single clock cycle — just a memory read Can implement ANY boolean function of N
inputs
@ Size @ Key constraint

Modern FPGAs have 6-LUTs (64 entries

each)

Each LUT outputs only 1 bit — need
multiple for wider outputs

Computing: vy

(3 x x) + 1 where x is a 4-bit input (0-15)

e

@ Using a DSP Block

o Conﬁgure DSP

= 1 (constants)

e Feed input each cycle
B = x (your 4-bit input)

RESOURCES
1 DSP

(precious!)

LATENCY
1 cycle*

*or 5-4 if pipelined

N\

Using LUTs

Pre-compute ALL 16 answers

X=0-1, x=1-4, x=2-7, ... X=15-46

Store each output BIT in a separate LUT
Output range 1-46 needs 6 bits

Look up using x as address

= {LUTs[x], LUT«[x], ..., LUTe[x1}

6 LUTs working in parallel (one per output bit)

bit 5 bit 4 bit 3 bit 2 bit 1 bit ©
[LUT] [LUT] [LUT] [LUT] [LUT] [LUT]
RESOURCES LATENCY
6 LUTs 1 cycle
(abundant!) EUTENE)

Current fast inference methods

Pruning

Remove unnecessary weights & neurons

Can often reduce the number of
parameters by 3-10x

Often you get better performing
retraining the pruned network

®
/

Quantisation

Reduce numerical precision

%.712345 —P Kz

Makes 1t better for FPGA

Accuracies suffer below int4

Knowledge distillation

Small model learns behaviour of a large one

Used for anomaly detection in CMS

You have to start with a large model and the
tuning can be hard

Scaling wall

All these approaches aim to learn something big and then reduce - maybe we could learn small from the start
Could we learn ML suited directly for our hardware?

There are a few paradigm shifting potentials

Neuromorphic computing
NEUROMORPHIC SYSTEM SPINNAKER2 Record number of quantum bits per processor

Most neurons implemented so far SpiNNcloud

Scaling phrases

Scaling (w/o LLM phrases)

Inference phrases ,
-+~ Scaling or inference phrases”

=T

5.2 billion lighest number of quantum bits in a single circuit-based quantum processor over time.

© Recently announced systems &
SPINNAKER < LOIHI 2
Univ. Manchester Intel
235 milli 1.15 billion

TRUENORTH

BRAINSCALES-1] IBM
Heidelberg Uni. |k - 67 million

3.9 milliong " illion ® TIANJIC

NEUROGRID @ ® Tsinghua Uni.

Stanford Uni. 4 million
1 million

w
| -
)
Q
(T
al
(-
o
-
O
e
O
©
| -
LL

COGNIMEM - CM1K @
CogniMem Inc. NEURRAM

i Stanford, UCSD,

102,000 Notre Dame, Tsinghua
MDAC IEAT ® 12300
Lincoln Laboratory Johns Hopkins

) ® 4,800
1,024 ‘ © BRAINDROP
@ SILICON RETINA
1,000 ® " Caitech ® STDP Chip Stanford Uni. ~ ®DYNAP-SE2
2 500 UPenn 4,000 SynSense
' 1,280 1,024

2016 2018 2020 2022 2024
Year

o}
PERCEPTRON - MK1 ® ETANN ® GT NEURON 1

Rosenblatt, McCulloch, Pitts Intel ;
520 128 %’é’rg'a Tech

o o - Abstracts from NeurIPS and ICML that mention
1 o keywords related to scaling or inference

1960 1970 1980 1990 2000

12

https://ourworldindata.org/grapher/quantum-bits-per-processor
https://www.nature.com/articles/s41586-024-08253-8

Logic neural networks

Evolution of the field

Weightless
learning

Quantised

learning
v B
oy 5

o
w3

TN
wN :H

1959

Early character
recognition

by storing states in
REANY

2016

1984

Similar to Ntuple, but
with multiple classes
One of the first
commercial real-time
Image recognition
systems

2019

Welig(hts are 0 7y)Xg Compile a
or 1 (1.e. BNN
XNOR) Zy ~ 5 Mot efficiently in
Accumulate b LUTs
result with)

T, T =rNn Y
pop count) 2T

2022 \ AV
Se.tme as Wisard, but EFD to estimate
w.1th several clever / eradients of LUT
tricks .
mapping
2020 \ 2022

Design for

LUTSs from No weights at all, just

the start learn which logic gates

to use

Newer developments

14

https://arxiv.org/abs/2501.01511
https://dl.acm.org/doi/10.1145/3706628.3708874
https://dl.acm.org/doi/epdf/10.1145/1460299.1460326
https://www.emerald.com/sr/article-abstract/4/3/120/349248/WISARD-a-radical-step-forward-in-image-recognition?redirectedFrom=fulltext
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1904.00938
https://arxiv.org/pdf/2004.03021
https://arxiv.org/abs/2210.08277
https://arxiv.org/abs/2210.08277
https://arxiv.org/pdf/2309.02334
https://arxiv.org/pdf/1807.08716
https://arxiv.org/pdf/2403.00849

More details on different methods

Method
N-tuple
WiIiSARD
BNNs
FINN
LUTNet
LogicNets
DLGNs
PolyLUT
DWN
NeuraLUT

Year

1959
1984
2016
2017
2019
2020
2022
2023
2024

2024

Key Innovation

LUT pattern matching
Commercial RAM-NN
+1 weights, XNOR
FPGA dataflow
Arbitrary Boolean ops
Neurons = truth tables
Learn gate type (not weights)
Polynomial neurons
Differentiable WNNSs

MLPs inside LUTs

Advance

First weightless
Hardware, multi-class
Trainable with backprop
Practical deployment
2% area efficiency
Direct LUT mapping
Zero arithmetic
Fewer layers
135% energy efficiency

Better accuracy

Limitation
No generalization
Exponential memory
Still arithmetic (popcount)
Arithmetic-based
Exponential params with K
Needs high sparsity
Training difficulty
Diminishing returns D>2
Tabular focus

Complex training

15

3 difflogic

1)

Logic gate neural networks

Construct neural network from logic gates
instead of nodes, we have logic gates

—_

T

Convert the input to a binary representation
different representations can produce different results

AAR®
AR
’

Each node receives two inputs
The connections are randomly initialised

Video adapted
from - , made by Felix
. Petersen et al.
Outputs are summed so we can classify or Why it is fast
regress
Output dimension ~ Neuron output At inference each 16 gate block 1s replaced by most
probable gate
A (i+1)n/k . , ,
_ ptional offset Binary computations are fast
Final output Vi = . Z aj/T T [)p Y P
J=Ln/R+1 Compiler can optimise the binary logic
Normalisation temperature NO matl‘iX mllltiplicaﬁOnS! e

Number of output neurons

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE

Problem: logic gates aren’t differentiable

N Gradient Descent |

Wi Wi1-0 X alb/owa
W2 & W2 - 0 X oL/ow2

Most ML 1s done with gradient descent

M
Ln
T X

M
o
|

Gradient descent needs differentiable variables

=
o
3

(ZM ‘TM)7 SSOT

un

o

Logic gates aren’t differentiable

AND gate
0

= = of 0df
1>D— 0 f(A’B):{é: A =1landB =1

=

, and—— are not defined
otherwise dA 0B !

= difflogi
Making 1t differentiable

Giant Panda

Gate operations are continuous approximations
This 1s how we make 1t differentiable

Softmax of the 16 gate blocks

This 1s how we learn which gate 1s best for inference

Red Panda

During training evaluate 16 gates for each “neuron”

slow training, but quick inference when we replace each block of 16

with the most probable gate
Video adapted

ID Operator real-valued 00 01 10 11 from ', made by Felix
0 Falea 0 0 0 0 0 Petersen et al.

1 AAB A-B 0 0 0 1
2 -(A=B) A- AB 0 0 1 0
3 A A 0 0 1 1
| 4 ~(A«<B) B-AB 0 1 0 0
Learnable weights 5 B B 0 1 0 1
6 A®B A+ B-2AB 0O 1 1 0
: : 7 AVvB A+ B-AB 0O 1 1 1
Logic gate operation 8 ~(AVB) 1—-(A+B—-AB) 1 0 0 0
15 eWi 9 -(A®B) 1-(A+B-24B) 1 0 0 |1
/ 10 -B 1-B 1 0 1 0
Neuron output a = Z el fi(al, az) 1. A«B 1-B+AB 1 0 1 1
i—0,: e 12 -A 1-4 1 1 0 0

J 13 A=>B 1-A+AB 1 1 0 1 18
14 -(AAB) 1-AB 1 1 1 0
1 1 1 1

15 True |

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE

3 difflogic
Convolutional differentiable logic gate neural networks

Linear layers 1s not enough for image tasks
empirically struggled to train over 6 layers

. -> Replace normal CNN kernel by a binary tree

aggregates information while keeping expressivity

One channel for each input bit
We learn the significance of each bit

Create special Or pooling layers
fast and only need to propagate through the maximum activations

Lax (a,b) = max(a,b)

19

https://www.youtube.com/watch?v=FKQfMwFZvIE

Current state of DLGN research

B Original Reparametrized

Method Acc. # Gates

DiffLogic Net (small) [7] 97.69% 48 K
DiffLogic Net (largest) [7] 98.47% 384 K
DWN [20] 98.77% —

TTNet (small) [17] 97.23% 46 K
TTNet [17] 08.02% 360 K
LUTNet [19] 98.01%

<
T~

meme (GLGN (ours) (discrete)
== == GLGN (ours) (soft)
e DLGN (discrete)

== == DLGN (soft)

500 1000
[teration (-10°)

Test Accuracy

&
b

—_
o)
-
4
[}
S
—
(1)
Q.
O (.
g}
O
wn
[
2
4
£
@
o~

FINN CNV [23] 98.40% 5.28 M
FINN FCN [23] 98.86% 258 M
LowBitNN [36] 99.2 %
FPGA-NHAP [37] 97.81%

()]

Forward pass Backward pass Training steps Model size Test acc.

LogicTreeNet-S 98.46%

LogicTreeNet-M 99.23% : .
LogicTreeNet-L. 99.35% New architectures:

Speed records: 1 million+ MNIST inferences/second on a
single CPU core

86.3% on CIFAR-10 using only 61 million logic gates

O(10-100) times smaller than state-of-the-art models at

comparable accuracy There are also several startups 1n this area .

https://arxiv.org/abs/2411.04732
https://arxiv.org/pdf/2508.06097
https://arxiv.org/pdf/2506.07500
https://arxiv.org/pdf/2506.07500
https://arxiv.org/html/2506.04912v1
https://arxiv.org/html/2510.03250v1
https://arxiv.org/pdf/2510.15655
https://arxiv.org/pdf/2510.15655

Verifiability and interpretability

Normal neural networks

Interpretability and verifiability remains
an open 1ssue

Current methods often rely on approximations
or 18

Best tools fall short in numbers of parameters they can
handle with orders of magnitude

Lots of work goes 1nto testing LLM behaviour

[:]

Continuous, infinite state space

[.NNs

Because the states are limited, you can perform
mathematical proofs ()

You don’t need to enumerate all possibilities, SAT
solvers can help

BEEEEEBES
o B PEEBEBED
ﬂ;w-;:) EEENAES
:.) » 4 4 4 248 2 4 4
¢ "R RRRRR
BEEEEBEBS

Discrete, finite state space

21

https://arxiv.org/abs/2505.19932
https://dl.acm.org/doi/fullHtml/10.1145/3641399.3641445
https://www.anthropic.com/research/persona-vectors
https://www.oreateai.com/blog/winter-break-hypothesis/6e4d90ff2c4ee810c300943339d45653

When does ChatGPT give shorter responses?

Monday mornings

When you’re rude to it

In December as compared to spring

After midnight

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Which of these prompting tricks actually improves LLM performance?

Take a deep breath and think step by step

| have no fingers, please write the full code

I'll tip you $200 for a better answer

All of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

HEP applications

CICADA anomaly detection at the CMS Level-1 Trigger

Teacher Student

Energy deposit

Reconstructed 18 x 14

18 x 14 calorimeter input Autoencoder . . .
1mage calorimeter input

Teacher
loss

Normal data

Anomalies

Student 1s implemented on FPGA 1n the L1T which has output rate of 100 kHz

Can we achieve better physics performance or latency?

25

https://arxiv.org/html/2411.19506v1

RGRIIR

Convolutional logic gate neural net outperforms
baseline implementation (QKeras)

Background 1s Zero Bias, tt 1s outlier
There are three possible outlier final states, two are reserved for
validation and testing

Very high anomaly scores lower since

binarised mputs
This 1s okay, we can set the trigger threshold

,1CMS Open Data 2017 (13 TeV)

| | I | | | | I | i | i l |

- Train (train mode) _
Val (train mode)

— Val (eval mode)

— Val (bits mode)

A low gap between training and validation 1n bit mode 1s a sign of a good model

CMS Open Data 2017 (13 TeV)

Teacher (AUC = 0.85 [0.81])
QKeras (AUC = 0.86 [0.83])
—— CLGN (AUC = 0.91 [0.87])

—
(-
o

Process 1 Teacher
—— ZeroBias QKeras =

- tf—)4q D CLGN

Signal Efficiency

—L
<

Considered Signal
— tt>4q
- fisl+v+2q

100 150 _ 200 _ 250 10! 102
Anomaly Score Trigger Rate [kHZz]

Results using Using 2017 CMS Open data - will be openly available very soon

Uses thermometer encodings to convert inputs to binary, described further in

https://arxiv.org/pdf/2410.11112

FPGA synthesis

Synthesised a logic gate deep neural net (not

convolutional) for FPGA

Latency outperforms QKeras and HGQ*

implementations
details of those can be found in

We have no DSP usage since we don’t have
matrix multiplications

EMD:

ZeroBias tt—1+Vv+29

HGQ-mixed
HGQ-1 E-5 QKeras
HGQ-1E-4 A £

©
L
O
S
(b
—
o
A
=
LL

HGQ-1E-5

LEN-LTZ LGN-LT2

HGQ-mixed
HGQ-1E-4 SAElEE

10° 105
FPGA usage (55x#DSP + #LUT) FPGA usage (55x#DSP + #LUT)

This model has half the trainable parameters as the previous slide, so the physics
performance suffers a bit - working on a CNN FPGA implementation underway

Vitis HLS re-place-and-route hardware cost comparison
Synthesised for AMD Virtex-7

Model Label Quantization Library Latency (incc) DSPs FFs LUTs HGQ EBOPs

* QKeras 1s a quantisation package where
you change precision of the weights as you
are training,

High Granularity Quantisation (HGQ) lets
you have different precision in each layer

QKeras QKeras 16 697 50368 159447 -
HGQ-1E-5 HGQ 17 4 27776 111848 39170
HGQ-1E-4 HGQ 11 1 6229 38111 7570
HGQ-mixed HGQ 8 0 3019 24947 3301
LGN-LT?2 LGN 3 0 856 19977 -

Vitis HLS estimates

https://indico.cern.ch/event/1496673/contributions/6637975/attachments/3126033/5544527/HGQ_CICADA_Poster.pdf
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance

Our work so far t@-" to I‘Ch Iog |X

We are maintaining and developing a python library called

O

We have increased the scalability by changing binary gate
representation, presented 1n - which was shown at a
NeurIPS workshop last year

=
~

Discrete
Relaxed

DLGN (Petersen et al.) Submitting an ICML paper on this topic
WARP-LUT (Ours)

O
N

>
3
Y]
-
S
3)
Q
<L
c
O
©
O
©
>

25 50 75 100 Also submitting an ICML position paper on the need to focus on
Wall Clock Time (minutes) inference speed

https://arxiv.org/pdf/2510.15655
https://github.com/ligerlac/torchlogix

Potential applications in HEP

Many trigger applications - timing/accuracy tradeoff could shift
Could potentially be used directly on ASICS for FCC
Could be used for fast inference offline

Opens opportunities for physics verifiability in ML

Future of LGNs

(a) ANN vs LNN: Equation to Hardware

ANN

"—
y =0o(2 wixi + b) | y=1(xs A X2 V X3...) ’

+ direct map

* synthesize

Multipliers + Adders + Activation

(o) (o) o) () (o) (2

~1000s of gates

Energy usage
ANN

LNN Lower

Inference speed
ANN

LNN

LNN

Native Logic Gates

-)
(o) (Con) (Coor
&=

~10-100x fewer gates

(b) Scaling LNN to Match ANN Evolution

2006

CIFAR-10
Current frontier

2010

2014-15

Deep Belief Networks

Xavier initialization

AlexNet

VGG/ResNet

Transformers

GPT/LLMs

Scaling up is the main issue:

Training can take a long time

There are gradient 1ssues - increasing depth can harm accuracy

LNNs are fairly parameter sensitive

T]"\p FDnA f(\(\]Q (o h of e (TpﬂpT’Q]]‘7 nnt]’\91'1’\(3' Q]’\QY’QA (\1’\91’\]‘7

(c) LNN Hardware Deployment Roadmap

Now
Track 1: Software

CPU MCU

General purpose Embedded

a Flexiblea Programmable
a Lower efficiency

o

sommblr e Ll o P ON B
Irack 2: Hardware

=D A AIC
rrGA ASIC

Reconfigurable Fixed function

a Efficienta Low power
a Less flexible

O v

Future
Logic Model Accelerator

|| w || w
S
|| w || w
|

mn

"GPU for Logic"

eneral-purpose logic acceleration

Energy efficient

Hardware-optimized

Conclusion
CICADA

3 cc

FPGA LATENCY

0

DSP USAGE

~0.91

AUC (CICADA)

30-60%

MODEL COMPRESSION

LGNSs offer a paradigm shift for ultra-fast ML inference — trading training complexity for massive

v/ STRENGTHS

47 No Matrix Multiply = Fast

Binary logic operations only, no expensive floating-
point arithmetic

Maps Directly to FPGA LUTs

The trained model IS a Boolean circuit — no
translation needed

Deterministic Latency

Fixed timing, no cache misses, no surprises — ideal
for triggers

Interpretable

You can read the logic — potential for mathematical
verification

deployment efficiency.

() LIMITATIONS (Current)

e Harder to Train

Training takes longer than standard NNs: gradient
iIssues with depth

Scaling Still in Progress

Current frontier is CIFAR-10; larger problems need
more research

Input Encoding Matters

Thermometer thresholds need tuning;
representation affects results

Less Explored

Smaller research community than quantization/
pruning methods

31

Would you consider logic gate nerual nets for your low inference needs?

Yes

No

Maybe

| don’t have low inference needs

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

How to get started

Get 1n touch 1f you have questions: liv.helen.vage(@cern.ch

33

https://arxiv.org/pdf/2506.07367
https://github.com/ligerlac/torchlogix

Backup

MLP vs difflog MLP

Normal neural net

X
QO [a
Q ReLu | ***

31
121

9000

Fully connected
Matrix multiplication in nodes

Same in training as inference

E).l 05 09 2

ID Operator real-valued

2

S

—_—
—

0 False 0

1 AAB A-B

2 (A= B) A- AB

3 A A

4 (A< B) B- AB

s B B

6 A®B A+ B-2A4B

7 AVB A+B-AB

8 ~(AVB) 1-(A+B- AB)
9 ~(A®B) 1-(A+ B-2AB)
0 -B 1-B

Logic gate neural net TR
14 -(AAB) 1-AB

—_—_—_—_ 0 00O —, === 0000

RQEROROROQERORQOERO RO

X f(x1, x2) W
0.1

0.21 0 0.9

0.63 0.21 * 0.63 X

0.21-0.21 *0.63

OO0

3% 10% 40%...
false and or

Randomly connected; each node has two inputs
Nodes evaluate logic gates

At inference, inputs are binary and only use most probable logic
gate for each node

No matrix multiplication, binary logic can be simplified by compiler, binary computations faster

35

Thermometer Encoding (Thresholds [1,2,4])

Thermometer thresholding i

We need to convert continuous numbers to
binary

We do this based on thresholds, as implemented 1n

Thermometer Encoding (Thresholds [3,6,8])

Input =1 Input = 2

We learn the bin edges as we train

each bin checks whether the number = threshold
] 1f 1t 1s, O otherwise

— Train (train mode) _

Val (train mode)
— Val (eval mode)

Our representation matters B
the best edges will depend on the problem

In our case, we let it change, then freeze 1t

we use a 6 bit representation
one of the bins settles on a high threshold - likely to capture
high anomaly scores

https://arxiv.org/pdf/2410.11112

WARP-LUTS

Example: 2-input logic gates In the special case of two inputs (a, b), every binary logic gate
admits a decomposition with only four coefficients:

f(a,b) = sign(co + c1a + cab + c3(a - b)),

where ¢y encodes the constant bias (tendency toward O or 1), ¢; and ¢y encode dependence on
the individual inputs, and c3 encodes the interaction term between the inputs. For example, the
coefficients (cg, c1,ce,c3) = (0,0,0, —1) correspond to the XOR gate, while the AND gate can
be expressed as (cg, c1,C2,C3) = (—% %, %, 2). This decomposition demonstrates that instead of
enumerating all 16 binary gates explicitly, one can parameterize them compactly with just four WH

coefficients (see Table|1|in Sec. B|for the full list of gates and coefficients).

37

Straight through estimators

Forward: w binary = sign(w real) # discrete

Backward: oL/ow real = 0L/Oow binary # pretend sign() was 1dentity

38

Discretisation gap

e ‘x; — 24
Training o(xi — $245)

7

#

DLGN

DLGN with Gumbel
noise

39

https://arxiv.org/pdf/2506.07500

Scaling 1ssue with LUTs

If you have a computation like:

Y =A AND B AND C AND D AND E AND F AND G AND H

Most LUTs take 4 or 6 inputs, so 1t can’t all be contained in one LUT ->

(AABACADAEAF) — LUTI
(GAH) — LUT2

(LUTIALUT2) — LUT3

Most LUTs take 4 or 6 inputs, so 1t can’t all be contained in one LUT -> superlunar scaling with input

40

Gradient 1ssues with LNN

DLGNSs are sensitive to the - part of the reason 1s that logic gates can symmetrically cancel out

, S0 deep neural networks struggle

DWNs only estimate gradients - can scale badly with parameters and be slow to converge

41

https://arxiv.org/html/2510.03250v1
https://arxiv.org/html/2510.03250v1

	Slide 1: Logic Neural Networks: Ultra-Fast ML for Triggers and Beyond
	Slide 2
	Slide 3
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Logic neural networks
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: HEP applications
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Backup
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

