

www.stfc.ac.uk

The Mysteries of Flavour

Fergus Wilson Rutherford Appleton Laboratory/STFC RAL Academic Lectures 2nd (and maybe 3rd) June, 2020

INTRODUCTION

02-June-2020

Mysteries of Flavour

- Mystery #1: Why do so many Flavour measurements agree with the Standard Model?
- Mystery #2: Why do some flavour measurements "disagree" with the Standard Model?
- Mystery #3: How can Mysteries 1 and 2 both be true?

Flavour Physics in a nut shell

Standard Model of Elementary Particles

Precision measurements of the properties of quarks and charged leptons.

Multiple measurements of the same property using different methods.

Comparison between Standard Model predictions and measurements.

Search for New Physics.

Outline – What's in this talk

- 1.Detectors (old and new)
- 2.CKM matrix
- 3. Heavy Flavour and rare decays
- 4.R(X) anomalies
- 5.Lepton Flavour and Lepton Number Violations
- 6.Dedicated Charged Lepton Flavour Violation experiments
- 7.Look to the Future

Outline – What's not in this talk

- 1.Neutrinos (Dirac and Majorana)
- 2. Dark Sector searches
- **3.Long-lived particles**
- 4.Higgs
- 5.Top quark
- 6.Tetraquarks/Pentaquarks
- 7.g-2/EDM

(Flavour) Detectors

Detectors worldmap

BaBar (US) and Belle (Japan): 1999 - 2010

- Asymmetric beam energies colliding e⁺ and e⁻ at the Y(4S) resonance
 - $Y(4S) \rightarrow B^0/\overline{\overline{B}}^{\overline{0}}, B^+/B^-$
 - BaBar+Belle collected 1.1 ab⁻¹ (1.24 billion B pairs) at Y(4S).

02-June-2020

Advantages	Known initial state, low backgrounds, good tagging efficiency (30%), good neutral detection, quantum correlated B production, almost hermetic detectors
Disadvantages	Production x-section ~1 nb, limited B_s production, no B_c , no high mass baryons, limited $\Upsilon(1,2,3,5S)$.

LHC Hadron collider: $2008 - \infty$...

Advantages	Huge production x-section (100s ub), Produce all particles at the same time
Disadvantages	Unknown initial energies of quarks and gluons, multiple collisions per event, Potentially high backgrounds, Harder to deal with neutrinos, Harder to deal with neutrals, "Low" tagging efficiency (~3%)

The Mysteries of Flavour, Fergus Wilson, RAL/STFC

20m

15m

Dedicated Lepton Flavour Violation experiments

THE CKM MATRIX - INTRODUCTION

02-June-2020

CKM Matrix and Unitarity Triangle

"CKM" matrix

"Euler" representation: 3 angles, 1 phase e.g. $c_{12} = cos(\theta_{12}) = cos(\theta_{C})$

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

"Wolfenstein" parametrization: expansion in $\lambda = \sin(\theta_{12}) = 0.225$

$$V_{\text{CKM}} \approx \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \qquad \qquad A \approx 0.8, \quad \lambda \approx 0.23, \quad \rho \approx 0.2, \quad \eta \approx 0.4$$

CKM Matrix and Unitarity Triangle

$$V_{\text{CKM}} \approx \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$$\begin{array}{c|c} magnitudes & phases \\ d & s & b \\ u & \bullet & \bullet \\ c & \bullet & \bullet \\ t & \bullet & \bullet \end{array} \qquad \begin{pmatrix} d & s & b \\ u & \gamma \\ c \\ t & \bullet & \bullet \\ t & \bullet & \bullet \end{pmatrix} \qquad \begin{pmatrix} u & \gamma \\ c \\ c \\ t \\ t \\ \theta \\ \beta \\ \cdot \end{array} \right)$$

$$\sum_{i=1}^{3} V_{ji} V_{ki}^* = 0 \qquad j, k = 1, \dots, 3, \quad j \neq k.$$

$$V^{\dagger}V = 1 \Rightarrow V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$\beta \equiv \arg\left[-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{tb}^{*}}\right]$$

$$\beta \equiv \arg\left[-\frac{V_{cd}V_{cb}^{*}}{V_{ud}V_{ub}^{*}}\right]$$

$$\alpha \equiv \arg\left[-\frac{V_{ud}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right]$$

$$\gamma \equiv \arg\left[-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right]$$

$$B^{0} \rightarrow D^{*}\pi$$

$$B^{0} \rightarrow Clv$$

$$B^{0} \rightarrow Clv$$

$$B^{0} \rightarrow Clv$$

CKM Matrix and Unitarity Triangle

$V^{\dagger}V = 1 \Longrightarrow V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$

Figure 2.3: Unitarity triangle corresponding to the unitarity relation of the B_s^0 system (equation 2.15). λ is the sine of the Cabibbo angle.

Figure 2.2: Unitarity triangle corresponding to the B_d system

What should we measure?

Decay		Decay/Process	
Β → ππ, ρρ	α	$B \rightarrow D^* Iv, b \rightarrow c Iv$	V _{cb}
$B \rightarrow D^{(*)}K^{(*)}$	γ	$B \rightarrow \pi l v, b \rightarrow u l v$	V _{ub}
$B \rightarrow J/\psi K^{0}{}_{s}$	β	M→lv(γ)	V _{ud}
$B_s \rightarrow J/\psi \varphi$	β_s	$B_{(d,s)} \rightarrow \mu^+ \mu^-$	V _{t(d,s)}
$K ightarrow \pi ar{ u} v$	ρ,η	Δm_d , Δm_s	V _{tb}

Time Dependent CP Violation

02-June-2020

Time Dependent CP Violation

02-June-2020

CKM MATRIX - SIDES

02-June-2020

Measuring the CKM sides $|V_{CKM}|$

1. Leptonic decays, with f_B from Lattice QCD:

$$\Gamma(B \to l_1 l_2) = \frac{G_F^2 f_B^2 \zeta_{12} \lambda_{12}^{1/2}}{8\pi M_B^2} |V_{ub}|^2$$

Exclusive semi-leptonic decays, with form factor
 F(w) from theory extrapolations (e.g. "CLN" and "BGL"):

$$\frac{d\Gamma}{d\omega}(B \to D^* l \nu_l) = |V_{cb}|^2 \frac{G_F^2 m_B^5}{48\pi^3} (w^2 - 1)^{1/2} P(w) (\eta_{ew} F(w))^2$$

3. Inclusive semi-leptonic decays, with decay rate described by Heavy Quark Expansion (HQE):

$$\Gamma(B \to X_c l \nu) = |V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} (1 + A_{ew}) \times HQE(\mu)$$

$$\lambda_{12} = (M_B^2 - m_1^2 - m_2^2)^2 - 4m_1^2 m_2^2$$

$$\zeta_{12} = m_1^2 + m_2^2 - \frac{(m_1^2 - m_2^2)^2}{M_B^2}$$

$$\beta_{12} = 1 - \frac{m_1^2 + m_2^2}{q^2} - \frac{\lambda_{12}}{q^4}$$

$$P(w) = \text{phase space factor}$$

$$w = v_i v_f$$

$|V_{cb}|$ and $|V_{ub}|$

There is a long-standing difference in Inclusive (e.g. $B \rightarrow X_q | v$) and Exclusive (e.g. $B \rightarrow \pi | v/B > D^* | v$) measurements:

- Inclusive: $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$
- Exclusive: $|V_{cb}| = (39.5 \pm 0.9) \times 10^{-3}$ (2018)
 - 3.3 difference
- Inclusive: $|V_{ub}| = (4.25 \pm 0.12 \pm 0.15 \pm 0.23) \times 10^{-3}$
- Exclusive: $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$
 - 3.4σ difference

Belle showed at ICHEP 2018

02-June-2020

- Exclusive $|V_{cb}| = (42.5 \pm 0.3 \pm 0.7 \pm 0.6) \times 10^{-3}$
- Does this mean inclusive and exclusive |V_{cb}| agree?

Caution: Input to $|V_{cb}|$ exclusive comes from $B^0 \rightarrow D^{*+l}v$, the same decay that shows deviations in Lepton Universality (see later).

CKM MATRIX - ANGLES

02-June-2020

CKM MATRIX ANGLE - β AND ϕ_{s}

02-June-2020

02-June-2020

CP phase $\phi_s = 2\beta_s$ in $B^0_s \rightarrow J/\psi K^+K^-$

02-June-2020

CKM MATRIX ANGLE - α

02-June-2020

Angle α

02-June-2020

CKM MATRIX ANGLE – γ

02-June-2020

Angle y

Use interference between tree decays of: Cabibbo-suppressed (b \rightarrow c) B⁻ \rightarrow anti-D⁰K⁻ and CKM- and colour-suppressed (b \rightarrow u) B⁻ \rightarrow D⁰K⁻ where D⁰ and anti-D⁰ decay to same final state.

	Method	Modes	Final State	Advantage	Disadvantage
1	GLW	$D^{0}(CP_{\pm})$	CP Eigenstate	Constraints	Low stats, small interf.
2	ADS	D ⁰ (Kπ)	Flavour Eigenstate	Large interf.	Low stats
3	GGSW	D⁰(K₅hh) Dalitz	Three-body	Large stats, Dalitz info	Dalitz model

 $\gamma \equiv \arg$

LHCb average =
$$(74.0^{+5.0}_{-5.8})^{\circ}$$

LHCb-CONF-2018-002

02-June-2020

The Mysteries of Flavour, Fergus Wilson, RAL/STFC

 \bar{D}^0

 \bar{c}

S

CKM Summary

CKM measured with "Tree" processes (not expected to be affected by New Physics)

02-June-2020

Is there room for New Physics in the CKM?

$$A_q = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\Phi_q^{NP} - \Phi_q^{SM})}\right) A_q^{SM} e^{2i\Phi_q^{SM}}$$

The ratio of New Physics / Standard Model amplitudes is

< 18% @68% probability in B_d mixing

< 20% @68% probability in B_s mixing

02-June-2020