

# Logic Neural Networks: Ultra-Fast ML for Triggers and Beyond

RAL seminar 2026

28.01.26

*This presentation contains animations - best viewed in .pptx or .key*

Lino Gerlach, Thore Gerlach, Elliott Kauffman, [Liv Våge](#)



# Who I am

Teaching ML since 2017



PhD at Imperial College

New directions for particle tracking at the  
High-Luminosity LHC

GNNs and reinforcement learning  
for tracking

Working with IRIS-HEP,  
based in Geneva

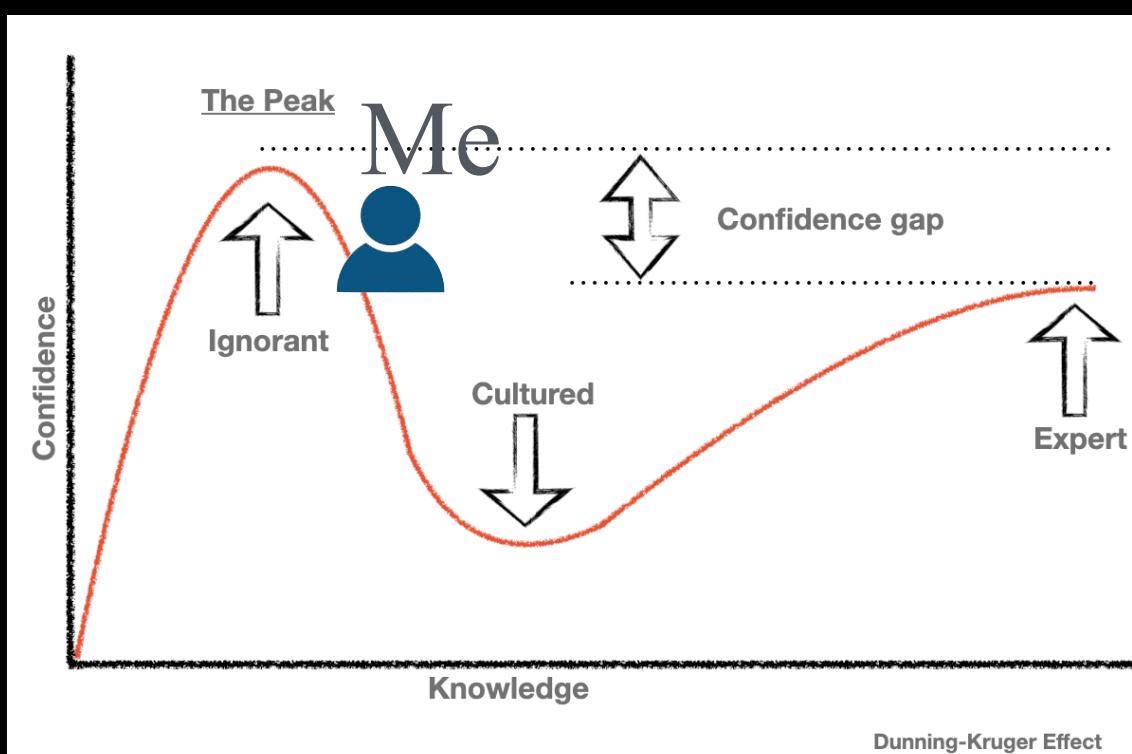
Innovative algorithms

GNNs for tracking  
Rapid inference

ML infrastructures in HEP

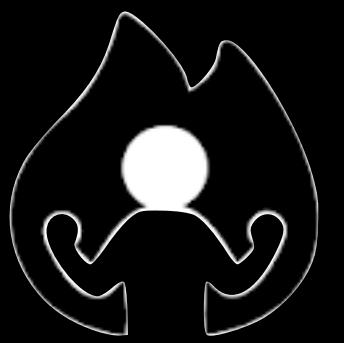
Who I am not

An FPGA expert

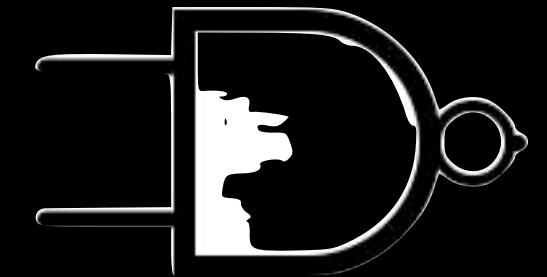


## Motivation

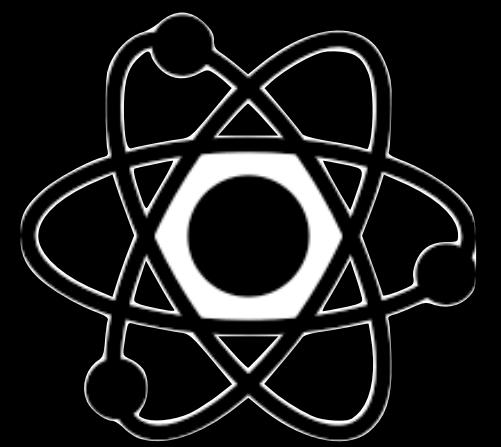
Low latency needs  
Hardware solutions  
Software solutions  
Why we need more



## Logic neural networks



Overview of the field  
Differentiable logic gate neural networks  
New developments



## Application to HEP

Application to CICADA anomaly detection  
Strength and weaknesses  
Future opportunities

## Conclusion

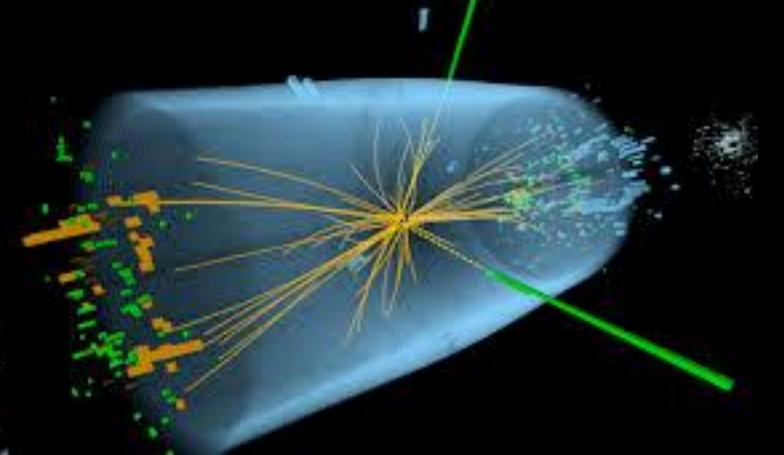
Summary  
How to get started

# Introduction

# Low latency inference - evaluating ML fast



HEP



When we want ML that is:

**Close to host**

Edge computing is increasing:  
now at  $\sim$  [21 billion IoT devices](#)

**Cheap and efficient to run**

LLMs, medical devices, space devices etc.  
Pacemakers need  $\sim$  [50 microwatts to run for 7 years](#)

**Super fast**

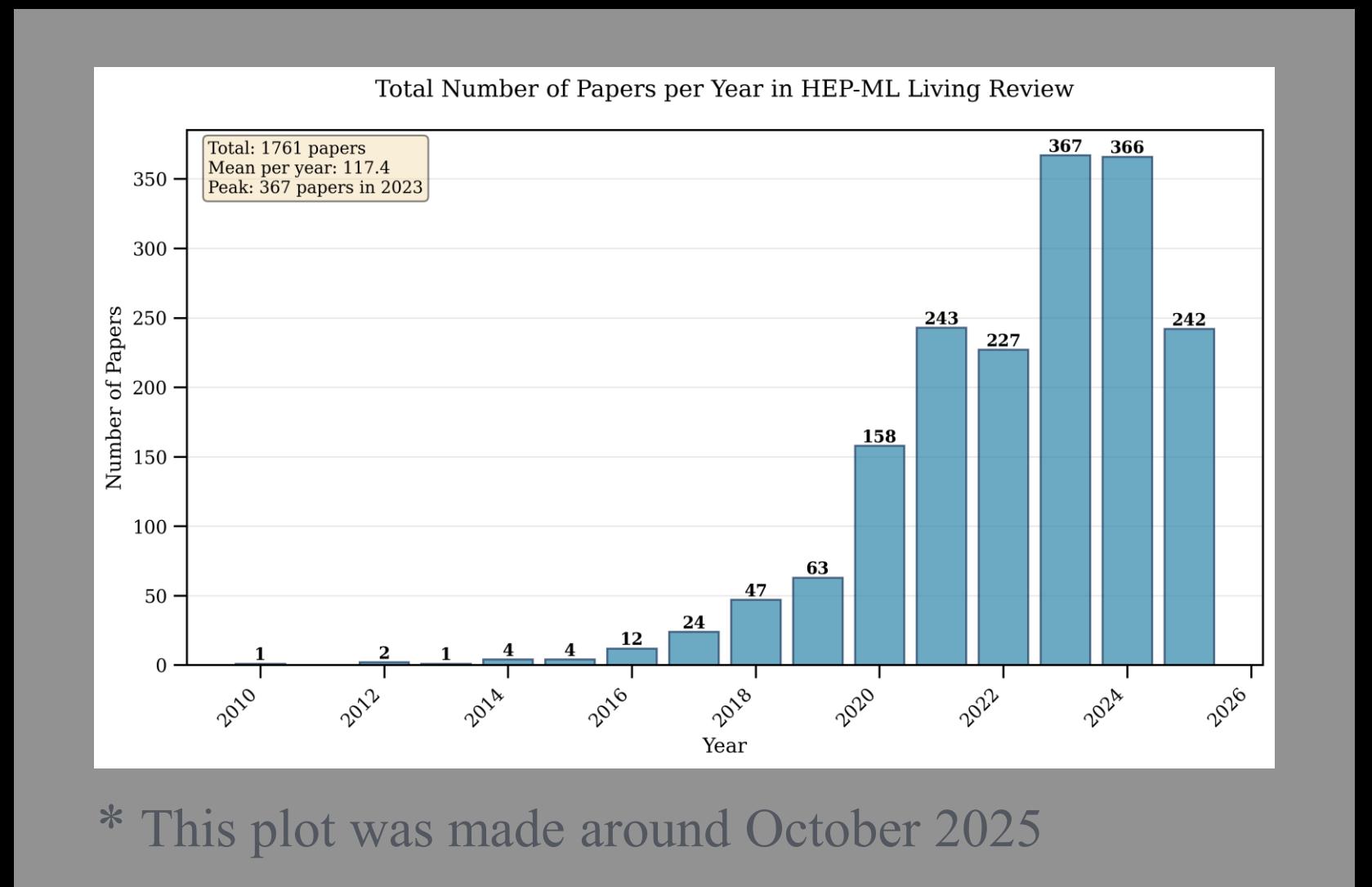
Financial trading ([Spread networks e.g. spent 300 M on a cable to save 13 ms](#)), self driving cars and lots more

**ML use**

ML use is increasing in HEP. We have huge and increasing amounts of data

**Triggers**

The Phase 2 CMS Level 1 Trigger will for instance need to process 63 Tb/s with a latency of 12.5  $\mu$ s



# How much of the energy consumption and cost does inference account for in an ML pipeline?

10-30%

0%

30-50%

0%

50-70%

0%

70-90%

0%

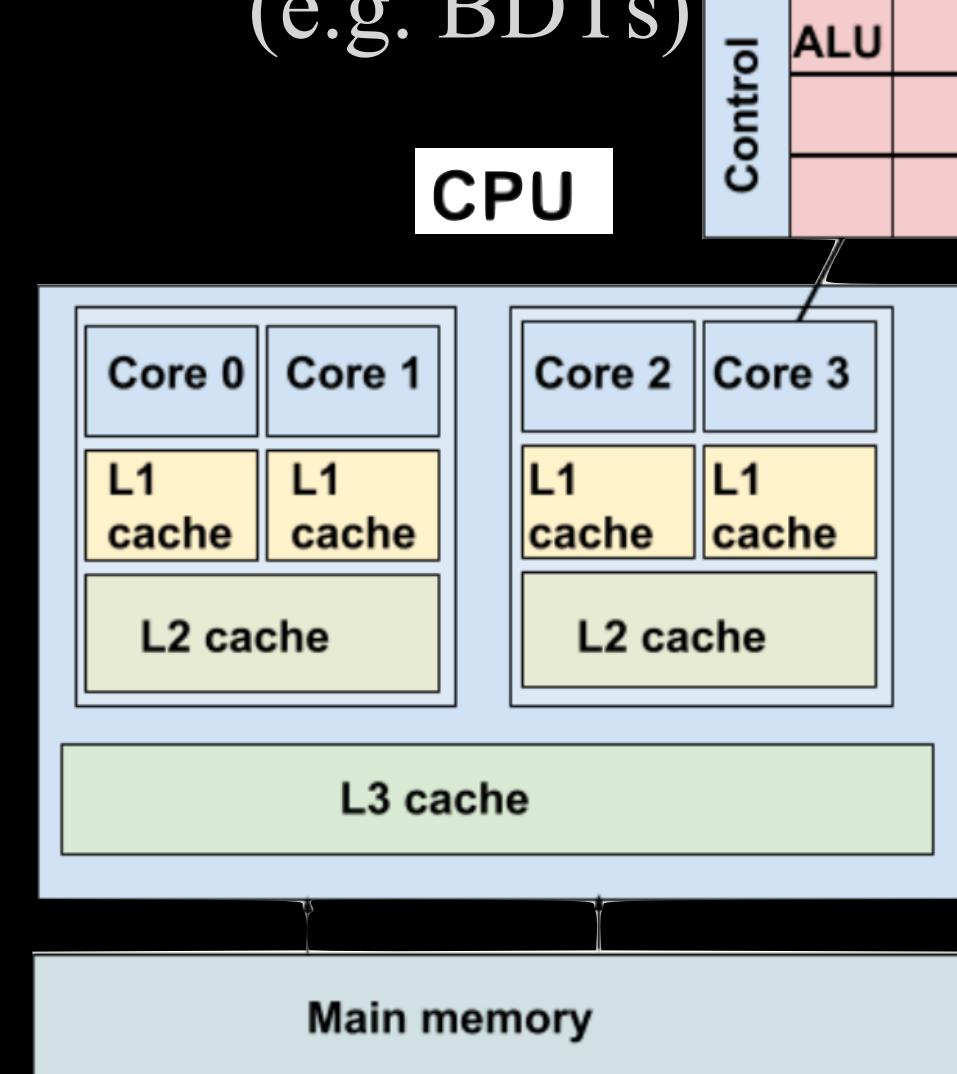
# Inference devices

Lower latency and power, harder to program

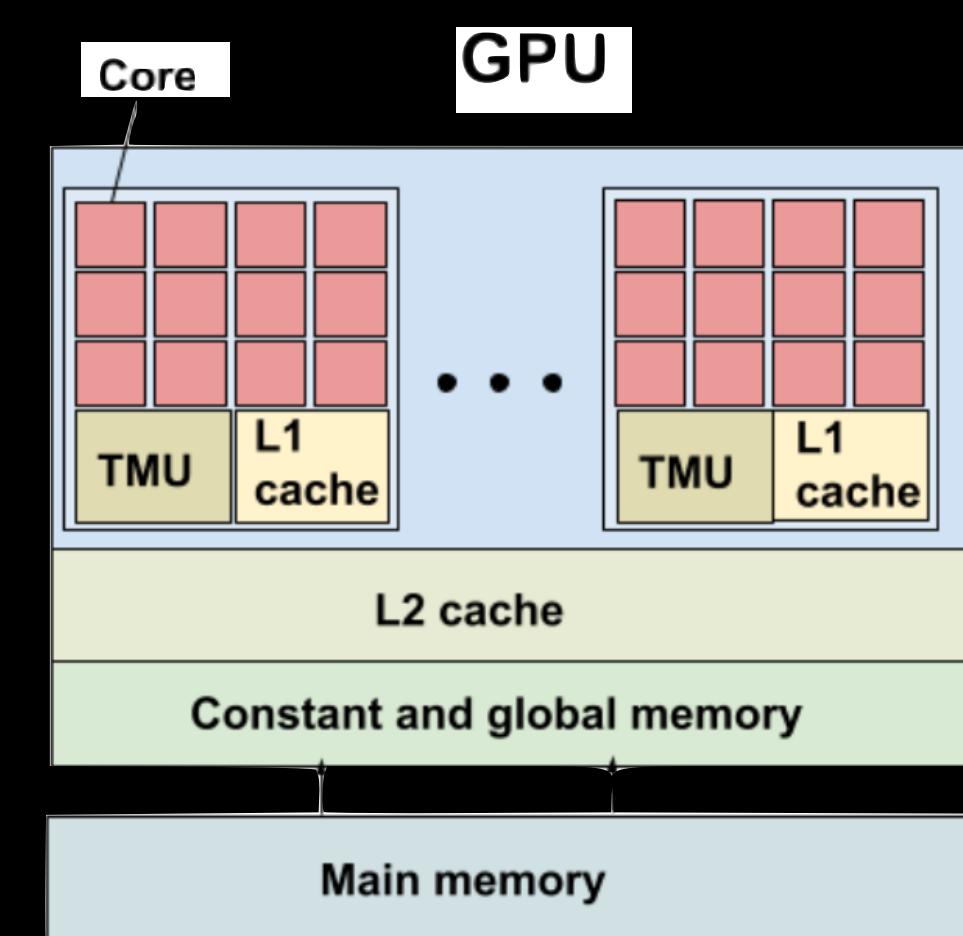
|          | CPU                         | GPU                          | TPU/NPU     | FPGA                       | ASIC                                  |
|----------|-----------------------------|------------------------------|-------------|----------------------------|---------------------------------------|
| Latency  | ms-s                        | $\mu$ s-ms                   | $\mu$ s-ms  | ns- $\mu$ s                | ns                                    |
| Strength | Flexible<br>easy to program | Parallelism,<br>ML optimised | ML-specific | Deterministic<br>Low power | Ultimate<br>speed/power<br>efficiency |
| Weakness | Slow, high power            | High power                   | Bespoke     | Hard to program            | Expensive<br>Not flexible             |

With high luminosity LHC  
and FCC, we are moving  
towards the right to handle our  
data quickly

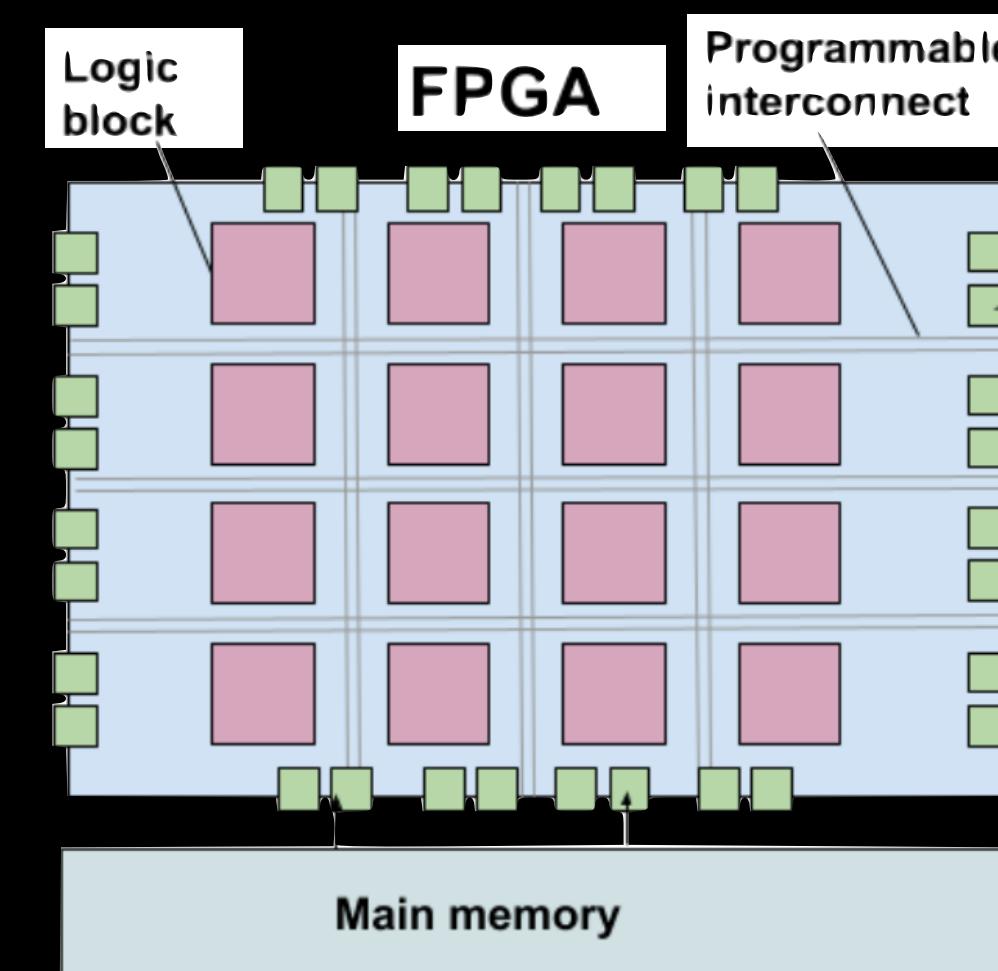
Small ML models  
(e.g. BDTs)



Most ML

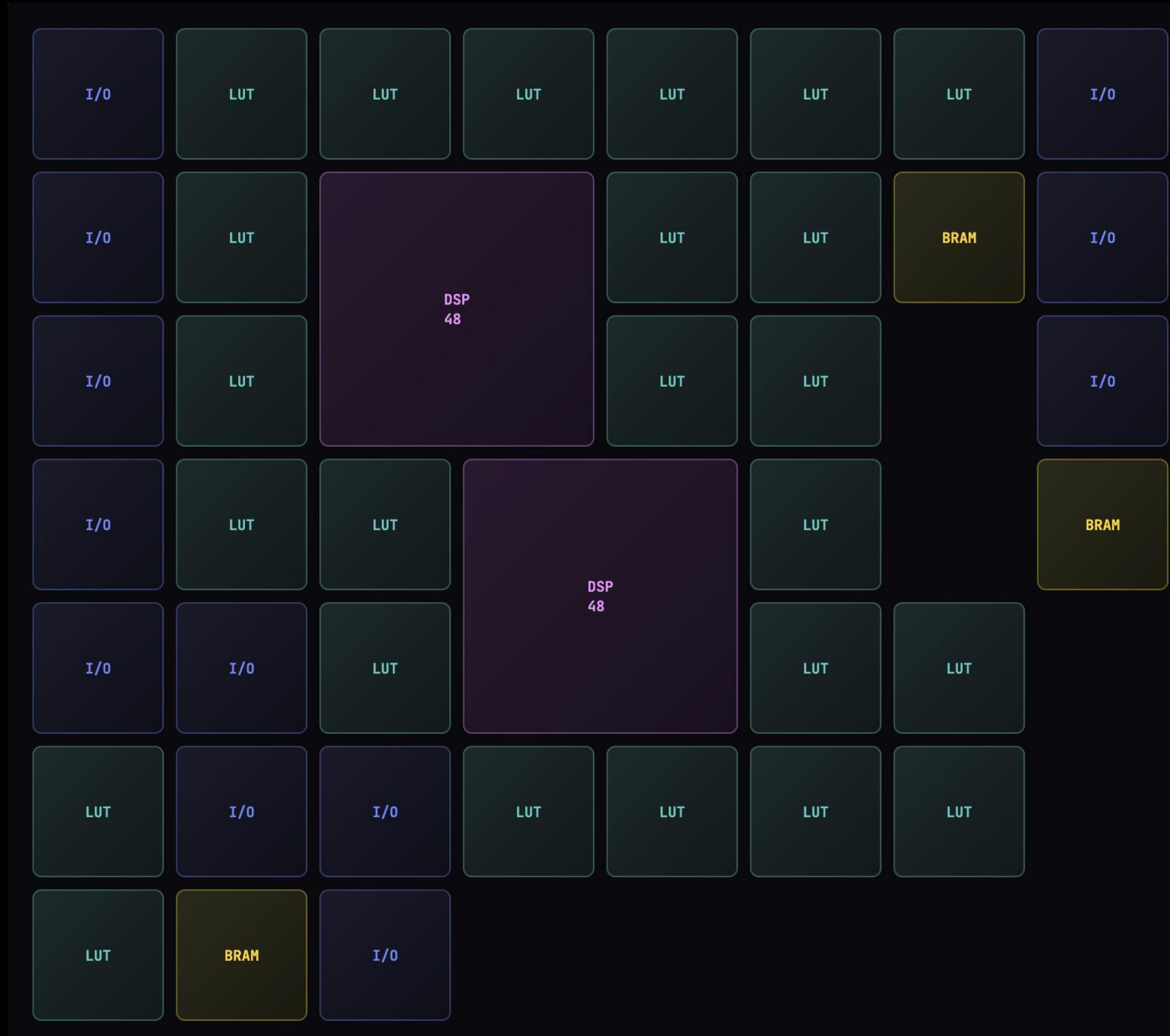


Low inference ML



No matter what chip we use or how  
we program it - it is ultimately  
translated to binary logic

# Field Programmable Gate Arrays (FPGAs)



Hardware you can reprogram after manufacturing

Massively parallel → very fast for specific tasks

Deterministic timing (no caches, no surprises)

Programmed using Verilog / VHDL

Can also use high-level tools (e.g. HLS, hls4ml)

Available in radiation-tolerant versions for space or HEP detectors

# DSPs and LUTs

## DSP — Digital Signal Processor

Hardwired arithmetic unit for fast math

|            |            |            |
|------------|------------|------------|
| A (18-bit) | B (18-bit) | C (48-bit) |
| 42         | 17         | 100        |

### DSP BLOCK

(e.g., Xilinx DSP48 — "48" = accumulator width)

$$A \times B + C$$

Multiply-Accumulate (MAC)

$$42 \times 17 + 100 = 814$$



### Speed

1 cycle throughput (pipelined), ~3-4 cycle latency



### Purpose

General arithmetic: multiply, add, accumulate, shifts, pattern detect



### Capacity

18×18 bit multiply → 48-bit result



### Key constraint

Limited count (~2-6k per FPGA) — they're big!

## LUT — Lookup Table

A tiny programmable truth table that outputs 1 bit

### 3-input LUT ( $2^3 = 8$ entries)

| A | B | C | → | Out |
|---|---|---|---|-----|
| 0 | 0 | 0 |   | 0   |
| 0 | 0 | 1 |   | 1   |
| 0 | 1 | 0 |   | 0   |
| 0 | 1 | 1 |   | 1   |
| 1 | 0 | 0 |   | 1   |
| 1 | 0 | 1 | → | 0   |
| 1 | 1 | 0 |   | 1   |
| 1 | 1 | 1 |   | 1   |

0  
1 bit out



### Speed

Single clock cycle — just a memory read



### Flexibility

Can implement ANY boolean function of N inputs



### Size

Modern FPGAs have 6-LUTs (64 entries each)



### Key constraint

Each LUT outputs only 1 bit — need multiple for wider outputs

Computing:  $y = (3 \times x) + 1$  where  $x$  is a 4-bit input (0-15)

### DSP Using a DSP Block

- 1 Configure DSP  
 $A = 3, C = 1$  (constants)

- 2 Feed input each cycle  
 $B = x$  (your 4-bit input)

- 3 DSP computes  
 $y = A \times B + C = 3x + 1$

#### RESOURCES

**1 DSP**

(precious!)

#### LATENCY

**1 cycle\***

\*or 3-4 if pipelined

### LUT Using LUTs

- 1 Pre-compute ALL 16 answers  
 $x=0 \rightarrow 1, x=1 \rightarrow 4, x=2 \rightarrow 7, \dots x=15 \rightarrow 46$

- 2 Store each output BIT in a separate LUT  
Output range 1-46 needs 6 bits

- 3 Look up using  $x$  as address  
 $y = \{LUT_5[x], LUT_4[x], \dots, LUT_0[x]\}$

6 LUTs working in parallel (one per output bit)



#### RESOURCES

**6 LUTs**

(abundant!)

#### LATENCY

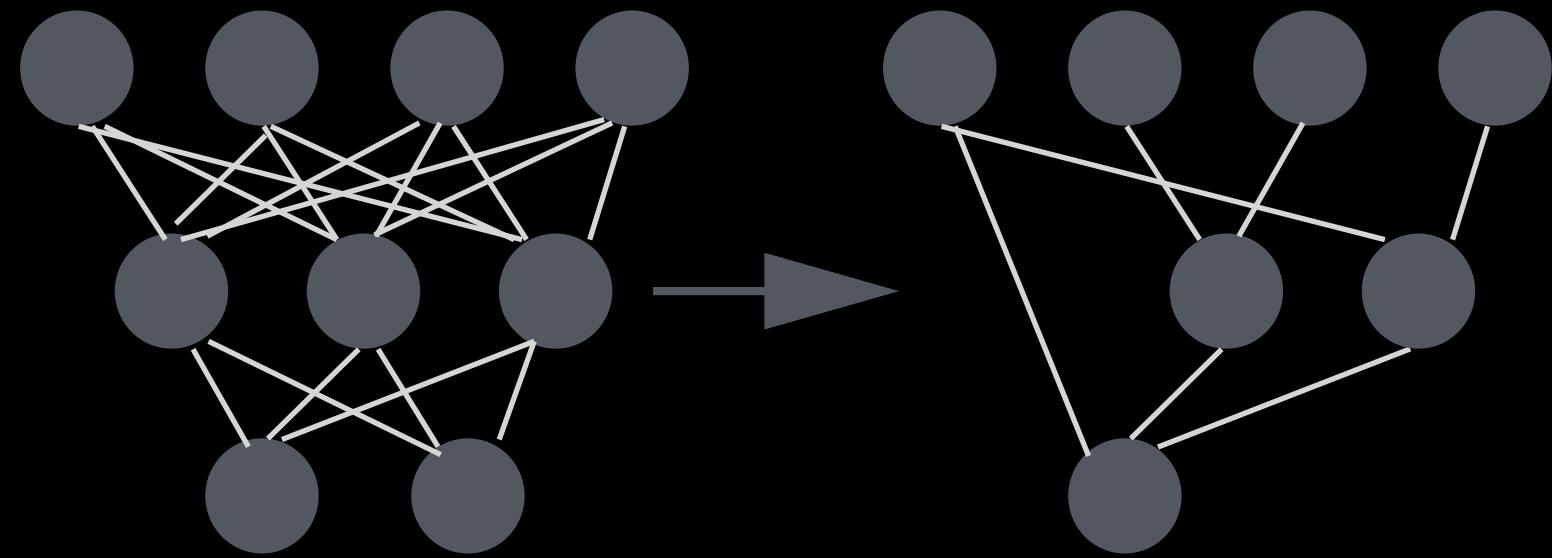
**1 cycle**

(always)

# Current fast inference methods

## Pruning

Remove unnecessary weights & neurons



Can often reduce the number of parameters by 3-10x

Often you get better performing retraining the pruned network

## Quantisation

Reduce numerical precision

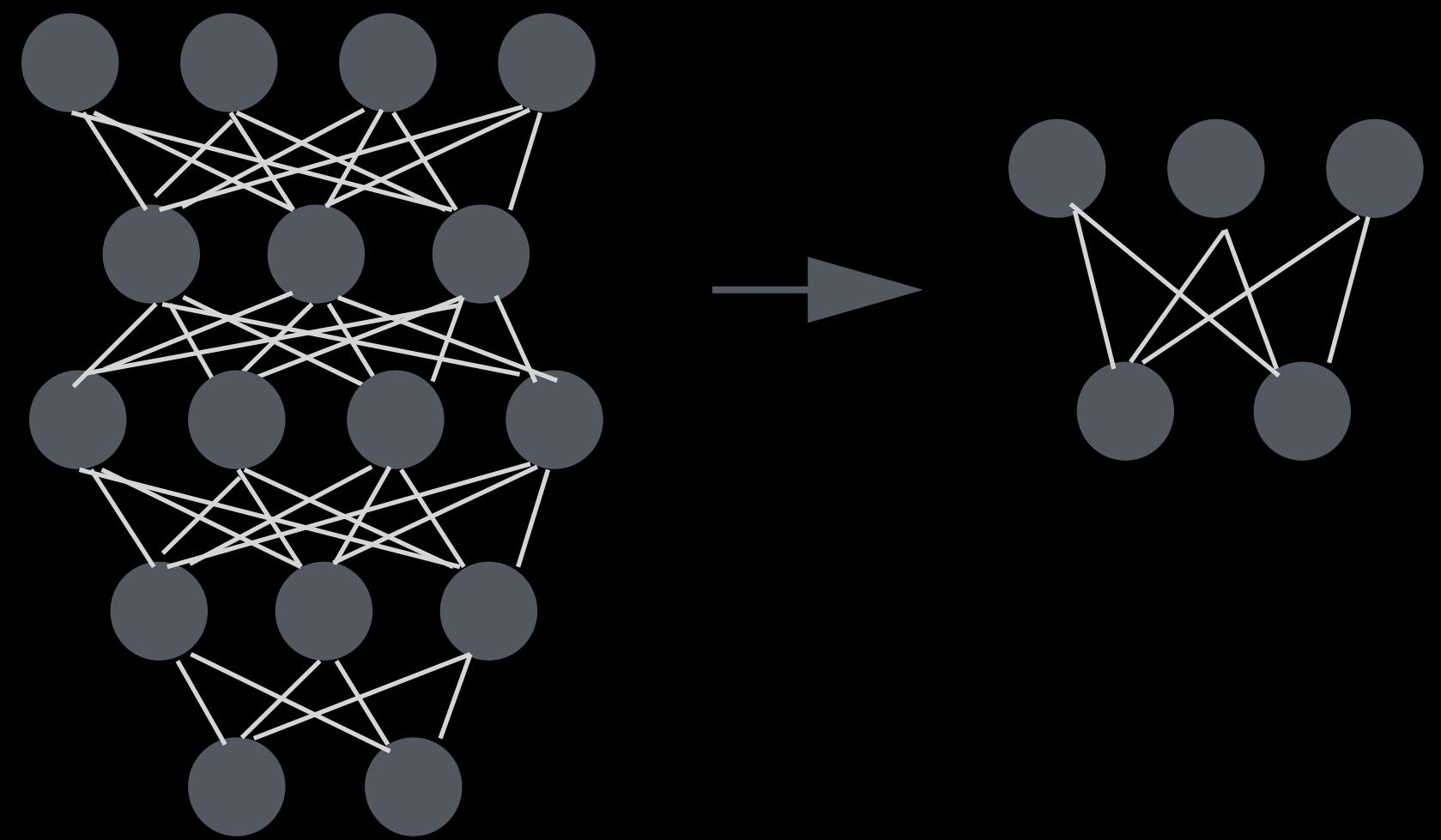


Makes it better for FPGA

Accuracies suffer below int4

## Knowledge distillation

Small model learns behaviour of a large one



Used for anomaly detection in CMS

You have to start with a large model and the tuning can be hard

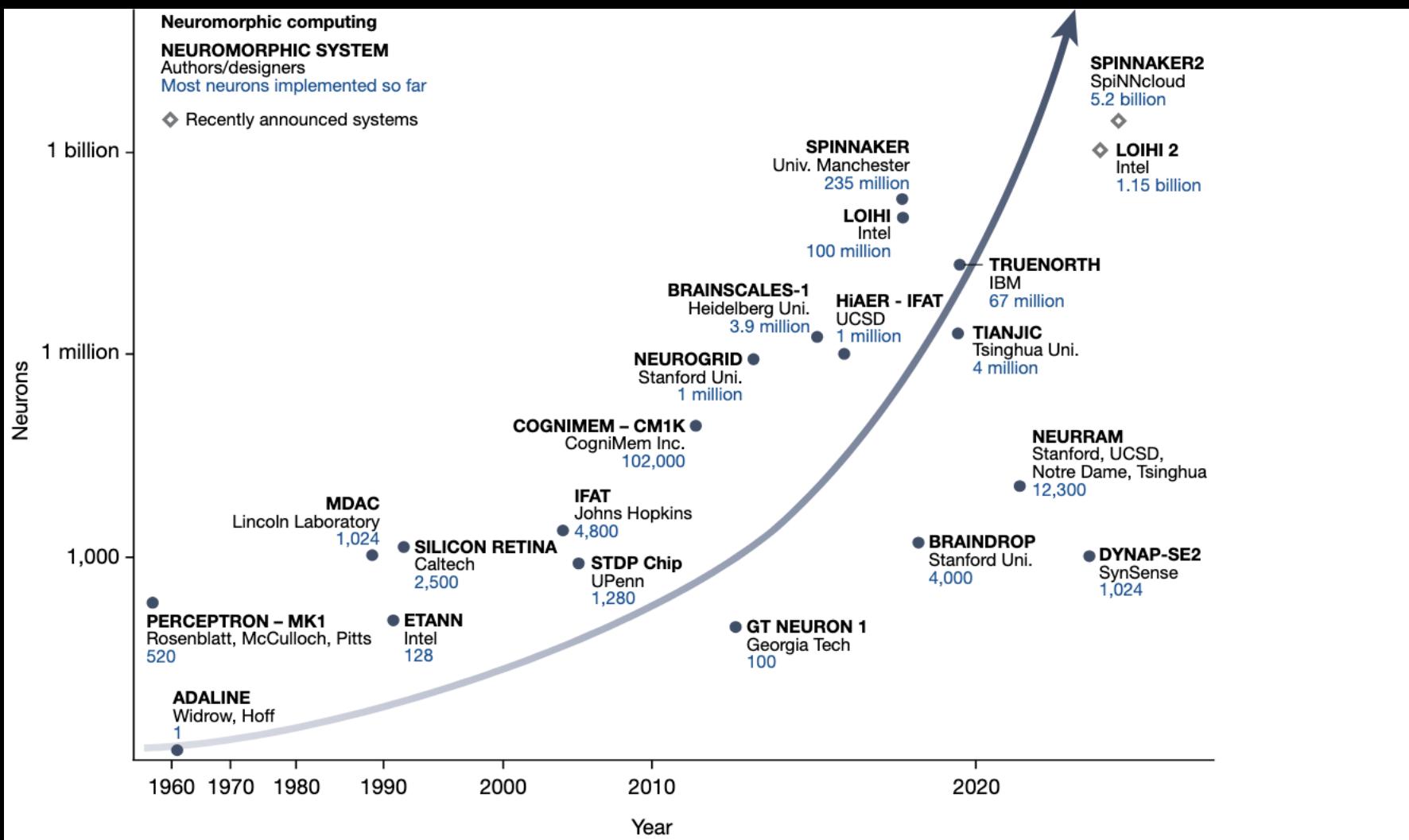
# Scaling wall

All these approaches aim to learn something big and then reduce - maybe we could learn small from the start

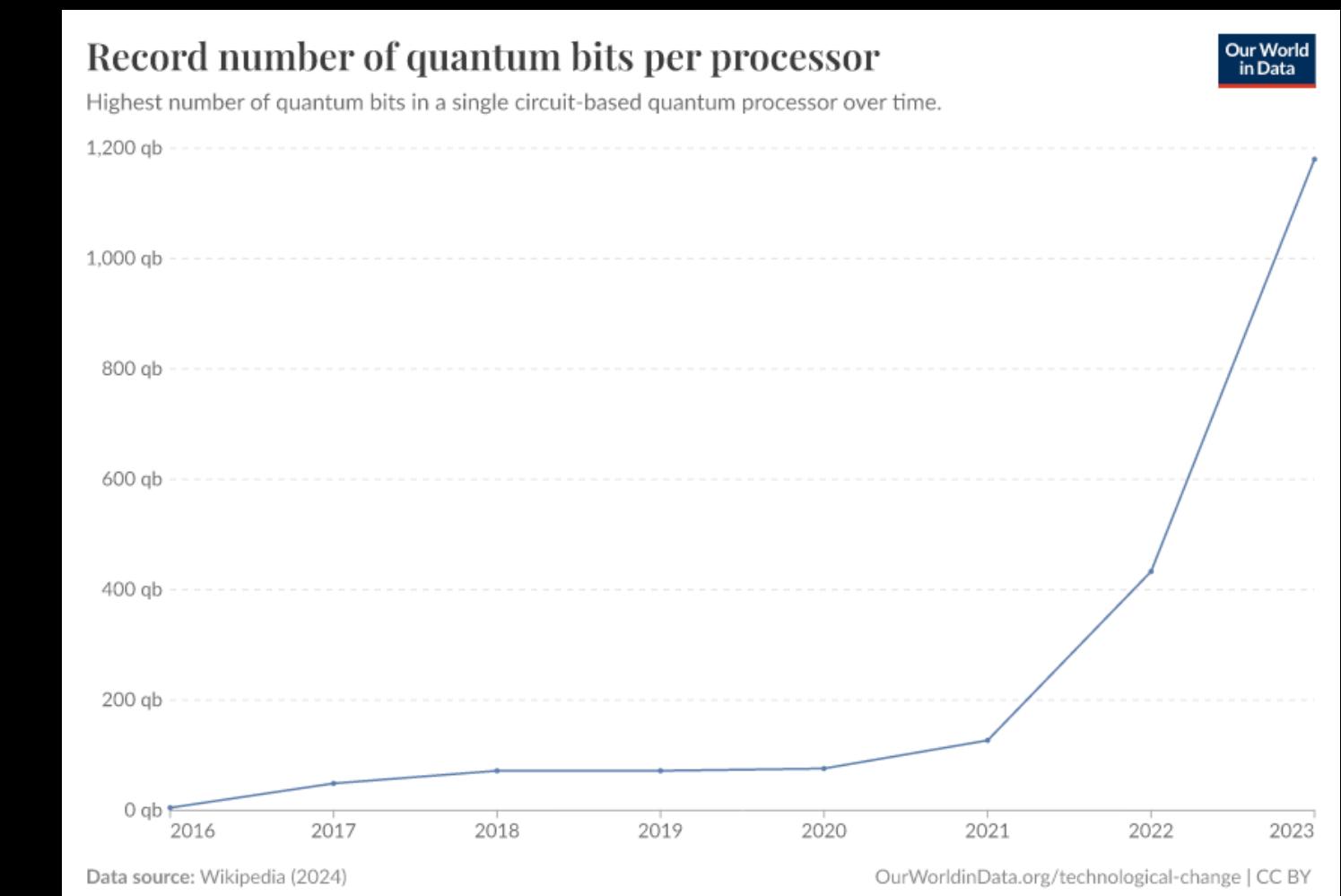
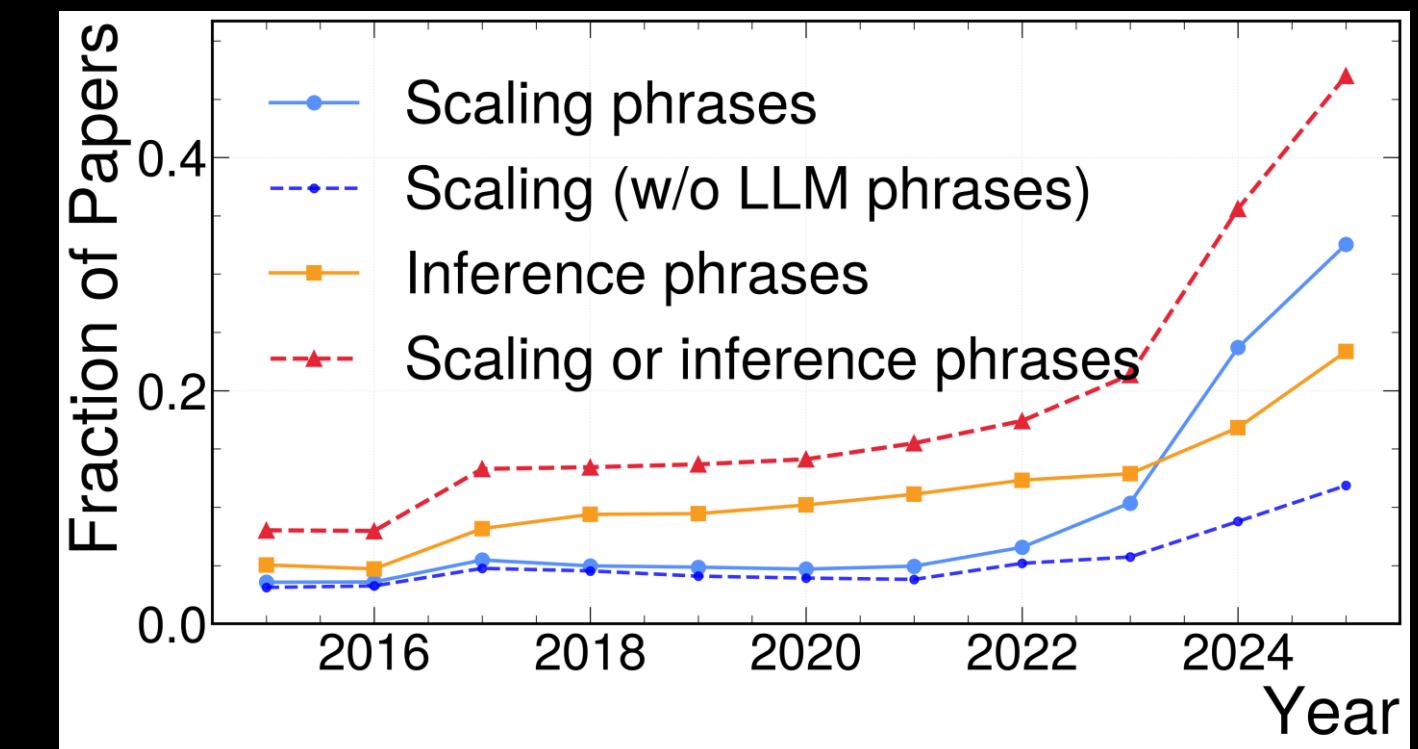
Could we learn ML suited directly for our hardware?

There are a few paradigm shifting potentials

## Neuromorphic computing



## Quantum computing



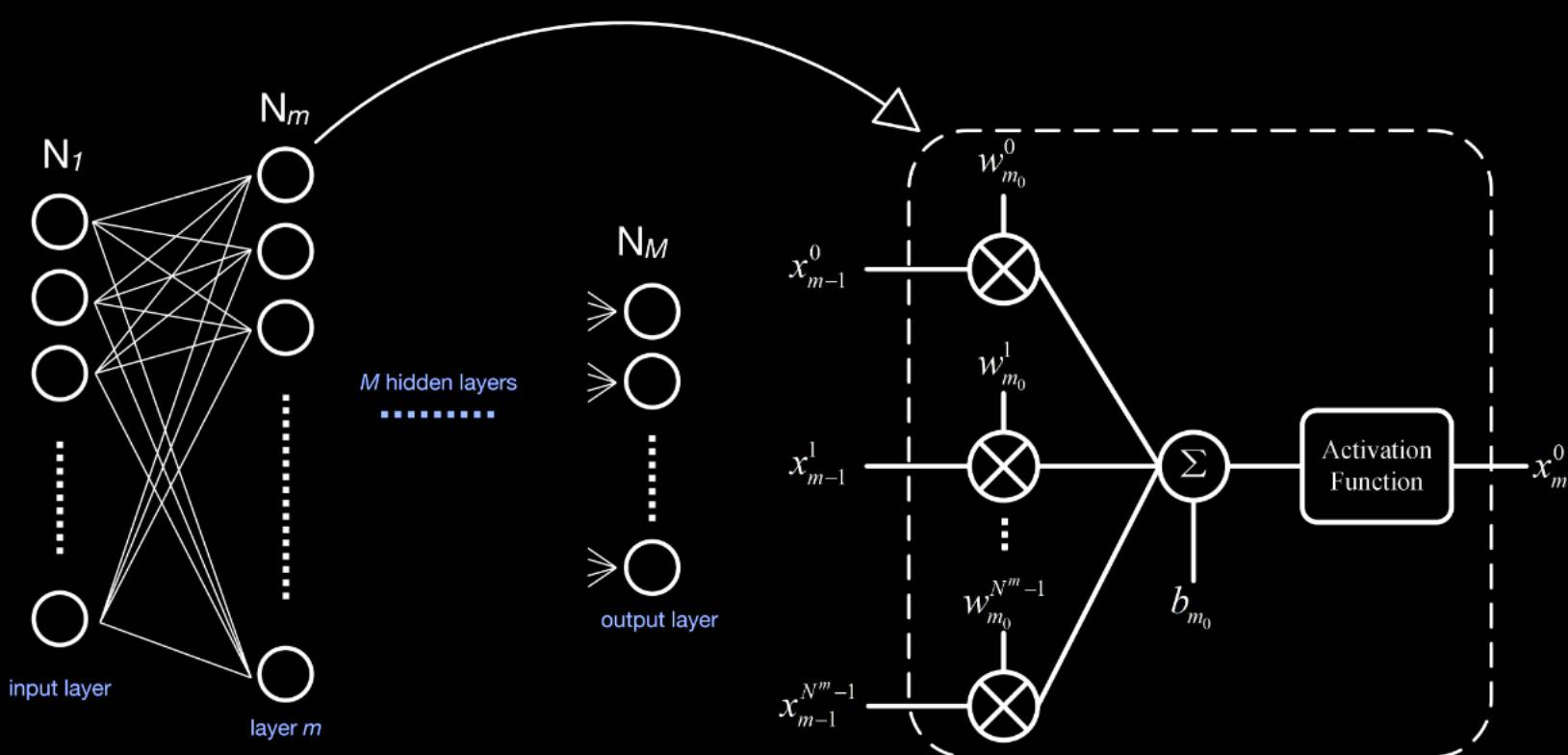
Abstracts from NeurIPS and ICML that mention keywords related to scaling or inference

*Fast inference needs are increasing*

*We are moving to more specialised hardware*

*Our techniques for making ML fast are not enough*

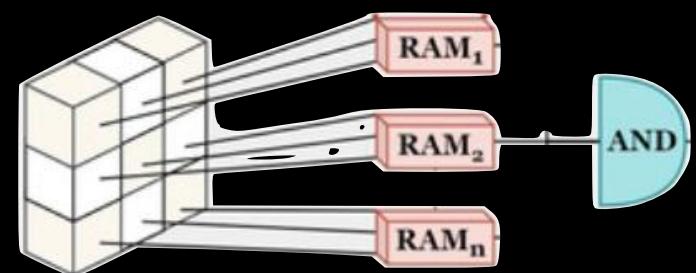
# Logic neural networks



# Evolution of the field

1959

Weightless learning



Ntuple

Early character recognition by storing states in RAM

1984

Wisard

Similar to Ntuple, but with multiple classes  
One of the first commercial real-time image recognition systems

2022

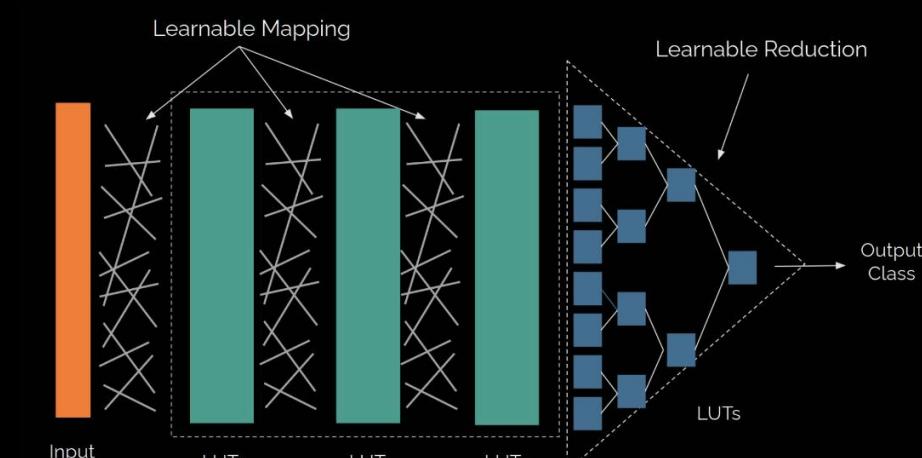
Weightless NN

Same as Wisard, but with several clever tricks

2024

Differentiable weightless NN

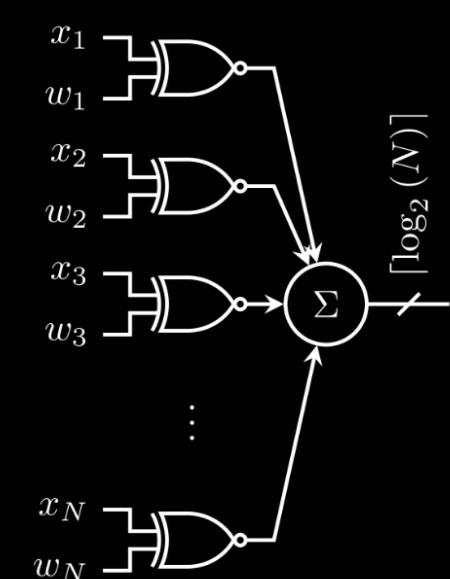
EFD to estimate gradients of LUT mapping



2016

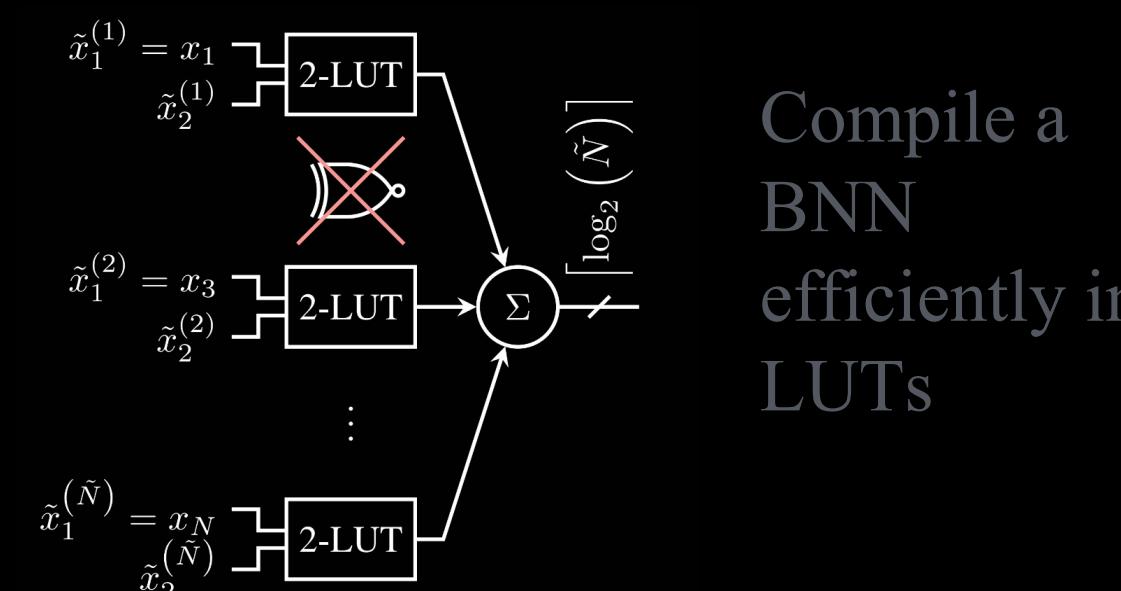
Binary neural net

Weights are 0 or 1 (i.e. XNOR)  
Accumulate result with pop count



2019

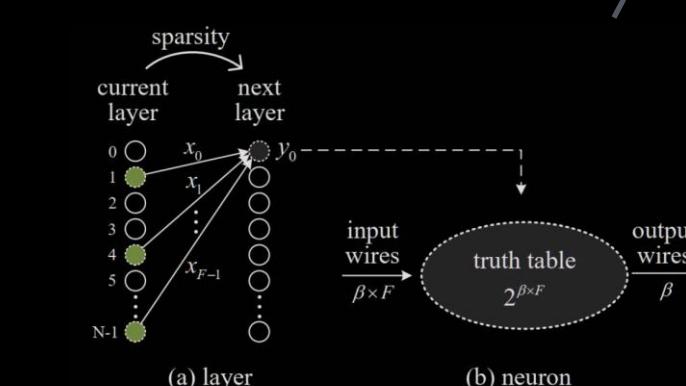
LUTNet  
NullaNet



2020

Logic net

Design for LUTs from the start



Newer developments

PolyLUT

Tree LUT

AmigoLUT

NeuraLUT

# More details on different methods

| Method           | Year | Key Innovation                | Advance                        | Limitation                  |
|------------------|------|-------------------------------|--------------------------------|-----------------------------|
| <b>N-tuple</b>   | 1959 | LUT pattern matching          | First weightless               | No generalization           |
| <b>WiSARD</b>    | 1984 | Commercial RAM-NN             | Hardware, multi-class          | Exponential memory          |
| <b>BNNs</b>      | 2016 | $\pm 1$ weights, XNOR         | Trainable with backprop        | Still arithmetic (popcount) |
| <b>FINN</b>      | 2017 | FPGA dataflow                 | Practical deployment           | Arithmetic-based            |
| <b>LUTNet</b>    | 2019 | Arbitrary Boolean ops         | 2 $\times$ area efficiency     | Exponential params with K   |
| <b>LogicNets</b> | 2020 | Neurons = truth tables        | Direct LUT mapping             | Needs high sparsity         |
| <b>DLGNs</b>     | 2022 | Learn gate type (not weights) | Zero arithmetic                | Training difficulty         |
| <b>PolyLUT</b>   | 2023 | Polynomial neurons            | Fewer layers                   | Diminishing returns D>2     |
| <b>DWN</b>       | 2024 | Differentiable WNNs           | 135 $\times$ energy efficiency | Tabular focus               |
| <b>NeuraLUT</b>  | 2024 | MLPs inside LUTs              | Better accuracy                | Complex training            |

# Logic gate neural networks

Construct neural network from logic gates  
instead of nodes, we have logic gates

Convert the input to a binary representation  
different representations can produce different results

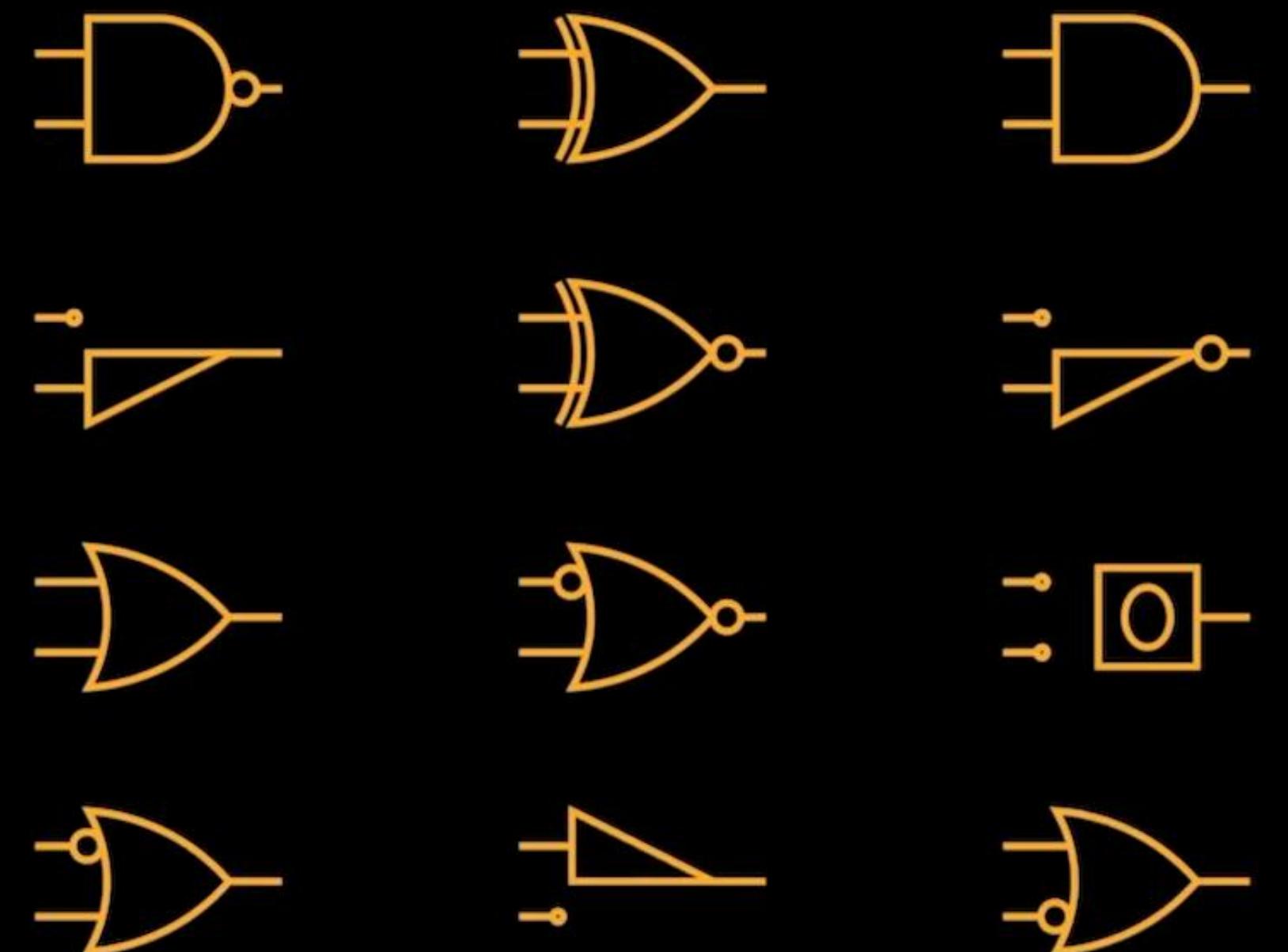
Each node receives two inputs  
The connections are randomly initialised

Outputs are summed so we can classify or  
regress

$$\hat{y}_i = \text{Final output} = \frac{\text{Output dimension}}{\text{Number of output neurons}} \sum_{j=i \cdot n/k + 1}^{(i+1) \cdot n/k} a_j / \tau + \beta^{\text{Optional offset}}$$

Neuron output

Normalisation temperature



Video adapted  
from [4], made by Felix  
Petersen et al.

## Why it is fast

At inference each 16 gate block is replaced by most probable gate

Binary computations are fast

Compiler can optimise the binary logic

**No matrix multiplications!**

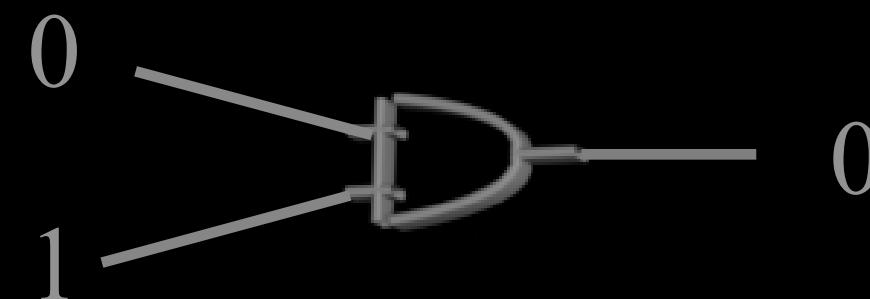
# Problem: logic gates aren't differentiable

Most ML is done with gradient descent

Gradient descent needs differentiable variables

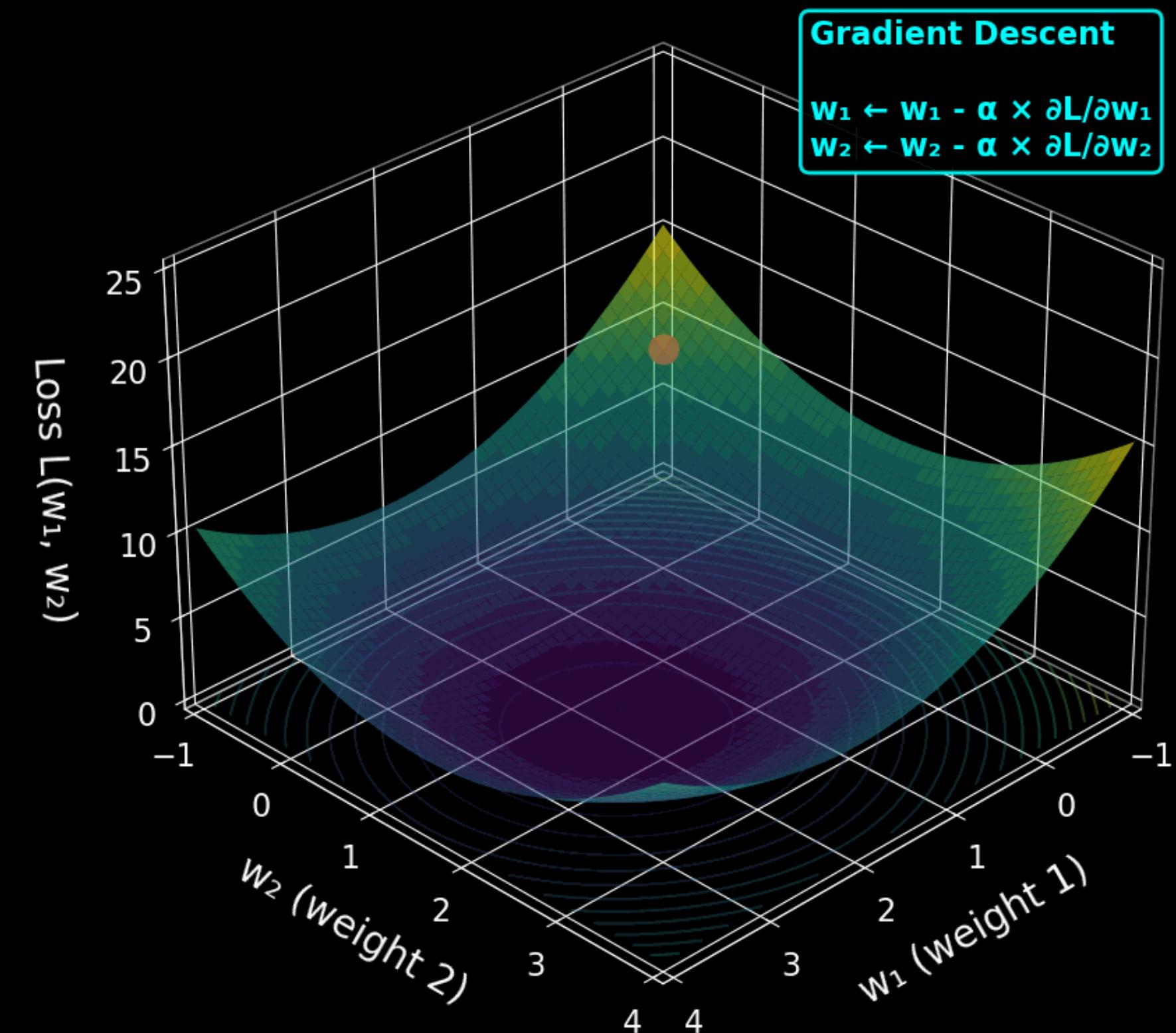
Logic gates aren't differentiable

AND gate



$$f(A, B) = \begin{cases} 1, & A = 1 \text{ and } B = 1 \\ 0, & \text{otherwise} \end{cases}$$

$\Rightarrow \frac{\partial f}{\partial A}$  and  $\frac{\partial f}{\partial B}$  are not defined



# Making it differentiable

Gate operations are continuous approximations  
This is how we make it differentiable

Softmax of the 16 gate blocks  
This is how we learn which gate is best for inference

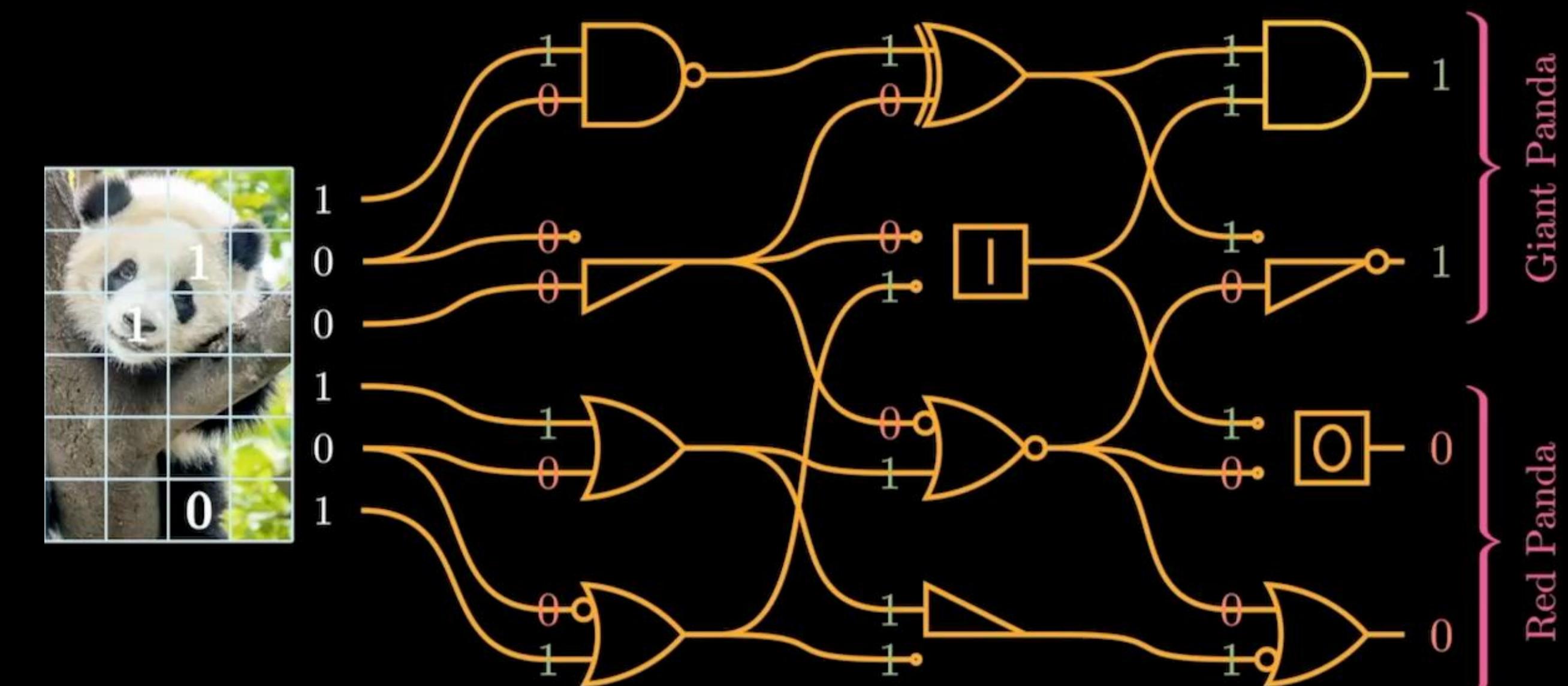
During training evaluate 16 gates for each “neuron”  
slow training, but quick inference when we replace each block of 16  
with the most probable gate

$$a' = \sum_{i=0}^{15} \frac{e^{\mathbf{w}_i}}{\sum_j e^{\mathbf{w}_j}} \cdot f_i(a_1, a_2)$$

Learnable weights

Logic gate operation

Neuron output



Video adapted  
from [\[4\]](#), made by Felix  
Petersen et al.

| ID | Operator                | real-valued         | 00 | 01 | 10 | 11 |
|----|-------------------------|---------------------|----|----|----|----|
|    |                         |                     | 0  | 0  | 0  | 0  |
| 0  | False                   | 0                   | 0  | 0  | 0  | 0  |
| 1  | $A \wedge B$            | $A \cdot B$         | 0  | 0  | 0  | 1  |
| 2  | $\neg(A \Rightarrow B)$ | $A = AB$            | 0  | 0  | 1  | 0  |
| 3  | $A$                     | $A$                 | 0  | 0  | 1  | 1  |
| 4  | $\neg(A \Leftarrow B)$  | $B = AB$            | 0  | 1  | 0  | 0  |
| 5  | $B$                     | $B$                 | 0  | 1  | 0  | 1  |
| 6  | $A \oplus B$            | $A + B - 2AB$       | 0  | 1  | 1  | 0  |
| 7  | $A \vee B$              | $A + B - AB$        | 0  | 1  | 1  | 1  |
| 8  | $\neg(A \vee B)$        | $1 - (A + B - AB)$  | 1  | 0  | 0  | 0  |
| 9  | $\neg(A \oplus B)$      | $1 - (A + B - 2AB)$ | 1  | 0  | 0  | 1  |
| 10 | $\neg B$                | $1 - B$             | 1  | 0  | 1  | 0  |
| 11 | $A \Leftarrow B$        | $1 - B + AB$        | 1  | 0  | 1  | 1  |
| 12 | $\neg A$                | $1 - A$             | 1  | 1  | 0  | 0  |
| 13 | $A \Rightarrow B$       | $1 - A + AB$        | 1  | 1  | 0  | 1  |
| 14 | $\neg(A \wedge B)$      | $1 - AB$            | 1  | 1  | 1  | 0  |
| 15 | True                    | 1                   | 1  | 1  | 1  | 1  |

# Convolutional differentiable logic gate neural networks

|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 |
| 0 | 0 | . |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

.

Linear layers is not enough for image tasks  
empirically struggled to train over 6 layers

-> Replace normal CNN kernel by a binary tree  
aggregates information while keeping expressivity

One channel for each input bit  
We learn the significance of each bit

Create special *Or* pooling layers  
fast and only need to propagate through the maximum activations

$$\perp_{max} (a, b) = \max(a, b)$$

Video adapted  
from [4], made by Felix  
Petersen et al.

# Current state of DLGN research

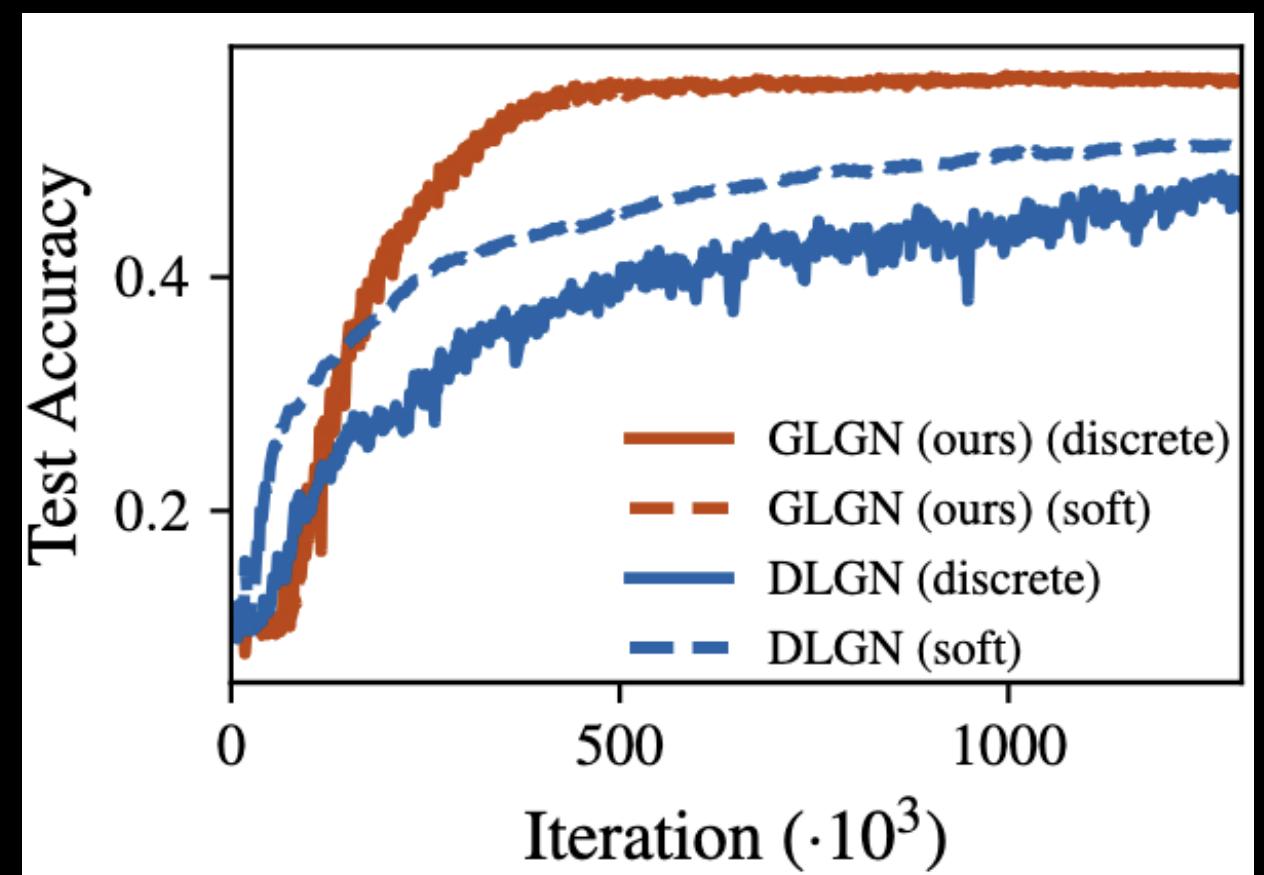
| Method                      | Acc.   | # Gates | FPGA t.     |
|-----------------------------|--------|---------|-------------|
| DiffLogic Net (small) [7]   | 97.69% | 48 K    | —           |
| DiffLogic Net (largest) [7] | 98.47% | 384 K   | —           |
| DWN [20]                    | 98.77% | —       | 45 ns       |
| TTNet (small) [17]          | 97.23% | 46 K    | —           |
| TTNet [17]                  | 98.02% | 360 K   | —           |
| LUTNet [19]                 | 98.01% | —       | 5 ns        |
| FINN CNV [23]               | 98.40% | 5.28 M  | 641 ns      |
| FINN FCN [23]               | 98.86% | 258 M   | —           |
| LowBitNN [36]               | 99.2 % | —       | 152 $\mu$ s |
| FPGA-NHAP [37]              | 97.81% | —       | 4.9 ms      |
| LogicTreeNet-S              | 98.46% | 147 K   | 4 ns        |
| LogicTreeNet-M              | 99.23% | 566 K   | 5 ns        |
| LogicTreeNet-L              | 99.35% | 1.27 M  | —           |

Speed records: 1 million+ MNIST inferences/second on a single CPU core

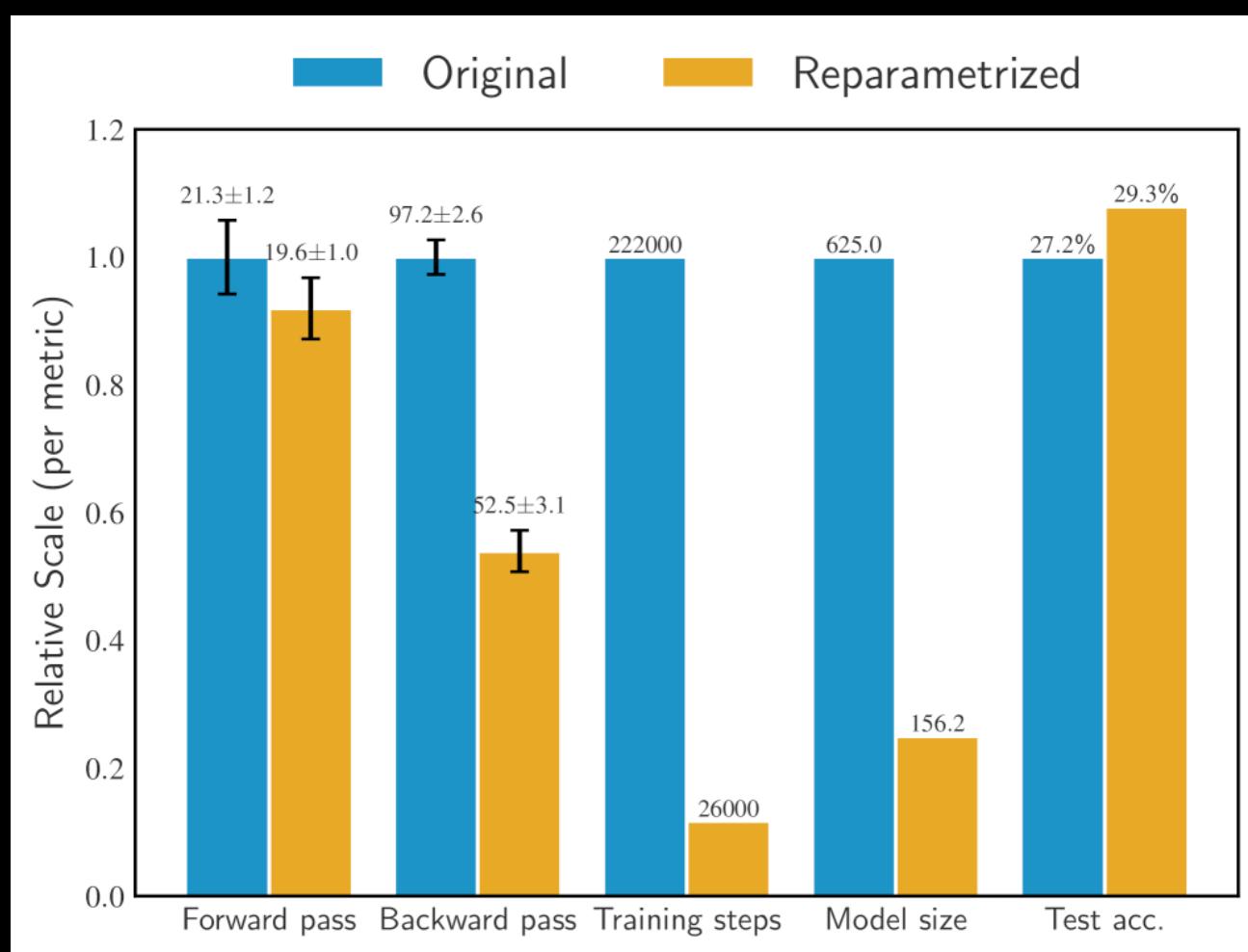
86.3% on CIFAR-10 using only 61 million logic gates

O(10-100) times smaller than state-of-the-art models at comparable accuracy

## Reducing discretisation gap



## Speeding up training



New architectures: Cellular automata

Recurrent DLGN

## Reducing the number of parameters

There are also several startups in this area

# Verifiability and interpretability

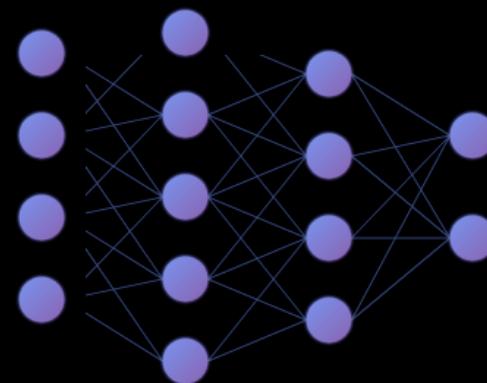
## Normal neural networks

Interpretability and verifiability remains an open issue

Current methods often rely on approximations or is [NP hard](#)

Best tools fall short in numbers of parameters they can handle with orders of magnitude

Lots of work goes into testing LLM behaviour  
[[Anthropic](#), [ChatGPT](#)]

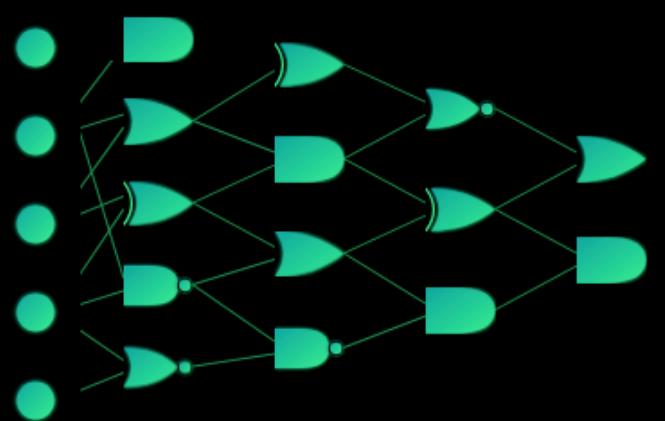


Continuous, infinite state space

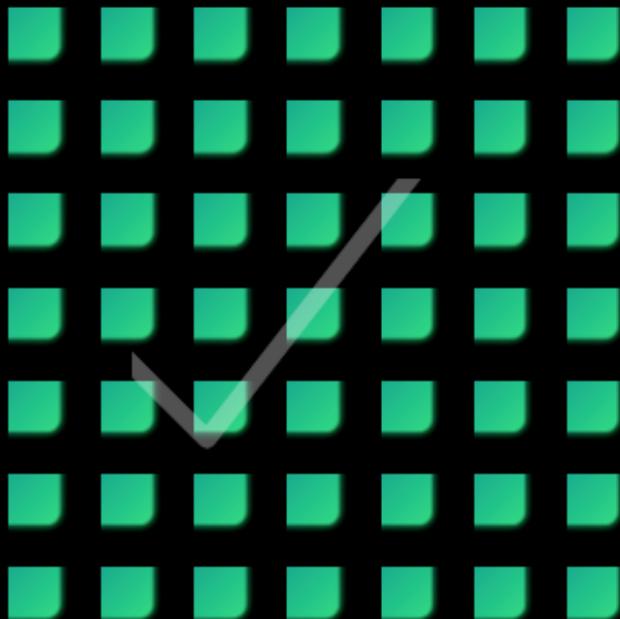
## LNNs

Because the states are limited, you can perform mathematical proofs ([Kresse et al](#))

You don't need to enumerate all possibilities, SAT solvers can help



Discrete, finite state space



# When does ChatGPT give shorter responses?

Monday mornings

0%

When you're rude to it

0%

In December as compared to spring

0%

After midnight

0%

# Which of these prompting tricks actually improves LLM performance?

Take a deep breath and think step by step

0%

I have no fingers, please write the full code

0%

I'll tip you \$200 for a better answer

0%

All of the above

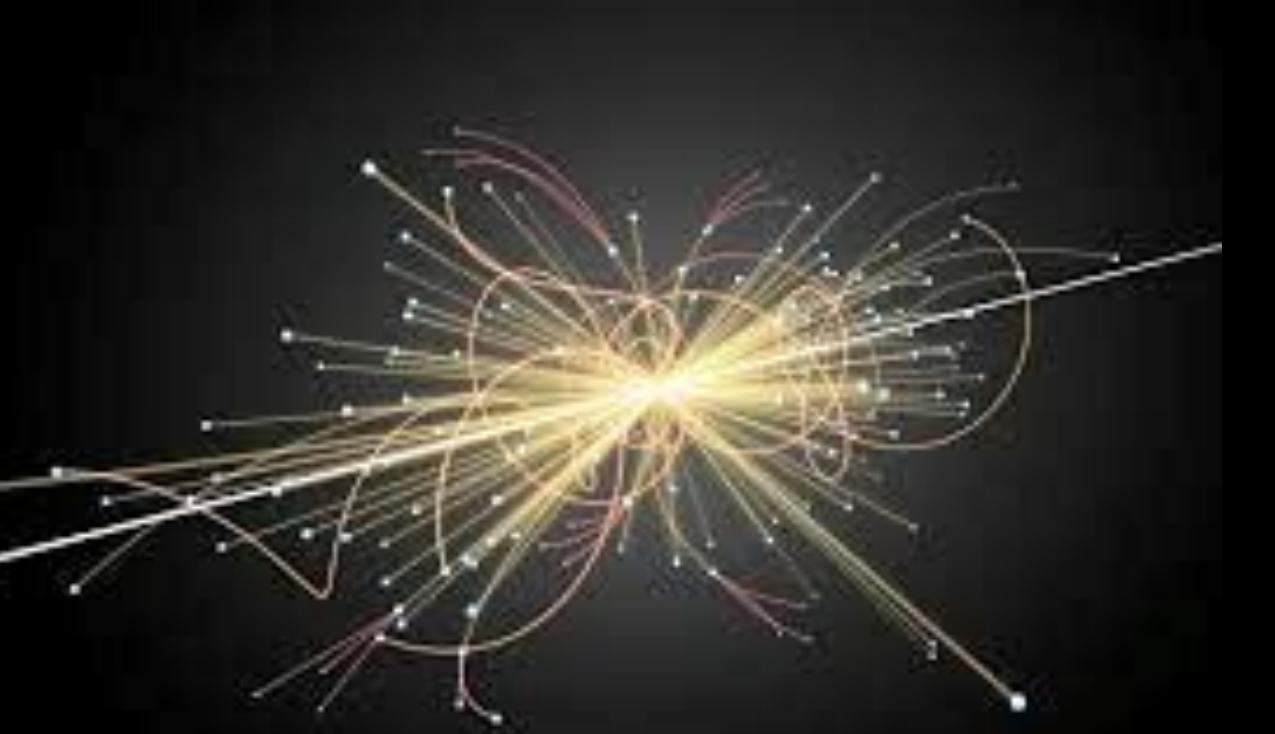
0%

*The model IS a Boolean circuit. Training learns the circuit structure/contents*

*DLGNs are very fast and show good accuracies*

*It has the potential to be verifiable and explainable*

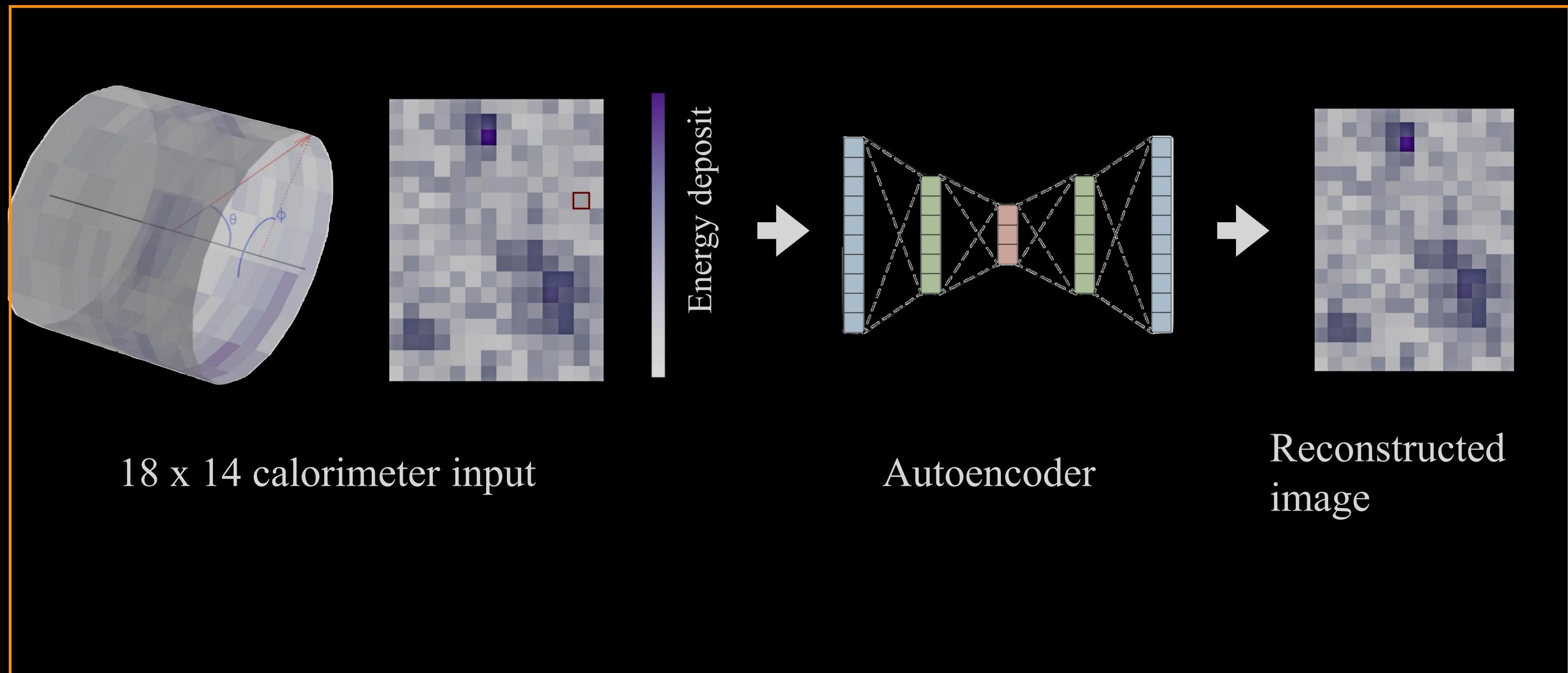
## HEP applications



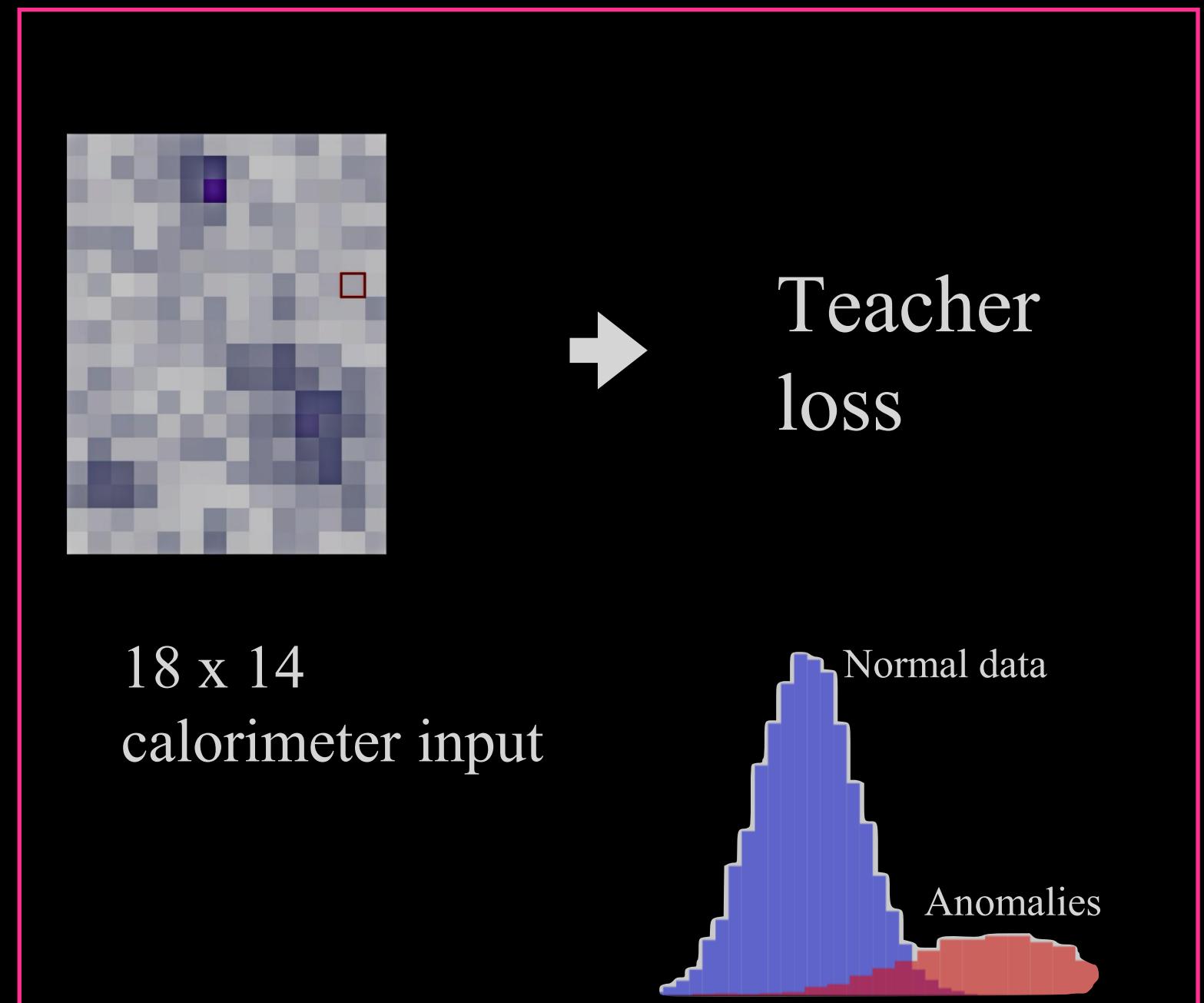


# CICADA anomaly detection at the CMS Level-1 Trigger

## Teacher



## Student



Student is implemented on FPGA in the L1T which has output rate of 100 kHz

Can we achieve better physics performance or latency?

# Results

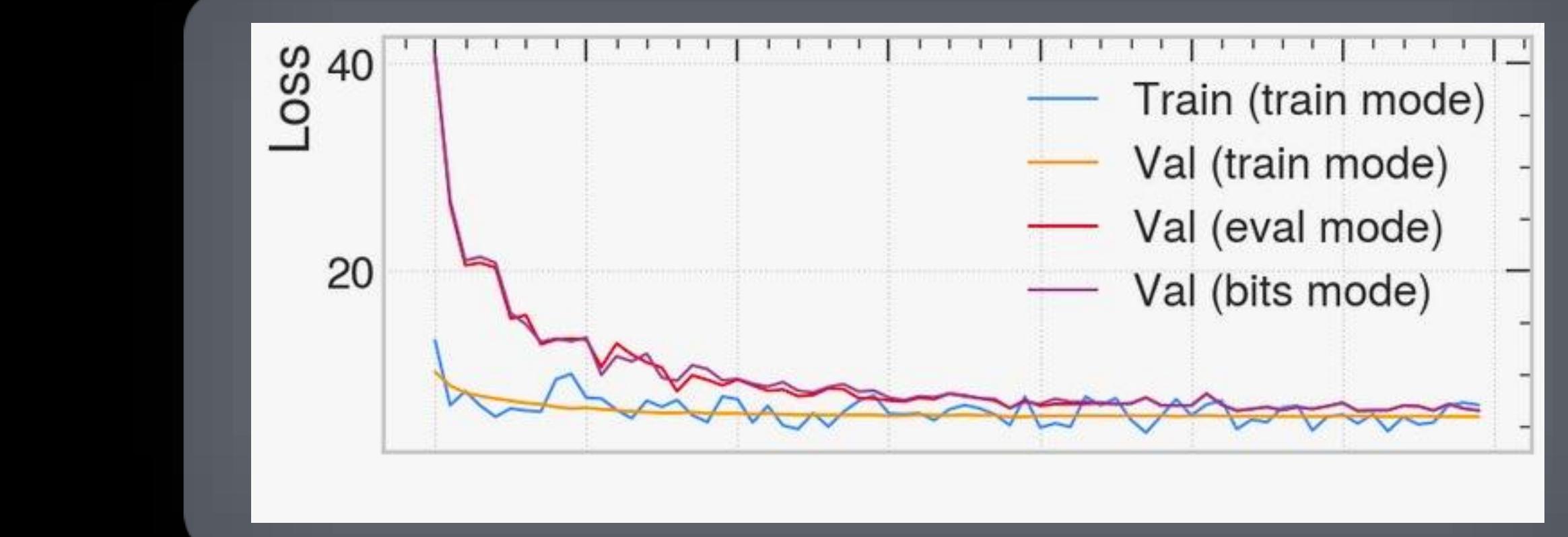
Convolutional logic gate neural net outperforms baseline implementation (QKeras)

Background is Zero Bias,  $\bar{t}t$  is outlier

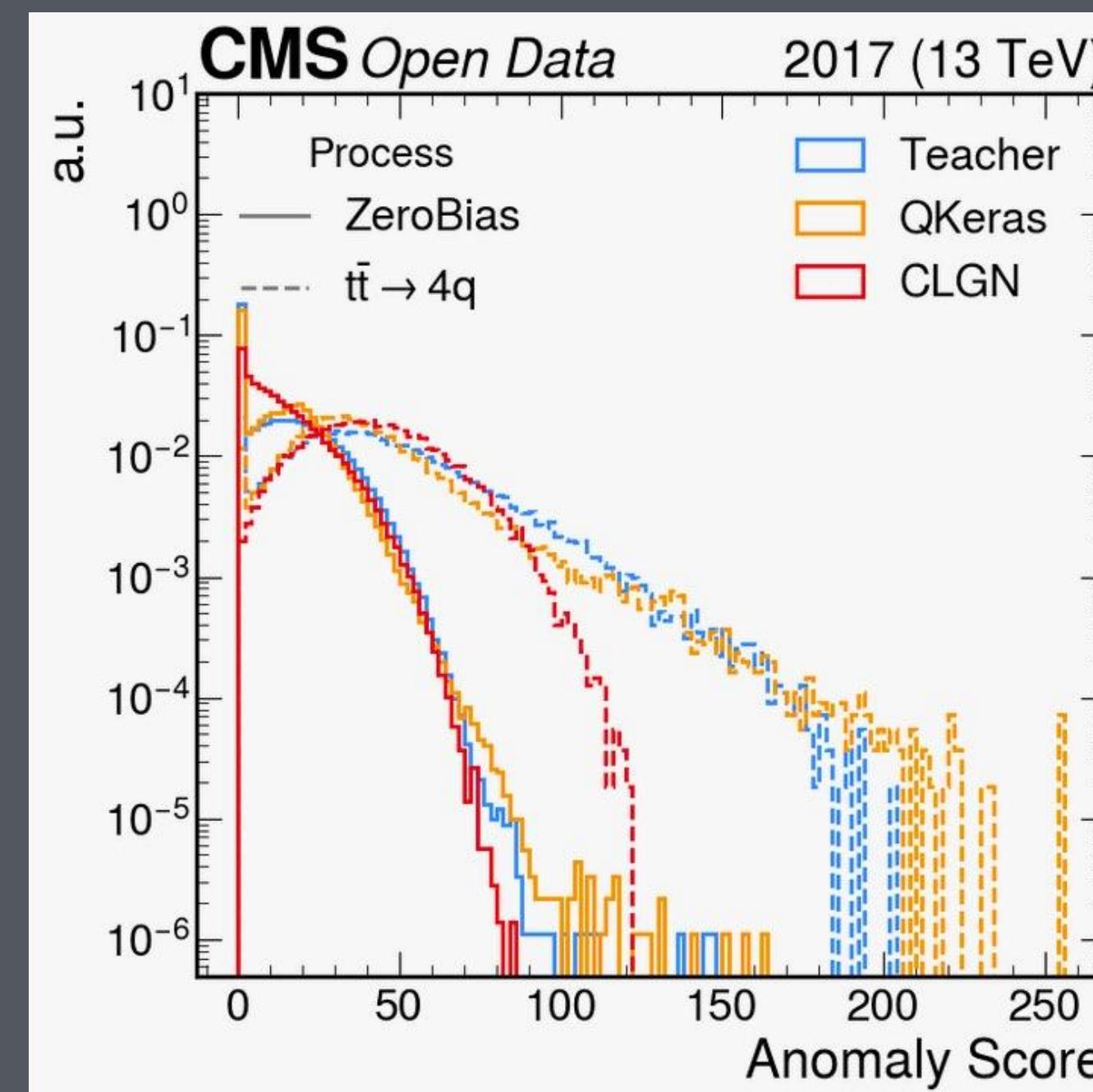
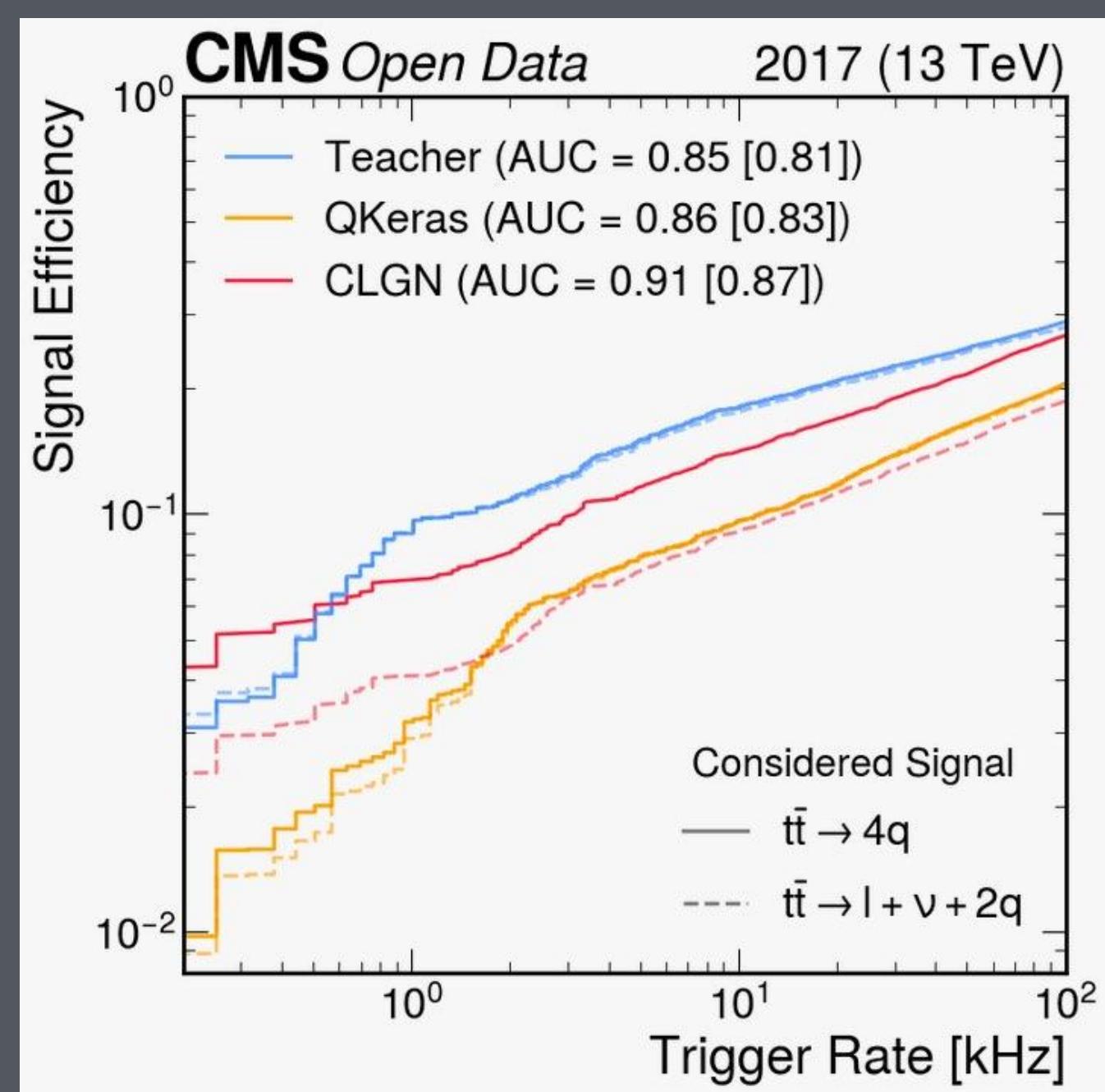
There are three possible outlier final states, two are reserved for validation and testing

Very high anomaly scores lower since binarised inputs

This is okay, we can set the trigger threshold



A low gap between training and validation in bit mode is a sign of a good model



Results using Using 2017 CMS Open data - will be openly available very soon

Uses thermometer encodings to convert inputs to binary, described further in [6]

# FPGA synthesis

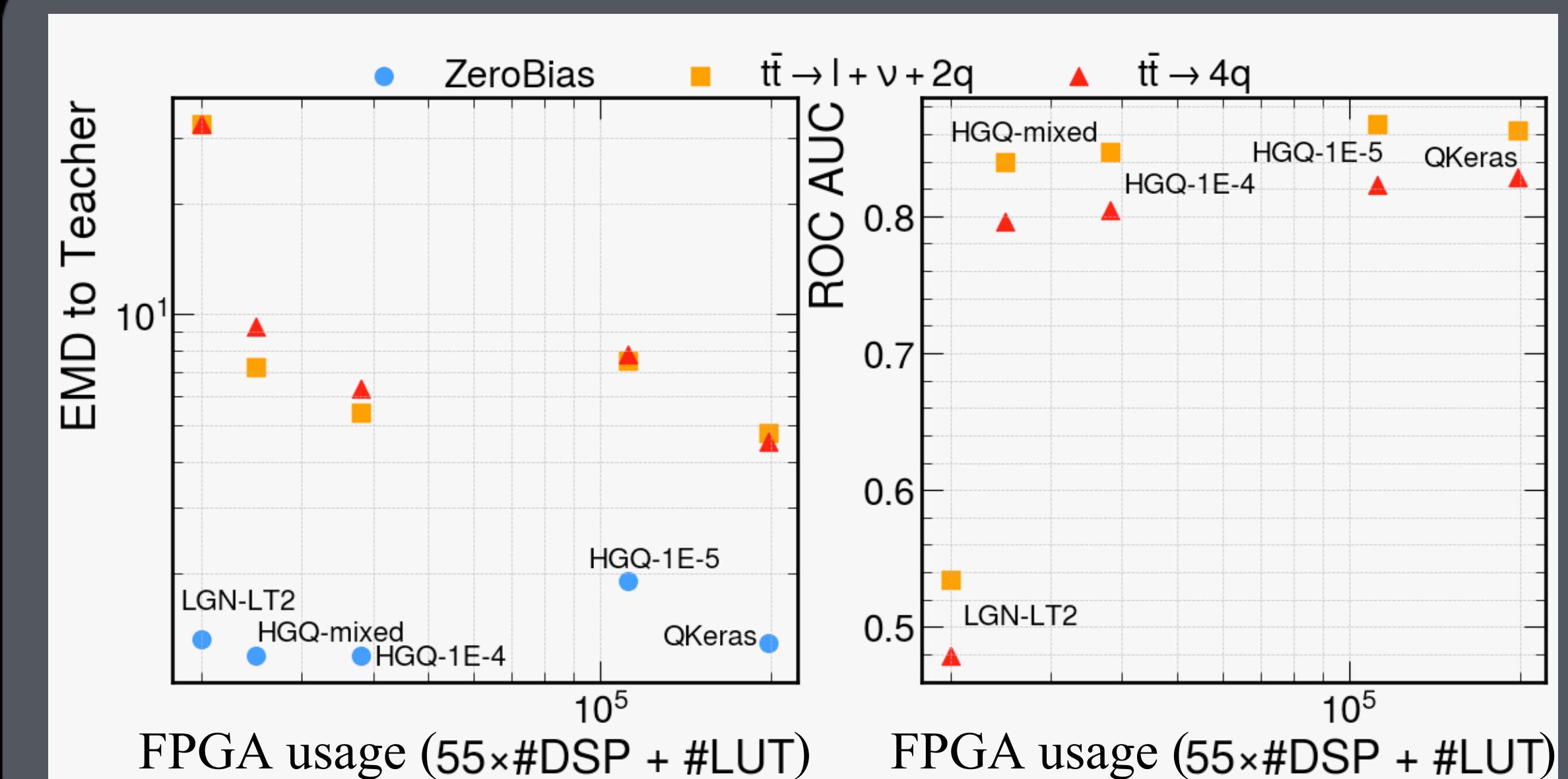
Synthesised a logic gate deep neural net (*not convolutional*) for FPGA

Latency outperforms QKeras and HGQ\* implementations

details of those can be found in [5]

We have no DSP usage since we don't have matrix multiplications

EMD: [earth's mover distance](#)



This model has half the trainable parameters as the previous slide, so the physics performance suffers a bit - working on a CNN FPGA implementation underway

\* QKeras is a quantisation package where you change precision of the weights as you are training,  
High Granularity Quantisation (HGQ) lets you have different precision in each layer

Vitis HLS re-place-and-route hardware cost comparison  
Synthesised for AMD Virtex-7

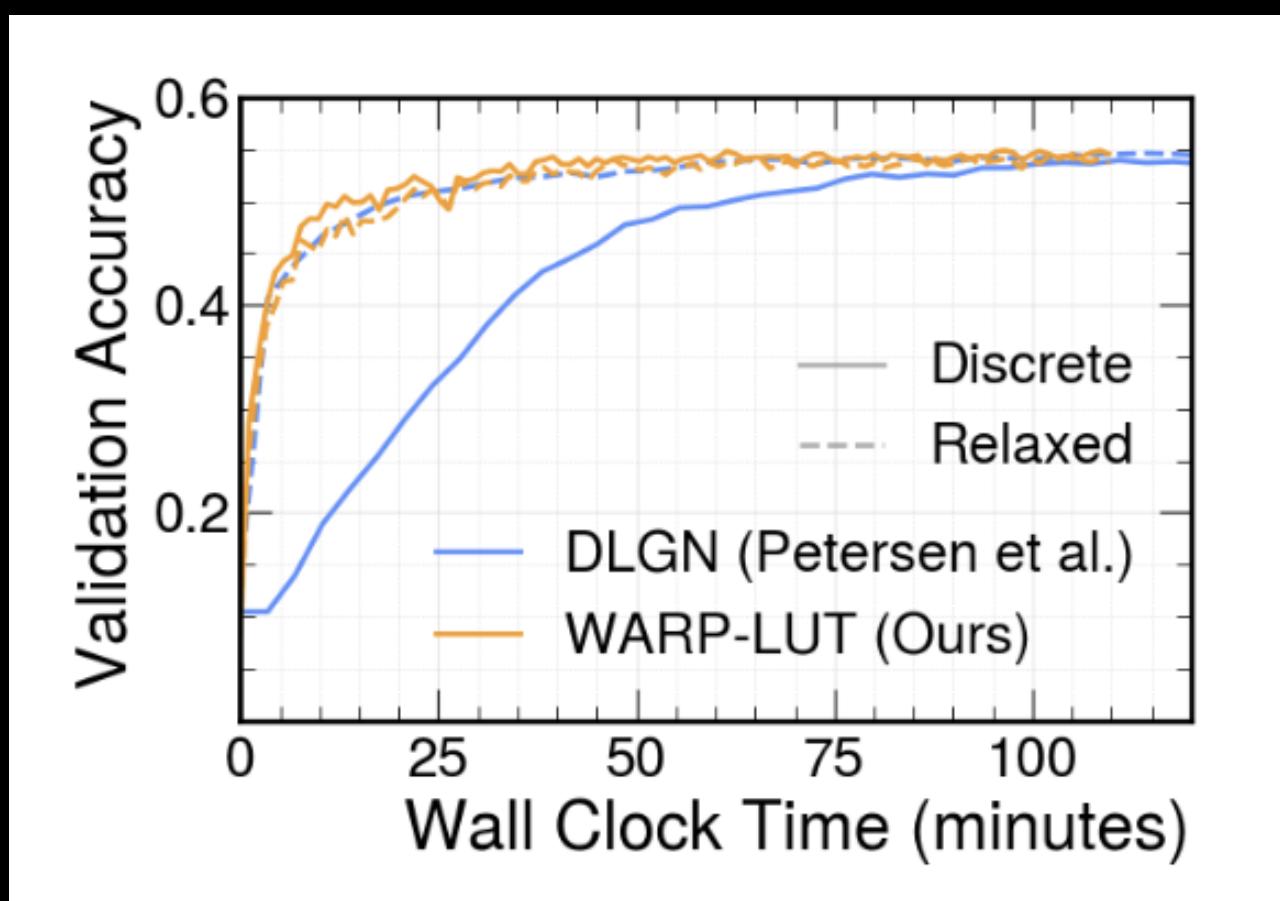
| Model Label | Quantization Library | Latency (in cc) | DSPs | FFs   | LUTs   | HGQ EBOPs |
|-------------|----------------------|-----------------|------|-------|--------|-----------|
| QKeras      | QKeras               | 16              | 697  | 50368 | 159447 | -         |
| HGQ-1E-5    | HGQ                  | 17              | 4    | 27776 | 111848 | 39170     |
| HGQ-1E-4    | HGQ                  | 11              | 1    | 6229  | 38111  | 7570      |
| HGQ-mixed   | HGQ                  | 8               | 0    | 3019  | 24947  | 3301      |
| LGN-LT2     | LGN                  | 3               | 0    | 856   | 19977  | -         |

Vitis HLS estimates

# Our work so far



We are maintaining and developing a python library called [torchlogix](#)

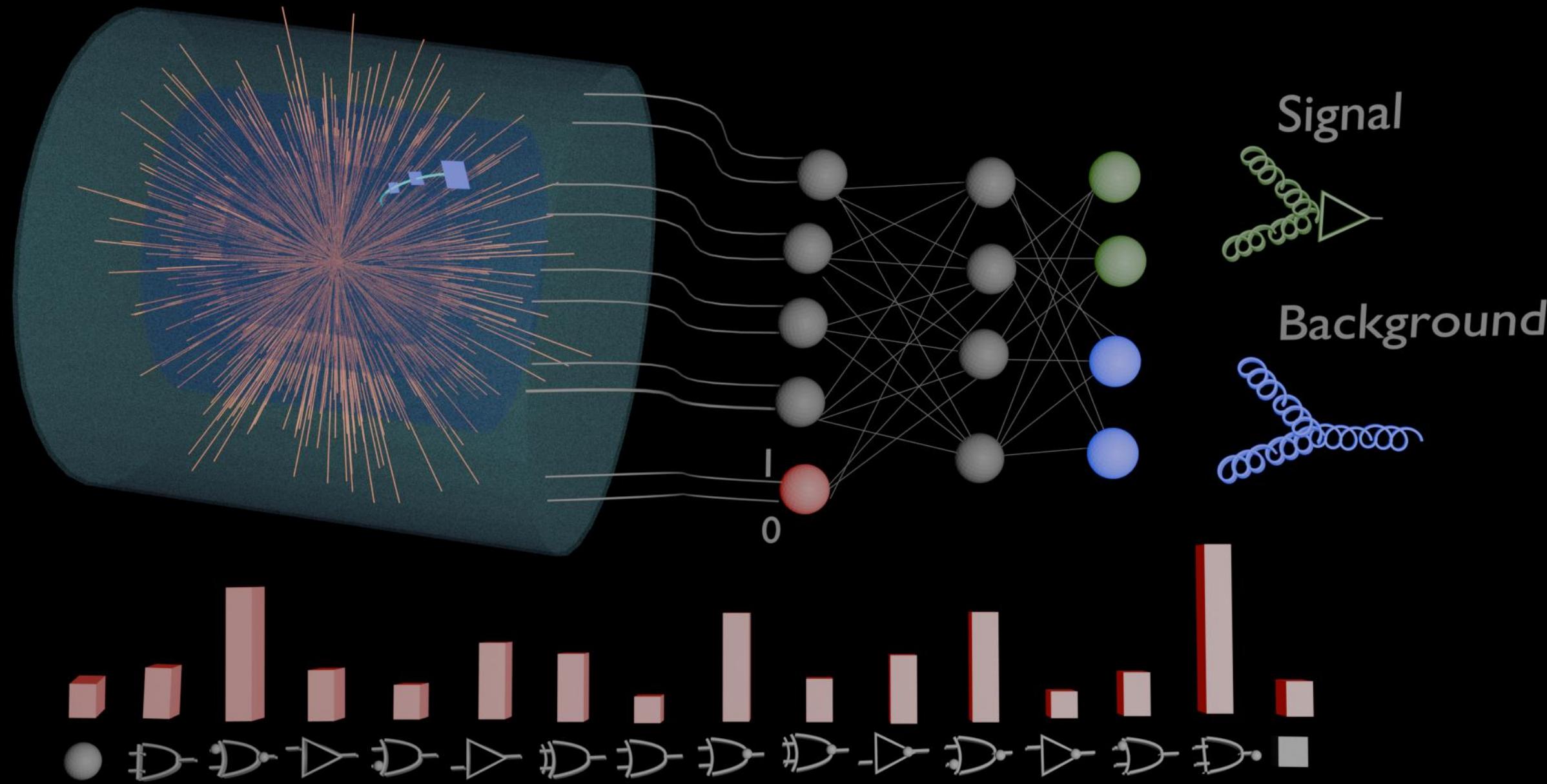


We have increased the scalability by changing binary gate representation, presented in [this paper](#) - which was shown at a NeurIPS workshop last year

Submitting an ICML paper on this topic

Also submitting an ICML position paper on the need to focus on inference speed

# Potential applications in HEP



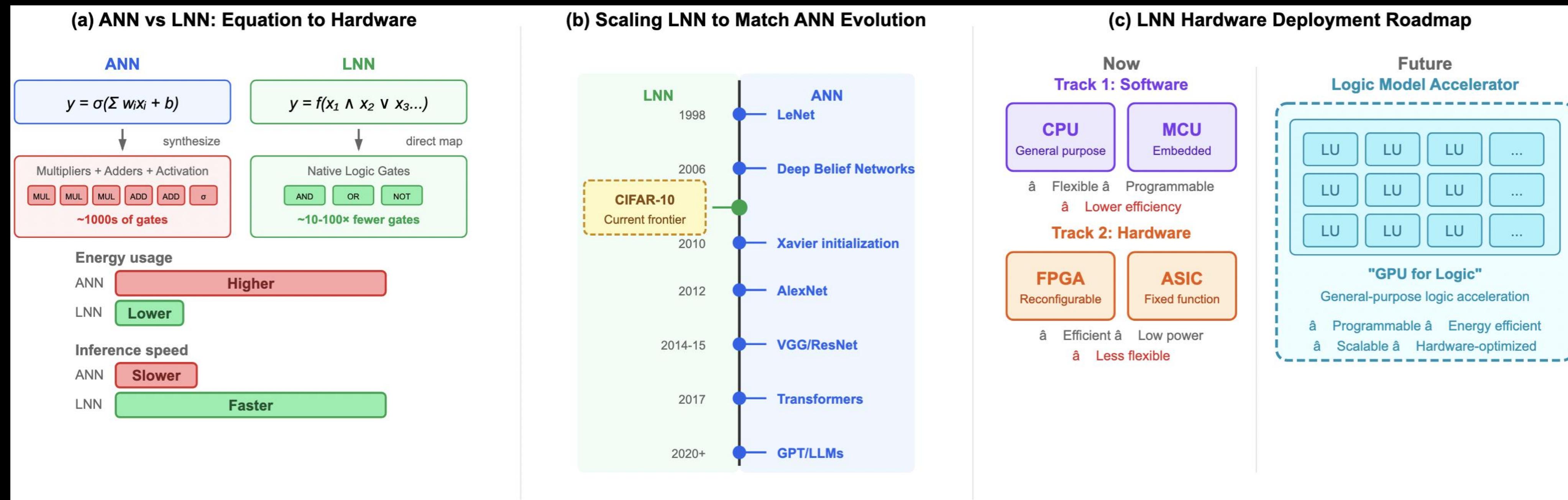
Many trigger applications - timing/accuracy tradeoff could shift

Could potentially be used directly on ASICs for FCC

Could be used for fast inference offline

Opens opportunities for physics verifiability in ML

# Future of LGNs



Scaling up is the main issue:

Training can take a long time

There are gradient issues - increasing depth can harm accuracy

LNNs are fairly parameter sensitive

The FPGA tools are generally not being shared openly

# Conclusion

CICADA

3 cc

FPGA LATENCY

0

DSP USAGE

~ 0.91

AUC (CICADA)

30-60%

MODEL COMPRESSION



## STRENGTHS



### No Matrix Multiply → Fast

Binary logic operations only, no expensive floating-point arithmetic



### Maps Directly to FPGA LUTs

The trained model IS a Boolean circuit — no translation needed



### Deterministic Latency

Fixed timing, no cache misses, no surprises — ideal for triggers



### Interpretable

You can read the logic — potential for mathematical verification



## LIMITATIONS (Current)



### Harder to Train

Training takes longer than standard NNs; gradient issues with depth



### Scaling Still in Progress

Current frontier is CIFAR-10; larger problems need more research



### Input Encoding Matters

Thermometer thresholds need tuning; representation affects results



### Less Explored

Smaller research community than quantization/pruning methods

*LGNs offer a paradigm shift for ultra-fast ML inference — trading training complexity for massive deployment efficiency.*

## Would you consider logic gate neural nets for your low inference needs?

Yes

0%

No

0%

Maybe

0%

I don't have low inference needs

0%

# How to get started

[A very good overview paper](#)

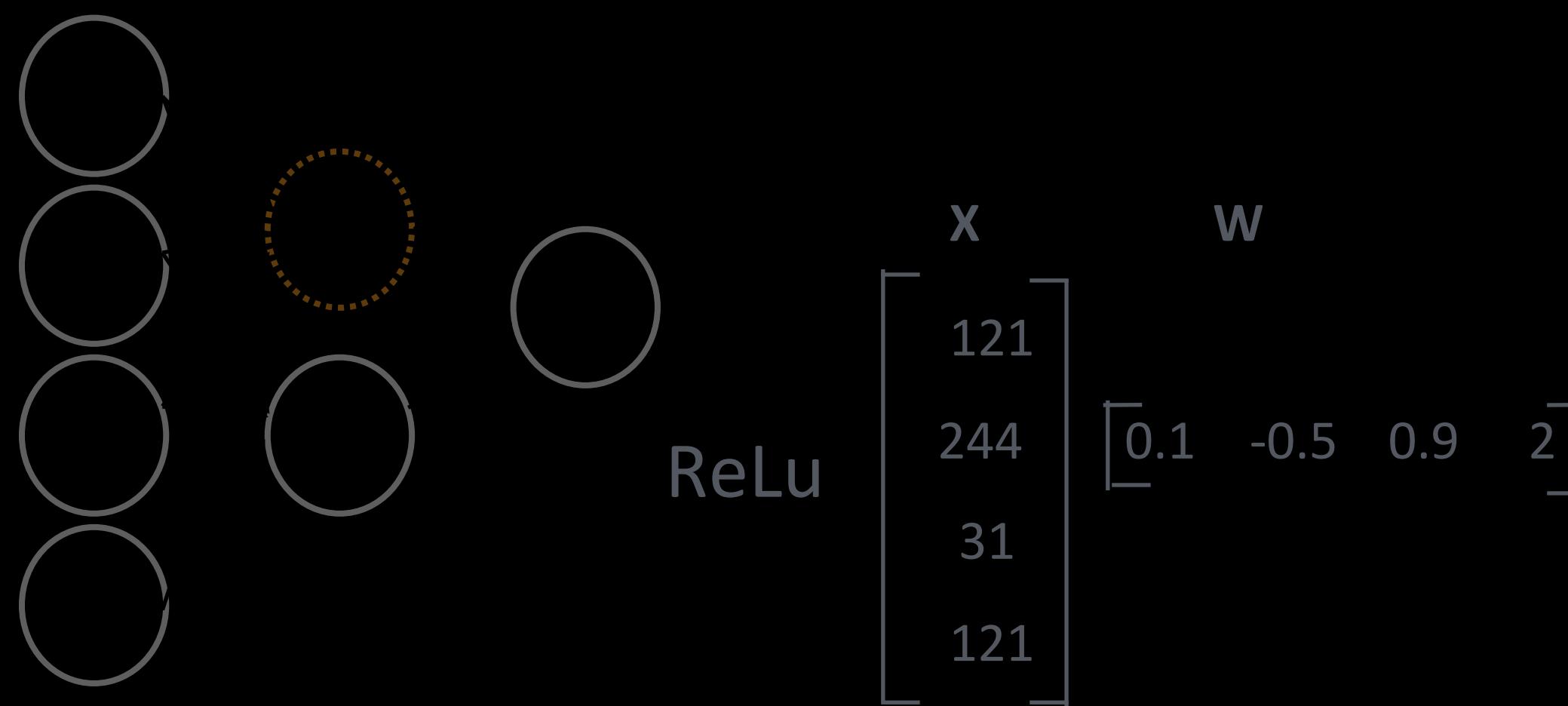
[Play around with torchlogix](#)

Get in touch if you have questions: [liv.helen.vage@cern.ch](mailto:liv.helen.vage@cern.ch)

# Backup

# MLP vs difflog MLP

## Normal neural net



Fully connected

Matrix multiplication in nodes

Same in training as inference

## Logic gate neural net



Randomly connected; each node has two inputs

Nodes evaluate logic gates

*At inference, inputs are binary and only use most probable logic gate for each node*

No matrix multiplication, binary logic can be simplified by compiler, binary computations faster

| ID | Operator                | real-valued         | 00 01 10 11 |    |    |    |
|----|-------------------------|---------------------|-------------|----|----|----|
|    |                         |                     | 00          | 01 | 10 | 11 |
| 0  | False                   | 0                   | 0           | 0  | 0  | 0  |
| 1  | $A \wedge B$            | $A \cdot B$         | 0           | 0  | 0  | 1  |
| 2  | $\neg(A \Rightarrow B)$ | $A - AB$            | 0           | 0  | 1  | 0  |
| 3  | $A$                     | $A$                 | 0           | 0  | 1  | 1  |
| 4  | $\neg(A \Leftarrow B)$  | $B - AB$            | 0           | 1  | 0  | 0  |
| 5  | $B$                     | $B$                 | 0           | 1  | 0  | 1  |
| 6  | $A \oplus B$            | $A + B - 2AB$       | 0           | 1  | 1  | 0  |
| 7  | $A \vee B$              | $A + B - AB$        | 0           | 1  | 1  | 1  |
| 8  | $\neg(A \vee B)$        | $1 - (A + B - AB)$  | 1           | 0  | 0  | 0  |
| 9  | $\neg(A \oplus B)$      | $1 - (A + B - 2AB)$ | 1           | 0  | 0  | 1  |
| 10 | $\neg B$                | $1 - B$             | 1           | 0  | 1  | 0  |
| 11 | $A \Leftarrow B$        | $1 - B + AB$        | 1           | 0  | 1  | 1  |
| 12 | $\neg A$                | $1 - A$             | 1           | 1  | 0  | 0  |
| 13 | $A \Rightarrow B$       | $1 - A + AB$        | 1           | 1  | 0  | 1  |
| 14 | $\neg(A \wedge B)$      | $1 - AB$            | 1           | 1  | 1  | 0  |
| 15 | True                    | 1                   | 1           | 1  | 1  | 1  |

# Thermometer thresholding

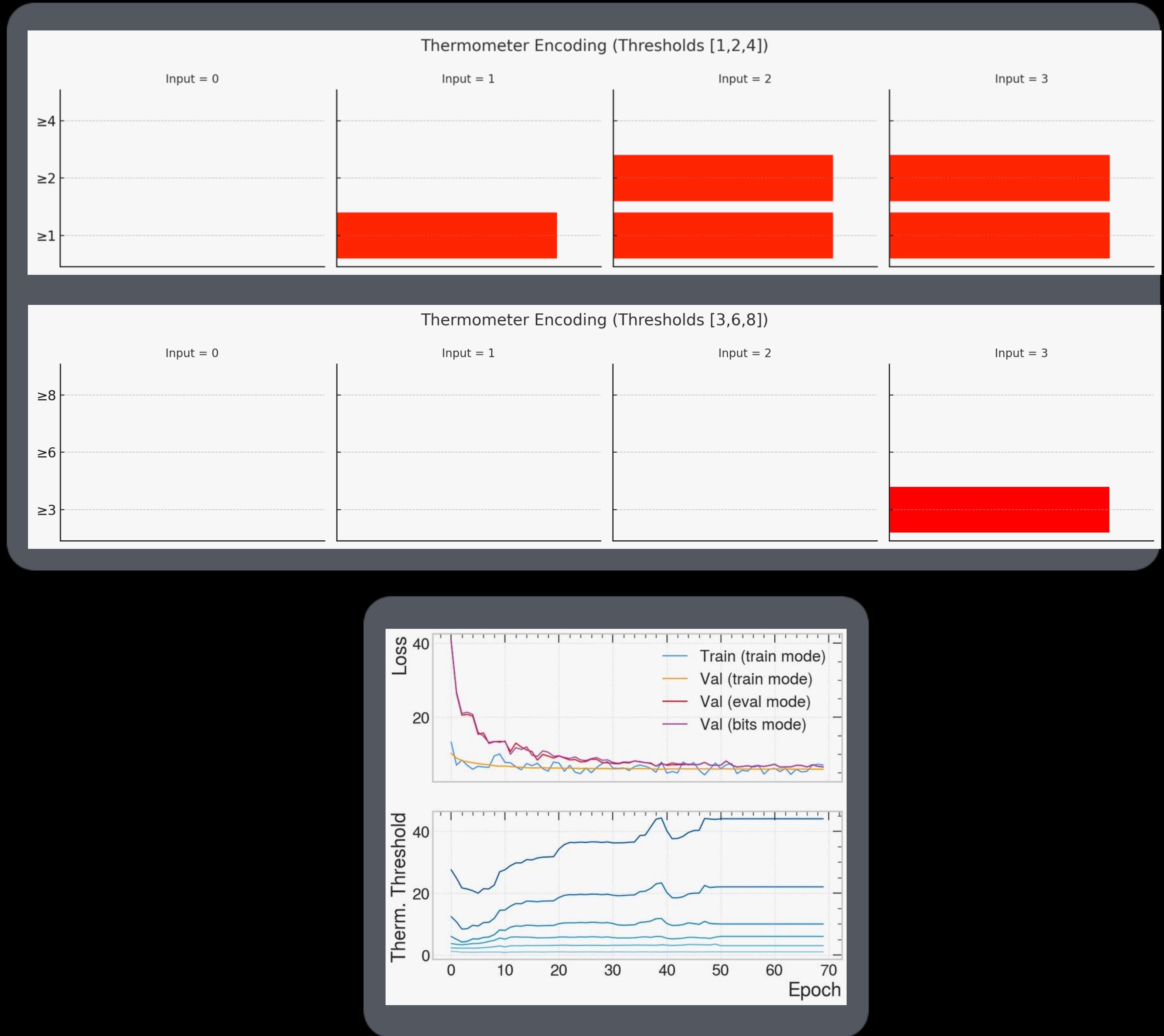
We need to convert continuous numbers to binary

We do this based on thresholds, as implemented in [\[4\]](#)

We learn the bin edges as we train  
each bin checks whether the number  $\geq$  threshold  
1 if it is, 0 otherwise

Our representation matters  
the best edges will depend on the problem

In our case, we let it change, then freeze it  
we use a 6 bit representation  
one of the bins settles on a high threshold - likely to capture  
high anomaly scores



# WARP-LUTS

**Example: 2-input logic gates** In the special case of two inputs  $(a, b)$ , every binary logic gate admits a decomposition with only four coefficients:

$$f(a, b) = \text{sign}(c_0 + c_1a + c_2b + c_3(a \cdot b)),$$

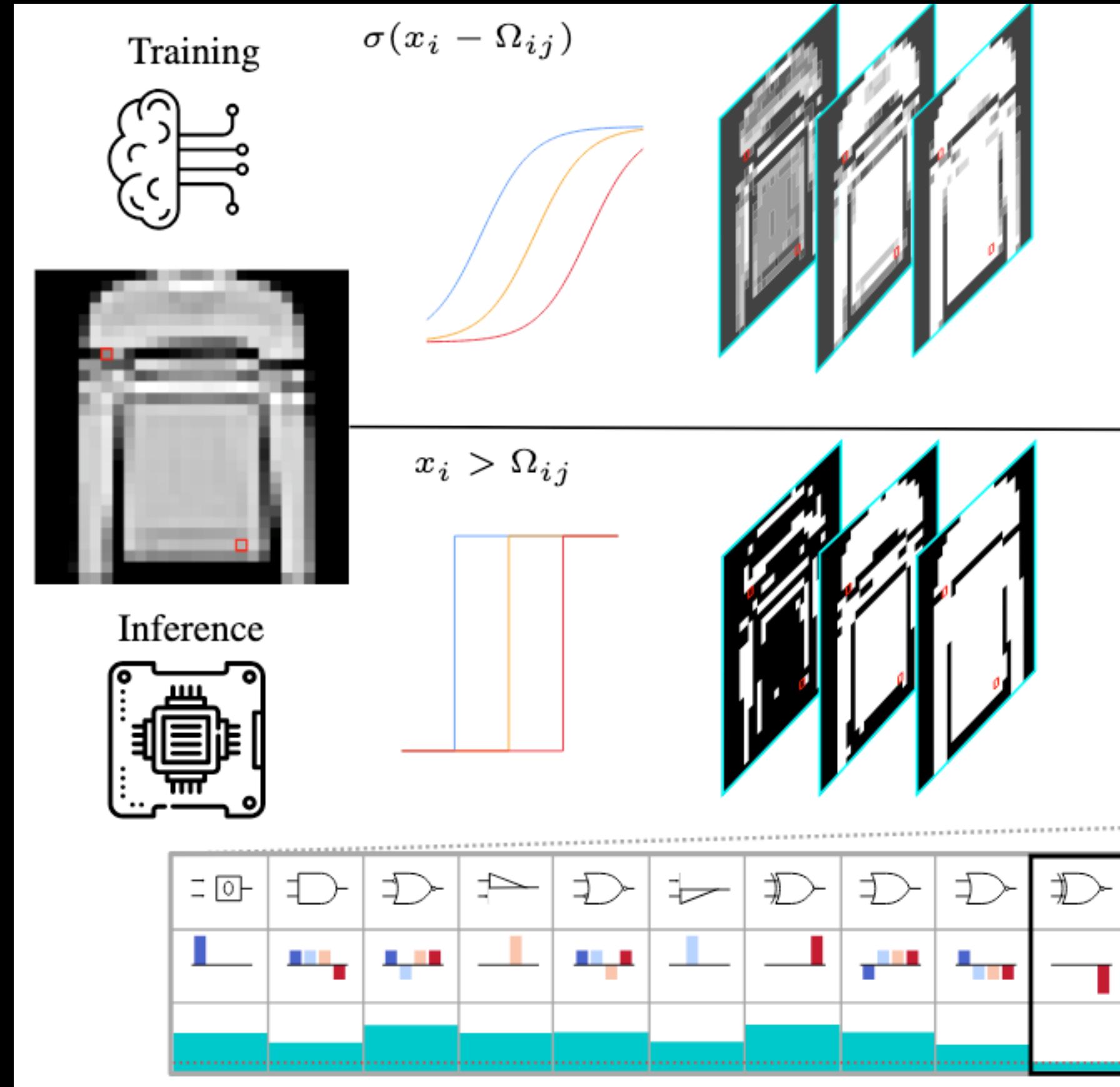
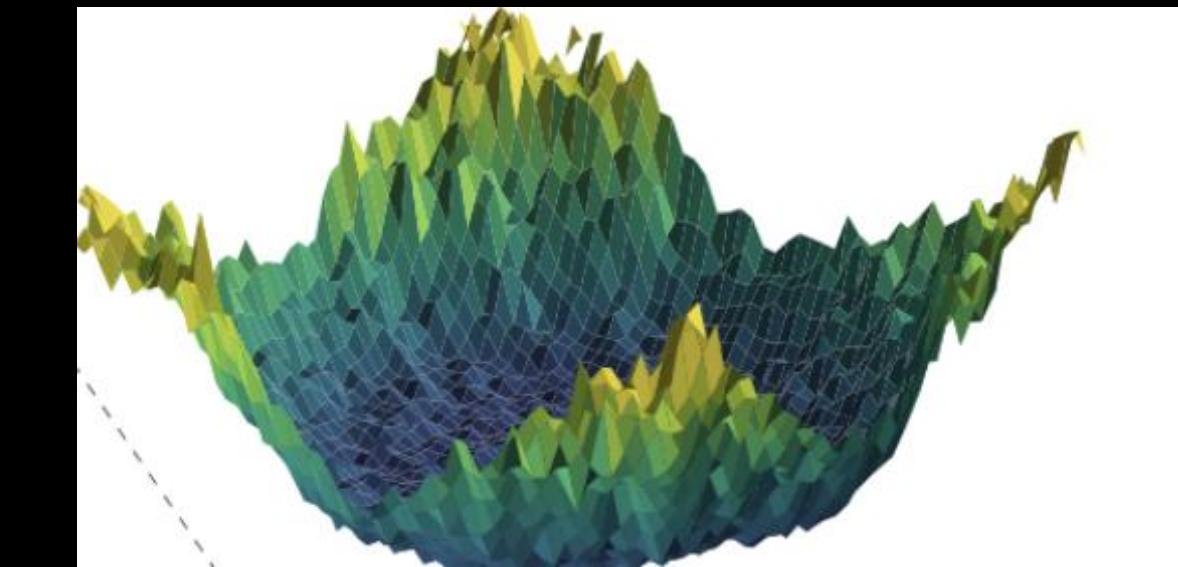
where  $c_0$  encodes the constant bias (tendency toward 0 or 1),  $c_1$  and  $c_2$  encode dependence on the individual inputs, and  $c_3$  encodes the interaction term between the inputs. For example, the coefficients  $(c_0, c_1, c_2, c_3) = (0, 0, 0, -1)$  correspond to the XOR gate, while the AND gate can be expressed as  $(c_0, c_1, c_2, c_3) = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ . This decomposition demonstrates that instead of enumerating all 16 binary gates explicitly, one can parameterize them compactly with just four WH coefficients (see Table 1 in Sec. B for the full list of gates and coefficients).

# Straight through estimators

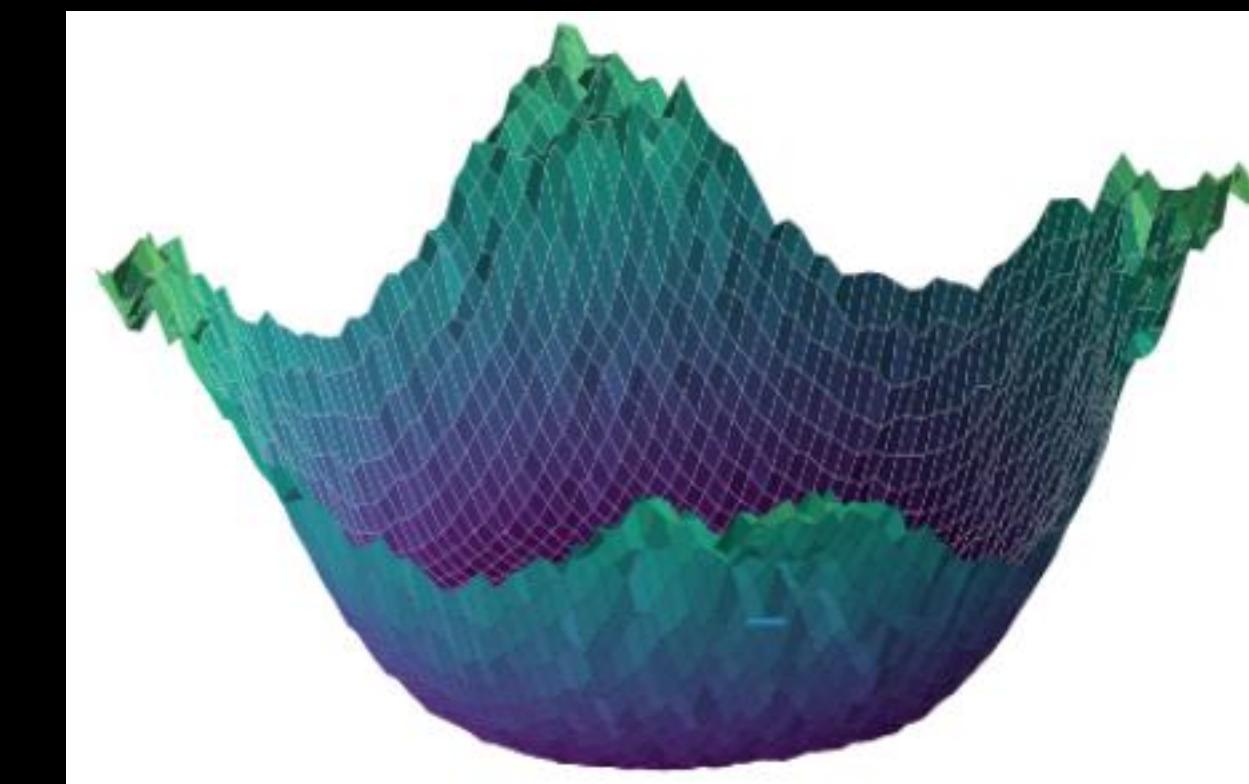
Forward:  $w_{\text{binary}} = \text{sign}(w_{\text{real}})$  # discrete

Backward:  $\partial L / \partial w_{\text{real}} = \partial L / \partial w_{\text{binary}}$  # pretend sign() was identity

# Discretisation gap



DLGN



DLGN with Gumbel noise

Reducing discretisation gap

# Scaling issue with LUTs

If you have a computation like:

$$Y = A \text{ AND } B \text{ AND } C \text{ AND } D \text{ AND } E \text{ AND } F \text{ AND } G \text{ AND } H$$

Most LUTs take 4 or 6 inputs, so it can't all be contained in one LUT ->

$$(A \wedge B \wedge C \wedge D \wedge E \wedge F) \rightarrow \text{LUT1}$$

$$(G \wedge H) \rightarrow \text{LUT2}$$

$$(\text{LUT1} \wedge \text{LUT2}) \rightarrow \text{LUT3}$$

Most LUTs take 4 or 6 inputs, so it can't all be contained in one LUT -> superlunar scaling with input

# Gradient issues with LNN

DLGNs are sensitive to the initialisation - part of the reason is that logic gates can symmetrically cancel out

Each logic gate reduces the gradient strength, so deep neural networks struggle

DWNs only estimate gradients - can scale badly with parameters and be slow to converge