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STFC funding for the benefit of the entire UK nuclear theory

— 3 international TALENT courses
Summer 2016: Nuclear DFT @ York, 3 weeks.

—Regular (twice a year) 1-day theory meetings

November 2015 @ Manchester May 2017 @ Manchester
May 2016 @ York November 2017 @ York
November 2016 @ Surrey Experimentalists welcome!

—Visitor programme (High-profile and/or task-oriented):

April 2016 : Jeremy Holt May 2017 : D. Davesne
October 2016 : Tetsuo Hatsuda May 2017 : V. Soma
January 2017 : Isaac Vidana October 2017 : M. Gomez Ramos
February 2017 : Olga Rubtsova  November 2017 : L. Prochniak
\ Suggestions welcome! )

http://personal.ph.surrey.ac.uk/%7Ecb0023/uktheory/Nuclear_Theory_Vision_%40_UK/Nuclear_Theory_Vision_%40_UK.html




Nuclear Theory Vision @ UK

STFC funding for the benefit of the entire UK nuclear theory

— 3 infernational TALENT courses
Summer 2016: Nuclear DFT @ York, 3 weeks.

- Summer 2019: Learning from Data - Bayesian methods and
“machine learning @ York, June 10-18 Applications open!

—Regular (twice a year)

May 2017 @ Manchester
November 2017 @ York
Experimentalists welcome!

May 2018 @ Surrey
November 2018 @ Manchester

May 2019 @York
—Visitor programme (High-profile and/or task-oriented):

May 2017 : D. Davesne
May 2017 : V. Somad

M. Gomez Ramos — Nov 2018

¥. [S)oma ;Fib'bs-:’gzgzsls October 2017 : M. Gomez Ramos
A. cugl;xe i (: ' ;:’b s November 2017 : L. Prochniak
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http://personal.ph.surrey.ac.uk/%7Ecb0023/uktheory/Nuclear_Theory_Vision_%40_UK/Nuclear_Theory_Vision_%40_UK.html




Roadmap 2018




Roadmap 2018

Recommendations:

The UK should support flagship projects in Nuclear and Hadronic physics including upgrades that
capitalise on previous investments, maximise high-quality science output and UK leadership in
international projects. Funding solutions to support capability building within the Nuclear
Theory community to support the scientific programme both at a multi institutional and

multi-disciplinary level should be investigated.
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Roadmap 2018

Recommendations:

The UK should support flagship projects in Nuclear and Hadronic physics including upgrades that
capitalise on previous investments, maximise high-quality science output and UK leadership in
international projects. Funding solutions to support capability building within the Nuclear
Theory community to support the scientific programme both at a multi institutional and
multi-disciplinary level should be investigated.

¥ s

2: Facilities

The theory community gives the ECT* its strongest possible support, noting also that it is
widely used by nuclear experimentalists and by theorists and experimentalists from other
parts of the STFC community, and that it enables fruitful dialogue between all of these
constituencies. A series of workshops is organised each year covering a wide range of nuclear
physics topics with an emphasis on theory. The UK has taken leadership on organising a
number of workshops. STFC should continue to support UK membership of ECT*.

L e




Roadmap 2018

3.3.2 Future opportunities and projects

With the present intellectual environment, the UK theory community will seek to further leadership roles
over the next few years. Opportunities from the advent of new facilities will demand advances in reaction
theory on several fronts. In an international setting in which reaction theorists are in demand, the UK could
easily capitalise on its expertise and expand the efforts in this sub field. The DFT and ab- initio groups have a
unique opportunity to pursue a new generation of EDFs that are derived from first principles. On the one
hand, first principle calculations are necessary, for example to address data on radii and masses coming
from ISOLDE (CERN) and TITAN (TRIUMF) and data on nuclear correlations from R3B (GSI) and RIKEN. On the
other hand, new and more accurate functionals will open path to addressing several question in heavy
nuclei and specific reactions governing nucleo-synthesis. Applying ab-initio theory to test our understanding
of the nuclear force (with links to the EFTs and calculation from the international Lattice QCD community)
will also be beneficial to improve predictions of neutron star matter and astrophysical objects.

Neutrino-nucleus interactions project: The UK theory groups have expertise both in nuclear structure and
in reactions, including using modern ab-initio methods and effective field theory. This technology can be
harnessed to calculate experimentally-crucial cross-sections with greater precision and sophistication than
most currently-used codes. Additional expertise in nuclear structure and chiral physics would also
contribute, and synergy with the UK particle experimental program is envisaged. An investment of roughly
£0.5M funding for workforce and £0.4M for computer power would be required.

Theoretical studies of spontaneous and induced fission project: A proposal to develop a leadership hub for
theoretical studies of spontaneous and induced fission. This will build upon expertise in self- consistent
methods, building synergic connections with experimental studies. Newton fellowship funding to support
PDRAs is being sought along with an ERC-AdG proposal for 0.5MEuro/year funding for manpower and
1MEuro funding for computer power.



Roadmap 2018

2017/18  2018/19  2019/20  2020/21  2021/22  2022/23  2023/24  2024/25
ALICE upgrade (LHC)

JLAB upgrade

Hadronic Physics EIC R+D

2017/18 2018/19 2019/20 2020/21 2021722 2022/23 2023/24 2024/25
ISOL/SRS

WV//////////// i

AGATA exploitation

STA

Nuclear Structure &
Astrophysics

2022/23 2023/24 2024/25

2017/18 2018/19

Nuclear Theo

Figure 9: Project timescales

exploitation horizon

PRD ///////////// explontatlon at other facilities inc GSI

ongoing




Highlights 2018



York




Pierre Becker

Antonio Marquez Romero Matthew Shelley - David Muir



Characterization of the shape-staggering effect in
mercury nuclei NATURE PHYSICS | VOL 14 | DECEMBER 2018 | 1163-116

B. A. Marsh!'”*, T. Day Goodacre!>*, S. Sels>*, Y. Tsunoda®, B. Andel’, A. N. Andreyev®’,
N. A. Althubiti2, D. Atanasov?, A. E. Barzakh®, J. Billowes?2, K. Blaum?, T. E. Cocolios?,

J. G. Cubiss?®, J. Dobaczewski®, G. J. Farooq-Smith?, D. V. Fedorov®, V. N. Fedosseev!,
K. T. Flanagan?, L. P. Gaffney>10, L. Ghys?, M. Huyse?, S. Kreim?, D. Lunney!!,

K. M. Lynch!, V. Manea?, Y. Martinez Palenzuela?, P. L. Molkanov®, T. Otsuka>*1213.14,

A. Pastore®, M. Rosenbusch!?-15, R. E. Rossel!, S. Rothe!?, L. Schweikhard®>,
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“By combining our experimental measurements with Monte-Carlo Shell Model calculations, we
conclude that this phenomenon results from the interplay between monopole and quadrupole
interactions driving a quantum phase transition, for which we identify the participating orbital”
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Correlating Schiff Moments in the Light Actinides with Octupole Moments

Jacek Dobaczewski,"z’l4 Jonathan Engel,5 Markus Kortelainen,z’4 and Pierre Becker
1Deparl‘ment of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
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even more. The only significant source of nuclear-physics error in the laboratory
Schiff moments will then be the intrinsic matrix elements of the time-reversal
noninvariant interaction produced by CP-violating fundamental physics. Those

matrix elements are also correlated with octupole moments, but with a larger
systematic uncertainty.




Correlating Schiff Moments in the Light Actinides with Octupole Moments
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Jacek Dobaczewski, Jonathan Engel,” Markus Kortelainen,”" and Pierre Becker
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We show that the measured intrinsic octupole moments of 220Rn, 224Ra, and 226Ra
constrain the intrinsic Schiff moments of 225Ra, 221Rn, 223Rn, 223Fr, 225Ra, and
229Pa. The result is a dramatically reduced uncertainty in intrinsic Schiff moments.
Direct measurements of octupole moments in odd nuclei will reduce the uncertainty
even more. The only significant source of nuclear-physics error in the laboratory
Schiff moments will then be the intrinsic matrix elements of the time-reversal
noninvariant interaction produced by CP-violating fundamental physics. Those
matrix elements are also correlated with octupole moments, but with a larger
systematic uncertainty.



Symmetry restoration in the nuclear-DFT description of proton-neutron pairing
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parametrized by angles a and ¢ in terms of the isovector (13; ) and
isoscalar (Dy) isoaxial and axial pairs.

“A tour-de-force variation-after-projection symmetry-restoration method applied
simultaneously to particle-number, spin, and isospin symmetry-broken states, which has
never been realized up to now”. Comparison with exact solutions shows that the precision is
better than 1.5%. The paper resolves a 50-odd years old dispute by showing that the pair-
condensate and quartet-condensate pictures are equivalent.
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Characterizing the astrophysical S factor for >C + '2C fusion with wave-packet dynamics

Alexis Diaz-Torres"" and Michael Wiescher?
'Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

PHYSICAL REVIEW C 97, 055802 (2018)

T

Potential Mod
Present Mod

E.m (MeV)

Work using wave packet dynamics explains some resonant structures in the astrophysical S-
factor, suggesting that the origin of other observed resonances may be connected with other
(not 12C+12C) molecular configurations in 2*Mg.
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Work using wave packet dynamics explains some resonant structures in the astrophysical S-
factor, suggesting that the origin of other observed resonances may be connected with other
(not 12C+12C) molecular configurations in 2*Mg.



Reduced sensitivity of the (d, p) cross sections to the deuteron model beyond
the adiabatic approximation

M. Gémez-Ramos' and N. K. Timofeyuk?

Our calculations reveal a significant

reduction of the sensitivity to the high.gg
momenta thus confirming that it is
associated with theoretical uncertai
the adiabatic approximation itself.
nonadiabatic effects in the presence
nonlocality were found to be strong
those in the case of the local optical
potentials. These results argue for €
the analysis of the (d,p) reactions,
for spectroscopic studies, beyond t
adiabatic approximation.

PHYSICAL REVIEW C 98,
011601(R) (2018)
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FIG. 1. Differential cross sections of *"Al(d, p)”Al at E(';‘b =
9.2 MeV for population of the *’Al(5/2*) ground state and the exc1ted
1/2% states at E, = 0.84, 6.8, and 10.2 MeV. ~
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Inclusive electron-nucleus cross section within the self-consistent Green’s function approach
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FIG. 11. Double-differential electron-'°O cross sections for different values of incident electron energy and scattering angle. The solid (red)
line corresponds to the SCGF-ADC(3) results and the dashed (green) one has been obtained by including FSI corrections. The experimental
data are taken from Ref. [49].
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FIG. 11. Double-differential electron-'°O cross sections for different values of incident electron energy and scattering angle. The solid (red)
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data are taken from Ref. [49].



Doubly magic nuclei from lattice QCD forces at Mps = 469 MeV/ ¢*

C. McIlroy,l’* C. Barbieri,""" T. Inoue,>> T. Doi,>* and T. Hatsuda>*
'Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

PHYSICAL REVIEW C 97,
021303(R) (2018)

P12, P32 t ds, dspo

ADC(3) q.p. fragments [MeV]

FIG. 4
tained frq
approach

The results suggest an interesting possible behavior in which nuclei are unbound at very large
pion masses and islands of stability appear at first around the traditional doubly magic numbers
when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral
distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson
mass considered here.
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FIG. 4. Single-particle spectral strength distribution of '°O ob-
tained from the dressed propagator in the full 7% (w) plus ADC(3)
approach. Each panel displays partial waves of different angular

The results suggest an interesting possible behavior in which nuclei are unbound at very large
pion masses and islands of stability appear at first around the traditional doubly magic numbers
when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral
distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson
mass considered here.



Low-energy heavy-ion reactions and the Skyrme effective
interaction

P.D. Stevenson *, M..C. Barton Progress in Particle and Nuclear Physics 104

(2019) 142-164
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The role of the effective interaction in the dynamics of heavy-ion reactions has been
surveyed. Within mean-field dynamics, the effects of varying the effective interaction
between reasonable limits (those that fit ground state data well) produce qualitatively and
quantitatively variable behaviour in heavy-ion collisions at energies below the Coulomb
barrier, in the fusion region, and in the deep-inelastic .... One concludes, therefore, that the
role of the effective interaction in the calculation of reaction dynamics is instrumental in
understanding the details of the reaction, and that results from heavy-ion reactions inform us
about the details of the effective interaction.
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FIG. 6. (a) Friction coefficient y for TDDM" (solid lines) and
TDHEF (dotted lines) simulations as a function of R. Blue (upper) and
red (lower) lines indicate the results at incident energies of E.,, =
20 MeV and E. ., = 40 MeV, respectively. (b) B parameters in the
same conditions.
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We find that systematics due to Hamiltonians
dominate over many-body uncertainties.
Based on this wide pool of calculations, we
estimate that the critical temperature is
16£2MeV, in reasonable agreement with
experimental results. We also find that there is
a strong correlation between the critical
temperature and the saturation energy in
microscopic many-body simulations.
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Application of the functional renormalization group to Bose gases:
From linear to hydrodynamic fluctuations

PHYSICAL REVIEW B
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in two dimensions. The point where X = 0 in
sing v = 1.5, the red dotted lines using v = 2,
orrespond to the MC simulations of Ref. [51].
An improved approach has been developed for treating Goldstone fluctuations in the functional

renormalisation group. This has been applied to superlfuids in two and three dimensions, and it
gives results that agree well with Monte-Carlo simulations
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FIG. 7. Dimensionless superfluid density f; (a) and density profile A (b) as a function of X in two dimensions. The point where X = 0 in
the FRG calculations was chosen when f; = 2/m. The fuchsia dash-dotted lines are obtained using v = 1.5, the red dotted lines using v = 2,
the gray dashed lines using v = 2.5, and the solid dark blue lines using v = 3. The black circles correspond to the MC simulations of Ref. [51].

An improved approach has been developed for treating Goldstone fluctuations in the functional
renormalisation group. This has been applied to superlfuids in two and three dimensions, and it
gives results that agree well with Monte-Carlo simulations
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It is known that no four-body force is needed at leading order. In the case of bosonic
systems, at next-to-leading order, a four-body force is found to be needed to

renormalise the binding energies of four-, five- and six-particle systems
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Renormalisation group analysis of electromagnetic couplings in
the pionless effective field theory

A.N. Kvinikhidze' and M.C. Birse?? Eur. Phys. J. A(2018) 54: 216

The general strucure of the two-body current
in the pionless effective field theory has been
analysed using the Wilsonian renormalisation
group. A fixed point corresponding to the
unitary limit was idenitfied. The scaling
behaviour of perturbations around this point
was used to determine the power counting for
terms in the current and their contributions to
the charge form factor.
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We present an analysis of 13 observables in
Compton scattering on the proton. Cross
sections, asymmetries with polarised beam
and/or targets, and polarisation-transfer
observables are investigated for energies up to
the A(1232) resonance to determine their
sensitivity to the proton’s dipole scalar and
spin polarisabilities. We find that for energies
from pion-production threshold to about 250
MeV, multiple asymmetries have significant
sensitivity to presently ill-determined
combinations of proton spin polarisabilities.
We also argue that the broad outcomes of this
analysis will be replicated in complementary
theoretical approaches, e.g., dispersion
relations.
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As the spin of polarised 3He is
predominantly carried by its
constituent neutron, elastic
Compton scattering promises
information on both the
scalar and spin polarisabilities
of the neutron. We study in
detail the sensitivities of 4
observables to the neutron
polarisabilities. Including the
Delta enhances those
asymmetries from which
neutron spin polarisabilities
could be extracted.
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As the spin of polarised 3He is
predominantly carried by its
constituent neutron, elastic
Compton scattering promises
information on both the
scalar and spin polarisabilities
of the neutron. We study in
detail the sensitivities of 4
observables to the neutron
polarisabilities. Including the
Delta enhances those
asymmetries from which
neutron spin polarisabilities
could be extracted.












