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Logic Neural Networks: Ultra-Fast ML for Triggers and 

Beyond
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Who I am 

PhD at Imperial College 
Working with IRIS-HEP, 

based in Geneva
Teaching ML since 2017

Who I am not 

An FPGA expert 

Me

Innovative algorithms 

GNNs for tracking 

Rapid inference 

ML infrastructures in HEP 

GNNs and reinforcement learning 

for tracking 
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Conclusion
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Why we need more  

Summary
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Overview of the field

Differentiable logic gate neural networks

New developments

Application to CICADA anomaly detection

Strength and weaknesses

Future opportunities 



Introduction
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Low latency inference - evaluating ML fast 

When we want ML that is:

ML use 
ML use is increasing in HEP. We have huge and increasing amounts of data

Triggers
The Phase 2 CMS Level 1 Trigger will for instance need to process 63 Tb/s

with a latency of 12.5 µs 

Close to host
Edge computing is increasing: 

now at ~ 21 billion IoT devices  

Cheap and efficient to run
LLMs, medical devices, space devices etc.

Pacemakers need ~ 50 microwatts to run for 7 years 

Super fast 
Financial trading (Spread networks e.g. spent 300 M on a cable to 

save 13 ms), self driving cars and lots more

HEP

* This plot was made around October 2025

https://iot-analytics.com/number-connected-iot-devices/
https://pmc.ncbi.nlm.nih.gov/articles/PMC6731626/
https://www.chicagobooth.edu/review/alternative-high-frequency-trading
https://www.chicagobooth.edu/review/alternative-high-frequency-trading
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Inference devices

GPU FPGACPU ASICTPU/NPU

Latency

Strength

Weakness

ms-s

Flexible

easy to program

Slow, high power

μs–ms

Parallelism, 

ML optimised

High power

μs–ms

ML-specific

Bespoke

ns-μs

Deterministic

Low power

Hard to program

ns

Ultimate 

speed/power 

efficiency

Expensive

Not flexible

Lower latency and power,  harder to program

Small ML models 

(e.g. BDTs)
Most ML Low inference ML

No matter what chip we use or how 

we program it - it is ultimately 

translated to binary logic  

With high luminosity LHC 

and FCC, we are moving 

towards the right to handle our 

data quickly
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Field Programmable Gate Arrays (FPGAs)

Hardware you can reprogram after manufacturing

Massively parallel → very fast for specific tasks

Deterministic timing (no caches, no surprises)

Programmed using Verilog / VHDL

Can also use high-level tools (e.g. HLS, hls4ml)

Available in radiation-tolerant versions for space or HEP detectors
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DSPs and LUTs
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Current fast inference methods

QuantisationPruning Knowledge distillation

Remove unnecessary weights & neurons Reduce numerical precision Small model learns behaviour of a large one

1.712345 2

Can often reduce the number of 

parameters by 3-10x 

Often you get better performing 

retraining the pruned network

Makes it better for FPGA 

Used for anomaly detection in CMS 

Accuracies suffer below int4 You have to start with a large model and the 

tuning can be hard 
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Scaling wall 

All these approaches aim to learn something big and then reduce - maybe we could learn small from the start 

Could we learn ML suited directly for our hardware? 

Quantum computing

Abstracts from NeurIPS and ICML that mention

keywords related to scaling or inference

Neuromorphic computing 

There are a few paradigm shifting potentials

https://ourworldindata.org/grapher/quantum-bits-per-processor
https://www.nature.com/articles/s41586-024-08253-8


Logic neural networks

Fast inference needs are increasing

We are moving to more specialised 

hardware

Our techniques for making ML fast are 

not enough
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Evolution of the field 

Tree LUT 

AmigoLUT 

Weightless

learning

Quantised

learning 

1959

Ntuple

1984

Wisard

2022

Weightless 

NN

2024

Differentiable

weightless NN

2016

Binary 

neural net

2019

LUTNet

2020

Logic net

2022

Differentiable 

logic gate NN

Early character 

recognition

by storing states in 

RAM

Similar to Ntuple, but 

with multiple classes

One of the first 

commercial real-time 

image recognition 

systems

Same as Wisard, but 

with several clever 

tricks 

EFD to estimate 

gradients of LUT 

mapping

PolyLUT 

Weights are 0 

or 1 (i.e. 

XNOR)

Accumulate 

result with 

pop count 

Compile a 

BNN 

efficiently in 

LUTs

No weights at all, just 

learn which logic gates 

to use

Newer developments

NullaNet

Design for 

LUTs from 

the start 

NeuraLUT

https://arxiv.org/abs/2501.01511
https://dl.acm.org/doi/10.1145/3706628.3708874
https://dl.acm.org/doi/epdf/10.1145/1460299.1460326
https://www.emerald.com/sr/article-abstract/4/3/120/349248/WISARD-a-radical-step-forward-in-image-recognition?redirectedFrom=fulltext
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2203.01479
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/2410.11112
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1602.02830
https://arxiv.org/pdf/1904.00938
https://arxiv.org/pdf/2004.03021
https://arxiv.org/abs/2210.08277
https://arxiv.org/abs/2210.08277
https://arxiv.org/pdf/2309.02334
https://arxiv.org/pdf/1807.08716
https://arxiv.org/pdf/2403.00849


More details on different methods
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Method Year Key Innovation Advance Limitation

N-tuple 1959 LUT pattern matching First weightless No generalization

WiSARD 1984 Commercial RAM-NN Hardware, multi-class Exponential memory

BNNs 2016 ±1 weights, XNOR Trainable with backprop Still arithmetic (popcount)

FINN 2017 FPGA dataflow Practical deployment Arithmetic-based

LUTNet 2019 Arbitrary Boolean ops 2× area efficiency Exponential params with K

LogicNets 2020 Neurons = truth tables Direct LUT mapping Needs high sparsity

DLGNs 2022 Learn gate type (not weights) Zero arithmetic Training difficulty

PolyLUT 2023 Polynomial neurons Fewer layers Diminishing returns D>2

DWN 2024 Differentiable WNNs 135× energy efficiency Tabular focus

NeuraLUT 2024 MLPs inside LUTs Better accuracy Complex training



Construct neural network from logic gates
instead of nodes, we have logic gates

Convert the input to a binary representation
different representations can produce different results 

Each node receives two inputs
The connections are randomly initialised 

Outputs are summed so we can classify or 

regress

Logic gate neural networks 
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Why it is fast

𝑦
̂

𝑖 = ∑
𝑗=𝑖⋅𝑛/𝑘+1

(𝑖+1)⋅𝑛/𝑘

𝑎𝑗/𝜏 + 𝛽Final output
Optional offset

Normalisation temperature

Neuron output

Number of output neurons

Output dimension At inference each 16 gate block is replaced by most 

probable gate

Binary computations are fast

Compiler can optimise the binary logic 

No matrix multiplications! 

Video adapted

from [4] , made by Felix 

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE


Most ML is done with gradient descent 

Gradient descent needs differentiable variables

Logic gates aren’t differentiable 

Problem: logic gates aren’t differentiable

0

1
0 𝑓(𝐴, 𝐵) = {

1, 𝐴 = 1and𝐵 = 1
0, otherwise

AND gate 

⇒
∂𝑓

∂𝐴
and

∂𝑓

∂𝐵
are not defined



Gate operations are continuous approximations
This is how we make it differentiable 

Softmax of the 16 gate blocks 
This is how we learn which gate is best for inference

During training evaluate 16 gates for each “neuron”
slow training, but quick inference when we replace each block of 16 

with the most probable gate

Making it differentiable
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𝑎′ = ∑
𝑖=0

15 𝑒𝐰𝐢

∑𝑗 𝑒𝐰𝐣
⋅ 𝑓𝑖(𝑎1, 𝑎2)

Logic gate operation

Neuron output

Learnable weights

Video adapted

from [4] , made by Felix 

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE
https://www.youtube.com/watch?v=FKQfMwFZvIE


Convolutional differentiable logic gate neural networks 

19

Linear layers is not enough for image tasks 
empirically struggled to train over 6 layers 

-> Replace normal CNN kernel by a binary tree
aggregates information while keeping expressivity

One channel for each input bit 
We learn the significance of each bit 

Create special Or pooling layers 
fast and only need to propagate through the maximum activations 

⊥𝑚𝑎𝑥 (𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎, 𝑏)Video adapted

from [4] , made by Felix 

Petersen et al.

https://www.youtube.com/watch?v=FKQfMwFZvIE
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Current state of DLGN research

Speed records: 1 million+ MNIST inferences/second on a 

single CPU core

86.3% on CIFAR-10 using only 61 million logic gates

O(10-100) times smaller than state-of-the-art models at 

comparable accuracy 

NeurIPS talk

Recurrent DLGN

Reducing discretisation 

gap

Cellular automata

Speeding up training

Reducing the 

number of parameters 

New architectures:

There are also several startups in this area

https://arxiv.org/abs/2411.04732
https://arxiv.org/pdf/2508.06097
https://arxiv.org/pdf/2506.07500
https://arxiv.org/pdf/2506.07500
https://arxiv.org/html/2506.04912v1
https://arxiv.org/html/2510.03250v1
https://arxiv.org/pdf/2510.15655
https://arxiv.org/pdf/2510.15655
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Verifiability and interpretability 

Because the states are limited, you can perform 

mathematical proofs (Kresse et al)

You don’t need to enumerate all possibilities, SAT 

solvers can help

Interpretability and verifiability remains 

an open issue 

Current methods often rely on approximations 

or is NP hard

Best tools fall short in numbers of parameters they can 

handle with orders of magnitude

Lots of work goes into testing LLM behaviour 

[Anthropic, ChatGPT]

Continuous, infinite state space Discrete, finite state space

Normal neural networks LNNs

https://arxiv.org/abs/2505.19932
https://dl.acm.org/doi/fullHtml/10.1145/3641399.3641445
https://www.anthropic.com/research/persona-vectors
https://www.oreateai.com/blog/winter-break-hypothesis/6e4d90ff2c4ee810c300943339d45653
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HEP applications

The model IS a Boolean circuit. Training learns the circuit structure/contents

DLGNs are very fast and show good accuracies 

It has the potential to be verifiable and explainable
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CICADA anomaly detection at the CMS Level-1 Trigger 

Teacher Student

18 x 14 calorimeter input Autoencoder 
Reconstructed 

image  

18 x 14 

calorimeter input

Teacher 

loss

Student is implemented on FPGA in the L1T which has output rate of 100 kHz

Can we achieve better physics performance or latency?

Normal data

Anomalies 

[5] CICADA collaboration

https://arxiv.org/html/2411.19506v1
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Results

Convolutional logic gate neural net outperforms 

baseline implementation (QKeras)

Background is Zero Bias, 𝑡𝑡 is outlier 
There are three possible outlier final states, two are reserved for 

validation and testing

Very high anomaly scores lower since

binarised inputs 
This is okay, we can set the trigger threshold 

A low gap between training and validation in bit mode is a sign of a good model 

Results using Using 2017 CMS Open data  - will be openly available very soon 

Uses thermometer encodings to convert inputs to binary, described further in [6]

https://arxiv.org/pdf/2410.11112
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FPGA synthesis 

Vitis HLS estimates

Synthesised a logic gate deep neural net (not 

convolutional) for FPGA 

Latency outperforms QKeras and HGQ* 

implementations
details of those can be found in [5]

We have no DSP usage since we don’t have 

matrix multiplications

EMD: earth’s mover distance 

Vitis HLS re-place-and-route hardware cost comparison

                       Synthesised for AMD Virtex-7

This model has half the trainable parameters as the previous slide, so the physics 

performance suffers a bit - working on a CNN FPGA implementation underway 

FPGA usage ( ) FPGA usage ( )

* QKeras is a quantisation package where 

you change precision of the weights as you 

are training, 

High Granularity Quantisation (HGQ) lets 

you have different precision in each layer

https://indico.cern.ch/event/1496673/contributions/6637975/attachments/3126033/5544527/HGQ_CICADA_Poster.pdf
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance
https://en.wikipedia.org/wiki/Earth_mover's_distance


Our work so far 

We have increased the scalability by changing binary gate 

representation, presented in this paper -  which was shown at a 

NeurIPS workshop last year

Submitting an ICML paper on this topic 

Also submitting an ICML position paper on the need to focus on 

inference speed

We are maintaining and developing a python library called torchlogix 

https://arxiv.org/pdf/2510.15655
https://github.com/ligerlac/torchlogix


Potential applications in HEP

Many trigger applications - timing/accuracy tradeoff could shift 

Could potentially be used directly on ASICS for FCC 

Could be used for fast inference offline

Opens opportunities for physics verifiability in ML



Future of LGNs

Scaling up is the main issue: 

Training can take a long time

There are gradient issues - increasing depth can harm accuracy

LNNs are fairly parameter sensitive 

The FPGA tools are generally not being shared openly 
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Conclusion

3 cc

0

~ 0.91

30-60%

CICADA
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How to get started 

A very good overview paper 

Play around with torchlogix

Get in touch if you have questions: liv.helen.vage@cern.ch

https://arxiv.org/pdf/2506.07367
https://github.com/ligerlac/torchlogix


Backup



MLP vs difflog MLP 
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Normal neural net Logic gate neural net

Fully connected 

Matrix multiplication in nodes 

Same in training as inference

Randomly connected; each node has two inputs

Nodes evaluate logic gates

At inference, inputs are binary and only use most probable logic 
gate for each node 

121

244

31

121

X

0.1 -0.5 0.9 2

W

ReLu

0
0.21 * 0.63
0.21 - 0.21 * 0.63
….

0.21
0.63

X f(x1, x2)

-0.1
0.2
2
….

w 

3%       10%    40 % …
false   and     or

No matrix multiplication, binary logic can be simplified by compiler, binary computations faster
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Thermometer thresholding

[4]

We need to convert continuous numbers to 

binary

we do this based on thresholds, as implemented in [4]

We learn the bin edges as we train
each bin checks whether the number ≥ threshold 

1 if it is, 0 otherwise 

Our representation matters
the best edges will depend on the problem 

In our case, we let it change, then freeze it
we use a 6 bit representation 

one of the bins settles on a high threshold - likely to capture

high anomaly scores 

https://arxiv.org/pdf/2410.11112


WARP-LUTS

37



Straight through estimators
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Forward:  w_binary = sign(w_real)     # discrete

Backward: ∂L/∂w_real = ∂L/∂w_binary   # pretend sign() was identity



Discretisation gap 
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DLGN

DLGN with Gumbel

 noise

Reducing discretisation gap

https://arxiv.org/pdf/2506.07500


Scaling issue with LUTs

40

Y = A AND B AND C AND D AND E AND F AND G AND H

If you have a computation like: 

(A∧B∧C∧D∧E∧F) → LUT1

(G∧H)         → LUT2

(LUT1∧LUT2)   → LUT3

Most LUTs take 4 or 6 inputs, so it can’t all be contained in one LUT -> 

Most LUTs take 4 or 6 inputs, so it can’t all be contained in one LUT -> superlunar scaling with input 



Gradient issues with LNN
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DLGNs are sensitive to the initialisation - part of the reason is that logic gates can symmetrically cancel out

Each logic gate reduces the gradient strength, so deep neural networks struggle

DWNs only estimate gradients - can scale badly with parameters and be slow to converge

https://arxiv.org/html/2510.03250v1
https://arxiv.org/html/2510.03250v1
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