
Lino Gerlach, Thore Gerlach, Elliott Kauffman, Liv Våge

RAL seminar 2026
28.01.26

This presentation contains animations - best viewed in .pptx or .key

Logic Neural Networks: Ultra-Fast ML for Triggers and

Beyond

1

2

Who I am

PhD at Imperial College
Working with IRIS-HEP,

based in Geneva
Teaching ML since 2017

Who I am not

An FPGA expert

Me

Innovative algorithms

GNNs for tracking

Rapid inference

ML infrastructures in HEP

GNNs and reinforcement learning

for tracking

3

Motivation Logic neural networks

Application to HEP
Conclusion

Low latency needs

Hardware solutions

Software solutios

Why we need more

Summary

How to get started

Overview of the field

Differentiable logic gate neural networks

New developments

Application to CICADA anomaly detection

Strength and weaknesses

Future opportunities

Introduction

The

5

Low latency inference - evaluating ML fast

When we want ML that is:

ML use
ML use is increasing in HEP. We have huge and increasing amounts of data

Triggers
The Phase 2 CMS Level 1 Trigger will for instance need to process 63 Tb/s

with a latency of 12.5 µs

Close to host
Edge computing is increasing:

now at ~ 21 billion IoT devices

Cheap and efficient to run
LLMs, medical devices, space devices etc.

Pacemakers need ~ 50 microwatts to run for 7 years

Super fast
Financial trading (Spread networks e.g. spent 300 M on a cable to

save 13 ms), self driving cars and lots more

HEP

* This plot was made around October 2025

https://iot-analytics.com/number-connected-iot-devices/
https://pmc.ncbi.nlm.nih.gov/articles/PMC6731626/
https://www.chicagobooth.edu/review/alternative-high-frequency-trading
https://www.chicagobooth.edu/review/alternative-high-frequency-trading

6

7

Inference devices

GPU FPGACPU ASICTPU/NPU

Latency

Strength

Weakness

ms-s

Flexible

easy to program

Slow, high power

μs–ms

Parallelism,

ML optimised

High power

μs–ms

ML-specific

Bespoke

ns-μs

Deterministic

Low power

Hard to program

ns

Ultimate

speed/power

efficiency

Expensive

Not flexible

Lower latency and power, harder to program

Small ML models

(e.g. BDTs)
Most ML Low inference ML

No matter what chip we use or how

we program it - it is ultimately

translated to binary logic

With high luminosity LHC

and FCC, we are moving

towards the right to handle our

data quickly

8

Field Programmable Gate Arrays (FPGAs)

Hardware you can reprogram after manufacturing

Massively parallel → very fast for specific tasks

Deterministic timing (no caches, no surprises)

Programmed using Verilog / VHDL

Can also use high-level tools (e.g. HLS, hls4ml)

Available in radiation-tolerant versions for space or HEP detectors

9

DSPs and LUTs

10

11

Current fast inference methods

QuantisationPruning Knowledge distillation

Remove unnecessary weights & neurons Reduce numerical precision Small model learns behaviour of a large one

1.712345 2

Can often reduce the number of

parameters by 3-10x

Often you get better performing

retraining the pruned network

Makes it better for FPGA

Used for anomaly detection in CMS

Accuracies suffer below int4 You have to start with a large model and the

tuning can be hard

12

Scaling wall

All these approaches aim to learn something big and then reduce - maybe we could learn small from the start

Could we learn ML suited directly for our hardware?

Quantum computing

Abstracts from NeurIPS and ICML that mention

keywords related to scaling or inference

Neuromorphic computing

There are a few paradigm shifting potentials

https://ourworldindata.org/grapher/quantum-bits-per-processor
https://www.nature.com/articles/s41586-024-08253-8

Logic neural networks

Fast inference needs are increasing

We are moving to more specialised

hardware

Our techniques for making ML fast are

not enough

14

Evolution of the field

Tree LUT

AmigoLUT

Weightless

learning

Quantised

learning

1959

Ntuple

1984

Wisard

2022

Weightless

NN

2024

Differentiable

weightless NN

2016

Binary

neural net

2019

LUTNet

2020

Logic net

2022

Differentiable

logic gate NN

Early character

recognition

by storing states in

RAM

Similar to Ntuple, but

with multiple classes

One of the first

commercial real-time

image recognition

systems

Same as Wisard, but

with several clever

tricks

EFD to estimate

gradients of LUT

mapping

PolyLUT

Weights are 0

or 1 (i.e.

XNOR)

Accumulate

result with

pop count

Compile a

BNN

efficiently in

LUTs

No weights at all, just

learn which logic gates

to use

Newer developments

NullaNet

Design for

LUTs from

the start

NeuraLUT

https://arxiv.org/abs/2501.01511
https://dl.acm.org/doi/10.1145/3706628.3708874
https://dl.acm.org/doi/epdf/10.1145/1460299.1460326
https://www.emerald.com/sr/article-abstract/4/3/120/349248/WISARD-a-radical-step-forward-in-image-recognition?redirectedFrom=fulltext
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1904.00938
https://arxiv.org/pdf/2004.03021
https://arxiv.org/abs/2210.08277
https://arxiv.org/abs/2210.08277
https://arxiv.org/pdf/2309.02334
https://arxiv.org/pdf/1807.08716
https://arxiv.org/pdf/2403.00849

More details on different methods

15

Method Year Key Innovation Advance Limitation

N-tuple 1959 LUT pattern matching First weightless No generalization

WiSARD 1984 Commercial RAM-NN Hardware, multi-class Exponential memory

BNNs 2016 ±1 weights, XNOR Trainable with backprop Still arithmetic (popcount)

FINN 2017 FPGA dataflow Practical deployment Arithmetic-based

LUTNet 2019 Arbitrary Boolean ops 2× area efficiency Exponential params with K

LogicNets 2020 Neurons = truth tables Direct LUT mapping Needs high sparsity

DLGNs 2022 Learn gate type (not weights) Zero arithmetic Training difficulty

PolyLUT 2023 Polynomial neurons Fewer layers Diminishing returns D>2

DWN 2024 Differentiable WNNs 135× energy efficiency Tabular focus

NeuraLUT 2024 MLPs inside LUTs Better accuracy Complex training

Construct neural network from logic gates
instead of nodes, we have logic gates

Convert the input to a binary representation
different representations can produce different results

Each node receives two inputs
The connections are randomly initialised

Outputs are summed so we can classify or

regress

Logic gate neural networks

16

Why it is fast

𝑦
̂

𝑖 = ∑
𝑗=𝑖⋅𝑛/𝑘+1

(𝑖+1)⋅𝑛/𝑘

𝑎𝑗/𝜏 + 𝛽Final output
Optional offset

Normalisation temperature

Neuron output

Number of output neurons

Output dimension At inference each 16 gate block is replaced by most

probable gate

Binary computations are fast

Compiler can optimise the binary logic

No matrix multiplications!

Video adapted

from [4] , made by Felix

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE

Most ML is done with gradient descent

Gradient descent needs differentiable variables

Logic gates aren’t differentiable

Problem: logic gates aren’t differentiable

0

1
0 𝑓(𝐴, 𝐵) = {

1, 𝐴 = 1and𝐵 = 1
0, otherwise

AND gate

⇒
∂𝑓

∂𝐴
and

∂𝑓

∂𝐵
are not defined

Gate operations are continuous approximations
This is how we make it differentiable

Softmax of the 16 gate blocks
This is how we learn which gate is best for inference

During training evaluate 16 gates for each “neuron”
slow training, but quick inference when we replace each block of 16

with the most probable gate

Making it differentiable

18

𝑎′ = ∑
𝑖=0

15 𝑒𝐰𝐢

∑𝑗 𝑒𝐰𝐣
⋅ 𝑓𝑖(𝑎1, 𝑎2)

Logic gate operation

Neuron output

Learnable weights

Video adapted

from [4] , made by Felix

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE

Convolutional differentiable logic gate neural networks

19

Linear layers is not enough for image tasks
empirically struggled to train over 6 layers

-> Replace normal CNN kernel by a binary tree
aggregates information while keeping expressivity

One channel for each input bit
We learn the significance of each bit

Create special Or pooling layers
fast and only need to propagate through the maximum activations

⊥𝑚𝑎𝑥 (𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎, 𝑏)Video adapted

from [4] , made by Felix

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE

20

Current state of DLGN research

Speed records: 1 million+ MNIST inferences/second on a

single CPU core

86.3% on CIFAR-10 using only 61 million logic gates

O(10-100) times smaller than state-of-the-art models at

comparable accuracy

NeurIPS talk

Recurrent DLGN

Reducing discretisation

gap

Cellular automata

Speeding up training

Reducing the

number of parameters

New architectures:

There are also several startups in this area

https://arxiv.org/abs/2411.04732
https://arxiv.org/pdf/2508.06097
https://arxiv.org/pdf/2506.07500
https://arxiv.org/pdf/2506.07500
https://arxiv.org/html/2506.04912v1
https://arxiv.org/html/2510.03250v1
https://arxiv.org/pdf/2510.15655
https://arxiv.org/pdf/2510.15655

21

Verifiability and interpretability

Because the states are limited, you can perform

mathematical proofs (Kresse et al)

You don’t need to enumerate all possibilities, SAT

solvers can help

Interpretability and verifiability remains

an open issue

Current methods often rely on approximations

or is NP hard

Best tools fall short in numbers of parameters they can

handle with orders of magnitude

Lots of work goes into testing LLM behaviour

[Anthropic, ChatGPT]

Continuous, infinite state space Discrete, finite state space

Normal neural networks LNNs

https://arxiv.org/abs/2505.19932
https://dl.acm.org/doi/fullHtml/10.1145/3641399.3641445
https://www.anthropic.com/research/persona-vectors
https://www.oreateai.com/blog/winter-break-hypothesis/6e4d90ff2c4ee810c300943339d45653

22

23

HEP applications

The model IS a Boolean circuit. Training learns the circuit structure/contents

DLGNs are very fast and show good accuracies

It has the potential to be verifiable and explainable

25

CICADA anomaly detection at the CMS Level-1 Trigger

Teacher Student

18 x 14 calorimeter input Autoencoder
Reconstructed

image

18 x 14

calorimeter input

Teacher

loss

Student is implemented on FPGA in the L1T which has output rate of 100 kHz

Can we achieve better physics performance or latency?

Normal data

Anomalies

[5] CICADA collaboration

https://arxiv.org/html/2411.19506v1

26

Results

Convolutional logic gate neural net outperforms

baseline implementation (QKeras)

Background is Zero Bias, 𝑡𝑡 is outlier
There are three possible outlier final states, two are reserved for

validation and testing

Very high anomaly scores lower since

binarised inputs
This is okay, we can set the trigger threshold

A low gap between training and validation in bit mode is a sign of a good model

Results using Using 2017 CMS Open data - will be openly available very soon

Uses thermometer encodings to convert inputs to binary, described further in [6]

https://arxiv.org/pdf/2410.11112

27

FPGA synthesis

Vitis HLS estimates

Synthesised a logic gate deep neural net (not

convolutional) for FPGA

Latency outperforms QKeras and HGQ*

implementations
details of those can be found in [5]

We have no DSP usage since we don’t have

matrix multiplications

EMD: earth’s mover distance

Vitis HLS re-place-and-route hardware cost comparison

 Synthesised for AMD Virtex-7

This model has half the trainable parameters as the previous slide, so the physics

performance suffers a bit - working on a CNN FPGA implementation underway

FPGA usage () FPGA usage ()

* QKeras is a quantisation package where

you change precision of the weights as you

are training,

High Granularity Quantisation (HGQ) lets

you have different precision in each layer

https://indico.cern.ch/event/1496673/contributions/6637975/attachments/3126033/5544527/HGQ_CICADA_Poster.pdf
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance

Our work so far

We have increased the scalability by changing binary gate

representation, presented in this paper - which was shown at a

NeurIPS workshop last year

Submitting an ICML paper on this topic

Also submitting an ICML position paper on the need to focus on

inference speed

We are maintaining and developing a python library called torchlogix

https://arxiv.org/pdf/2510.15655
https://github.com/ligerlac/torchlogix

Potential applications in HEP

Many trigger applications - timing/accuracy tradeoff could shift

Could potentially be used directly on ASICS for FCC

Could be used for fast inference offline

Opens opportunities for physics verifiability in ML

Future of LGNs

Scaling up is the main issue:

Training can take a long time

There are gradient issues - increasing depth can harm accuracy

LNNs are fairly parameter sensitive

The FPGA tools are generally not being shared openly

31

Conclusion

3 cc

0

~ 0.91

30-60%

CICADA

32

33

How to get started

A very good overview paper

Play around with torchlogix

Get in touch if you have questions: liv.helen.vage@cern.ch

https://arxiv.org/pdf/2506.07367
https://github.com/ligerlac/torchlogix

Backup

MLP vs difflog MLP

35

Normal neural net Logic gate neural net

Fully connected

Matrix multiplication in nodes

Same in training as inference

Randomly connected; each node has two inputs

Nodes evaluate logic gates

At inference, inputs are binary and only use most probable logic
gate for each node

121

244

31

121

X

0.1 -0.5 0.9 2

W

ReLu

0
0.21 * 0.63
0.21 - 0.21 * 0.63
….

0.21
0.63

X f(x1, x2)

-0.1
0.2
2
….

w

3% 10% 40 % …
false and or

No matrix multiplication, binary logic can be simplified by compiler, binary computations faster

36

Thermometer thresholding

[4]

We need to convert continuous numbers to

binary

we do this based on thresholds, as implemented in [4]

We learn the bin edges as we train
each bin checks whether the number ≥ threshold

1 if it is, 0 otherwise

Our representation matters
the best edges will depend on the problem

In our case, we let it change, then freeze it
we use a 6 bit representation

one of the bins settles on a high threshold - likely to capture

high anomaly scores

https://arxiv.org/pdf/2410.11112

WARP-LUTS

37

Straight through estimators

38

Forward: w_binary = sign(w_real) # discrete

Backward: ∂L/∂w_real = ∂L/∂w_binary # pretend sign() was identity

Discretisation gap

39

DLGN

DLGN with Gumbel

 noise

Reducing discretisation gap

https://arxiv.org/pdf/2506.07500

Scaling issue with LUTs

40

Y = A AND B AND C AND D AND E AND F AND G AND H

If you have a computation like:

(A∧B∧C∧D∧E∧F) → LUT1

(G∧H) → LUT2

(LUT1∧LUT2) → LUT3

Most LUTs take 4 or 6 inputs, so it can’t all be contained in one LUT ->

Most LUTs take 4 or 6 inputs, so it can’t all be contained in one LUT -> superlunar scaling with input

Gradient issues with LNN

41

DLGNs are sensitive to the initialisation - part of the reason is that logic gates can symmetrically cancel out

Each logic gate reduces the gradient strength, so deep neural networks struggle

DWNs only estimate gradients - can scale badly with parameters and be slow to converge

https://arxiv.org/html/2510.03250v1
https://arxiv.org/html/2510.03250v1

	Slide 1: Logic Neural Networks: Ultra-Fast ML for Triggers and Beyond
	Slide 2
	Slide 3
	Slide 4: Introduction
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Logic neural networks
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: HEP applications
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Backup
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

