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INTRODUCTION TO MACHINE LEARNING

HARD MARGIN SVM
▸ Identify the support vectors (SVs): these are the points nearest the 

decision boundary. 

▸ Use these to define the hyperplane that maximises the margin 
(distance) between the optimal plane and the SVs. 

▸ If we can do this with a SVM – we would simply cut on the data to 
separate classes of event.
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INTRODUCTION TO MACHINE LEARNING

HARD MARGIN SVM: PRIMAL FORM
▸ Optimise the parameters for the maximal margin hyperplane with: 

▸ such that 

▸ Equivalent to solving the following optimisation problem: 

▸ Where:                                  and 

�4

argmin
w,b

1

2
||w||2

yi(w · xi � b) � 1 (yi is called the functional margin)

w =
nX

i=1

↵iyixi b =
1

NSV

nX

i=1

(w · xi � yi)
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INTRODUCTION TO MACHINE LEARNING

HARD MARGIN SVM: KERNEL FUNCTIONS
▸ We can introduce the use of a Kernel Function (KF) to 

implicitly map from our input feature space X to some 
potentially higher dimensional dual feature space F. 

▸ Define the function: 

▸ We don't need to know the details of the mapping; this is the 
"kernel trick”.
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K(x, y) = h�(x) · �(y)i

x1

x2

u1

u3

u2

X∈{x1, x2} F∈{u1, u2, u3}

B. Scholkopf and A. Smola, Learning with Kernels: Support Vector 

Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
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INTRODUCTION TO MACHINE LEARNING

HARD MARGIN SVM: KERNEL FUNCTIONS
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▸ We can introduce the use of a Kernel Function (KF) to 
implicitly map from our input feature space X to some 
potentially higher dimensional dual feature space F. 

▸ Define the function: 

▸ We don't need to know the details of the mapping; this is the 
"kernel trick”. B. Scholkopf and A. Smola, Learning with Kernels: Support Vector 

Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

K(x, y) = h�(x) · �(y)i

F 2 {�(x)|x 2 X}x 2 Rne.g.
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INTRODUCTION TO MACHINE LEARNING

HARD MARGIN SVM: DUAL FORM
▸ The problem can be solved in the dual space by minimising 

the Lagrangian for the Lagrange multipliers αi : 

▸ Such that:                  and                    . 

▸ αi are non-zero for SVs only. 

▸ The sum provides a constraint equation for optimisation.
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INTRODUCTION TO MACHINE LEARNING

SOFT MARGIN SVM
▸ Relax the hard margin constraint by introducing mis-classification: 
▸ Describe by slack (ξi) and cost (C) parameters. 
▸ Alternatively describe mis-classification in terms of loss functions. 
▸ These are just ways to describe the error rate. 

▸ These are much more useful!
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ξi = distance between the hyper-plane defined by 
the margin and the ith SV (i.e. now this is a mis-
classified event). 

Cost (C) multiplies the sum of slack parameters in 
optimisation. 

MVA architecture complexity is encoded by the KF.
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INTRODUCTION TO MACHINE LEARNING

SOFT MARGIN SVM
▸ The Lagrangian to optimise simplifies when we introduce the slack 

parameters: 

▸ Where 

▸ and as before we constrain: 

▸ The algorithm is designed to focus on reducing the impact of 
misclassified events; again using those closest to the decision 
boundary to determine that boundary.
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eL(↵) =
nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(xi, xj)

0  ↵i  C

nX

i=1

↵iyi = 0
The optimisation problem in dual space 
is essentially the same for the hard and 
soft margin SVMs.
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INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS
▸ The KF, K(x,y), extends the use of inner products on data in a vector 

space to a transformed space where 

▸ The book by  

▸ Nello Cristianini and John Shawe-Taylor, called Support Vector 
Machines and other kernel-based learning methods. Cambridge 
University Press, 2000 (and references therein) 

▸ discusses a number of KFs and the conditions required for these to be 
valid in the geometrical representation that SVMs are constructed from. 

▸ Here I’ll focus on the main points and give a few examples of KFs (ones 
that are implemented in TMVA).
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K(x, y) = h�(x) · �(y)i
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INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS: RADIAL BASIS FUNCTION (RBF)
▸ Commonly used KF that maps the data from X to F. 

▸ Distance between two support vectors is computed and used as 
an input to a Gaussian KF. 

▸ For two data x and y in X space we can compute K(x, y) as 

▸ One tuneable parameter in mapping from X to F; given by   
� .Γ = 1/σ2
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K(x, y) = e�||x�y||2/�2
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INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL
▸ Extend the RBF function to recognise that the bandwidth of data 

in problem space can differ for each input dimension; i.e. the 
norm of the distance between two support vectors can result in 
loss of information.   

▸ Overcome this by introducing a Γi=1/σi for each dimension: 

▸ Down side ... we increase the number of parameters that need to 
be optimally determined for the map from X to F.
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K(x, y) =

dim(X)Y

i=1

e�||xi�yi||2/�2
i
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INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL
▸ The multi-gaussian kernel does not include off-diagonal terms that 

would allow for accommodation of correlations between parameters. 

▸ De-correlate the input feature space to overcome this deficiency, 
or alternatively one could implement a variant of this kernel 
function using: 

▸ Here Σ is an n x n matrix corresponding to the covariance matrix 
for the problem. 

▸ However this would be very computationally expensive to 
optimise (and is not implemented in TMVA).
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K(x, y) = e�(x�y)T⌃�1(x�y)
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INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS: POLYNOMIAL
▸ There are many different types of polynomial kernel 

functions that one can study. 

▸ A common variant is of the form: 

▸ c and d are tuneable parameters.   

▸ The sum is over support vectors (i.e. events in the data set 
for a soft margin SVM).

�14

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

KERNEL FUNCTIONS: PRODUCTS AND SUMS
▸ Valid (Mercer) kernels satisfy Mercer’s conditions(*).  This 

allows us to construct new kernels from known Mercer 
kernels that are products and sums. 

▸ The sum of Mercer KFs is a valid KF. 

▸ The product of Mercer KFs is a valid KF.
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* Mercer's conditions require that the Gramm matrix formed from SVs is positive semi-definite.  This is a 
consequence of the geometric interpretation of SVMs given x is real.  Modern extensions of the SVM 
construct allow for complex input spaces, and for example can be based on Clifford algebra to 
accommodate this extension.  

Complex input spaces are of interest for electronic engineering problems. 

N.B. It is conceivable that one could be interested in using these if an amplitude analysis were to be 
written using SVMs to directly extract phase and magnitudes... but that could also be incorporated by 
mapping the complex feature space element into a doublet of reals.

J. Mercer. Phil.Trans.Roy.Soc.Lond., A209:415, 1909.
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X              F

INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD
▸ Generate squares of different colour. 

▸ Use SVM to classify the pattern into +1 and −1 targets. 

▸ Hard margin SVM problem; but can solved for using soft margin SVM. 

▸ Not easy to solve in 2D (x, y) with a linear discriminant, but e.g. a 3D space of 
(x, y, colour) allows us to separate the squares. 

▸ Want to find a KF that approximates this mapping.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD
▸ Generate 1000 events in the blue and red squares and give 

each event x and y values. 

▸ e.g. Use a multi-Gaussian kernel function with Γ1=1, Γ2=2 and 
cost of 104 (not optimised) to see what separation we can 
obtain.
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This is the ideal feature space that we would like to 
implicitly map into. 

Because we implicitly do the mapping via choice of 
KF, in practice we don't explicitly map into this 
space; but we implicitly map into another space that 
we hope will be approximately topologically 
equivalent.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD
▸ Correctly classified events          Incorrectly classified events 

▸ Signal mis-classification rate ~3.3%. 

▸ Background mis-classification rate ~3.7%.
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SVM Output
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD
▸ The confusion matrix ([in-]correctly classified events) for this 

example shows a high level of correct classification: 

▸ This SVM does a good job of separating signal from background. 

▸ An optimised output would provide a better solution. 

▸ BDTs and NNs work well with this kind of problem as well.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: CHECKER BOARD
▸ Optimised results for comparison: Very similar responses.
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Trained using the hold out method of cross validation (what is 
normally done in TMVA), with optimised hyper-parameters.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ Use the Kaggle data challenge sample of signal and 
background events. LHC data (from ATLAS). 

▸ Packaged up in a convenient format (CSV file). 

▸ Sufficient description of variables provided for non-HEP 
users to apply machine learning (ML) techniques to HEP 
data. 

▸ Real application to compare performance for different KFs 
and different MVAs.
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https://www.kaggle.com/c/higgs-boson
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ Use 10 variables as inputs; 20K events.
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9) MET ϕ centrality
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This selection of variables is not 
optimised, and is selected in order to 
show a physics example for 
illustrative purposes.

1)                                2)                                3)

4)                                5)                                6)

7)                                8)                                9)

10)  
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ NOTE: this is an illustrative example – not a fully optimised 
analysis of the sample; hyper-parameters are optimised.

�23

Spiky as 
optimisation 
chooses a low 
number of trees.

Trained using the hold out method of cross validation (what is 
normally done in TMVA), with optimised hyper-parameters.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ SVM provides comparable performance to BDT (and 
neural networks)*.

�24

*This general conclusion has been reached in one form or another by people studying BDTs vs SVMs and NNs vs SVMs for 
HEP problems.  The take home message is that SVMs require less data to train in order to obtain a generalised result (follows 
from the fact there are fewer hyper-parameters to determine for SVMs vs other algorithms).

Bevan et al., proc CHEP 2016
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: HH→BB𝜏+𝜏- (ATLAS - OFFICIAL RESULT)

▸ ATLAS recently reported limits on resonant and non-
resonant production of HH via bb𝜏+𝜏-.
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https://arxiv.org/abs/1808.00336 

‣ The standard analysis shown here uses a BDT for 
both channels that contribute to the final state: 

‣ Two hadronically decaying 𝜏 leptons. 

‣ One hadronically and one leptonically 
decaying 𝜏. 

‣ Results for the SM search are 12.7 times the 
Standard Model expected sensitivity.

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: HH→BB𝜏+𝜏- (ATLAS THESIS)

▸ A student working on this mode also looked at using SVMs 
(instead of BDTs) for the analysis. 

▸ Similar performance obtained to the official result when using an 
SVM for both ROC curves and limit plots. 

▸ SVMs less susceptible (than BDT) to overtraining for small samples.

�26

ROC curves for different mass points in the 2HDM search, using one of the trigger lines for the bb𝜏+𝜏- channel.  

T. Stevenson, CERN-THESIS-2018-119

https://instituteofcoding.org
https://cds.cern.ch/record/2634914
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: HH→BB𝜏+𝜏- (ATLAS THESIS)

�27

T. Stevenson, CERN-THESIS-2018-119

▸ A student working on this mode also looked at using SVMs 
(instead of BDTs) for the analysis. 

▸ Similar performance obtained to the official result when using an 
SVM for both ROC curves and limit plots. 

‣ SVMs less susceptible (than BDT) to overtraining for small samples.

BDT SVM
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Uses libsvm with an RBF kernel function to optimise two parameters: C 

and Γ. 

▸ Benchmark example of searching for top squark pair production with 
stops decaying into the lightest supersymmetric particle (LSP) and a 
top quark. 

▸ Could use the ROC area under the curve (AOC) to optimise on, but 
this is not directly related to the result being produced. 

▸ Instead use the Azimov estimate of the significance of the result as 
the figure of merit to compare and optimise performance on: 

�28

This is the median discovery significance from the Poisson form of the signal (s) and background (b), with an 
uncertainty on the background of σb.

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ The variable sets used for the SVM-HINT paper are

�29

As with other work on using ML methods the 
expected result that the combination of high 
level and low level (derived and primitive) 
features provides better performance than 
using just one of those sets. 

Results on the next two pages illustrate this.

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Results are turned into a probabilistic score using a 

sigmoid function:

�30

Variable set 1 Variable set 2

ZA=11.5 ZA=2.5

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Results are turned into a probabilistic score using a 

sigmoid function:

�31

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

Variable set 2 Variable set 3

ZA=6 ZA=3.5

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

SVMS: SUMMARY AND MISCELLANEOUS NOTES
▸ Use SVMs when: 

▸ You have small or very small training examples. 

▸ and you care about obtaining a generalised result (reproducibility 
of the output matters even if the data fed to the algorithm 
changes). 

▸ Computing time/resource (incl. memory) is not a problem. 

▸ Do not use an SVM when: 

▸ You have a lot of training examples and/or very little computing 
resource.

�32
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INTRODUCTION TO MACHINE LEARNING

SVMS: SUMMARY AND MISCELLANEOUS NOTES
▸ We’ve looked at the hard and soft margin SVMs. 

▸ The algorithm stems from the same linear separation problem that is addressed by 
Rosenblatt’s perceptron paper. 

▸ However this focusses on how far an example is from the margin defining the 
separating hyperplane. 

▸ Can’t understand the mapping from the input feature space to the dual space (but we 
don’t have to). 

▸ SVMs are widely used outside of HEP. 

▸ They have been used for a broad range of physics studies in HEP, but the algorithm has 
not been widely adopted. 

▸ There are specific reasons why you would or would not want to use the algorithm. 

▸ Searches where you have limited training examples available (e.g. SUSY or Higgs BSM) 
are cases where you might want to look at the algorithm. 

�33
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KNN: K-NEAREST NEIGHBOURS

�34
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INTRODUCTION TO MACHINE LEARNING

K-NEAREST NEIGHBOURS (AKA K-MEANS)
▸ This is a clustering algorithm, and an example of 

unsupervised learning. 

▸ Aim: determine the centroid positions C of K clusters in 
the data containing N examples using a Euclidean 
distance from the cluster mean to some data example. 

▸ Optimisation: The variance of the clusters is minimised in 
order to determine the corresponding means of the 
cluster.

�35
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INTRODUCTION TO MACHINE LEARNING

K-NEAREST NEIGHBOURS (AKA K-MEANS)
▸ Step 1: 

▸ Given C compute the total cluster variance and minimise this with respect to 
the means of the clusters.  

▸ This gives the current mean positions of the clusters. 

▸ Step 2: 

▸ Given a set of means m, minimise these by assigning elements to the closest 
current cluster mean. i.e.  

▸ Step 3: 

▸ Iterate until the assignments stabilise.
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min
c,{mk}K

1

K

∑
k=1

Nk ∑
C(i)=k

| |xi − mk | |2

C(i) = argmin1≤k≤K | |xi − mk | |2

xi:    ith example 
Nk:  Number of examples in Kth cluster 
mk: Centroid of Kth cluster 
k:    Cluster index

Following Section 14.3.6 of Hastie, Tibshirani, Friedman, Elements of Statistical Learning

https://instituteofcoding.org
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K-NEAREST NEIGHBOURS (AKA K-MEANS)
▸ This example shows successive iterations of the K-means 

algorithm to a set of data with K=3.
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This algorithm has 
the number of 
clusters, K, as a 
parameter. 

Clustering results 
will depend on 
the choice of K. 

Colour indicates 
example 
assignment to a 
given cluster.

Following Section 14.3.6 of Hastie, Tibshirani, Friedman, Elements of Statistical Learning

https://instituteofcoding.org
https://web.stanford.edu/~hastie/ElemStatLearn/
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EXPLAINABILITY AND INTERPRETABILITY
▸ The issue of how to explain the model, and how to interpret it 

is challenging. 

▸ e.g. why was a given prediction made? 

▸ Event classification / decision making 

▸ Real value prediction (e.g. signal strength in a score) 

▸ There is no consensus on how to approach this problem; it is 
an active research area. 

▸ Highlight just a few ways we can help to elucidate our 
models.
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EXPLAINABILITY AND INTERPRETABILITY
▸ CNN filter maps provide information about shapes and colour 

that can be used to interpret how features are identified. 

▸ Requires effort to “see what is happening in may cases”
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Krizhevsky et al., Neural Information Processing Systems conference proceedings.

AlexNet	Model

Convolution	Filters	Learned

Label	assignments

ImageNet	data

https://instituteofcoding.org
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EXPLAINABILITY AND INTERPRETABILITY
▸ Some problems have simpler filter interpretations.
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Input	images

1st	Conv	layer

2nd	Conv	layer

3rd	Conv	layer

Deeper	level	of	abstraction

These	images	show	an	

alignment	pin	hole	in	a	

MoEDAL	NTD	sample

A. Bevan, https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0392 
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EXPLAINABILITY AND INTERPRETABILITY
▸ Some problems have simpler filter interpretations.
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Input	images

1st	Conv	layer

2nd	Conv	layer

3rd	Conv	layer

Deeper	level	of	abstraction

These	images	show	an	
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MoEDAL	NTD	sample
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EXPLAINABILITY AND INTERPRETABILITY
▸ There are methods that use gradients and back-propagation to 

indicate which local regions of an image lead to a particular decision 
for CNNs: e.g. GradCam, Guided Back Propagation and variants 
thereof. 

▸ There are also generalisations for DNNs.

�43

A.	Chattopadhyay	et	al.,	https://arxiv.org/abs/1710.11063	
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▸ There are methods that use gradients and back-propagation to 

indicate which local regions of an image lead to a particular decision 
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▸ There are also generalisations for DNNs.
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EXPLAINABILITY AND INTERPRETABILITY
▸ Complicated models that rely on function approximation 

through deep abstractions, or implicit mappings into high 
dimensional feature spaces can be challenging to understand. 

▸ Interpretation of their results can be straightforward or 
challenging. 

▸ These however are one class of models; other machine learning 
algorithms can be more transparent (e.g. Decision Trees). 

▸ Bayesian networks (not discussed here), require causal input in 
order to construct models, and are by construction easier to 
interpret than the methods discussed here.
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  CFAR-10 
  CFAR-100 
  KAGGLE 
  UCI ML DATA REPOSITORY 
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  RCV1-V2 
DEEP LEARNING USING LOW LEVEL FEATURES 
CROSS VALIDATION
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APPENDIX: DATA — MNIST
▸ MNIST is a standard data set for hand writing pattern recognition. e.g. the 

numbers 1, 2, 3, … 9, 0 

▸ 60000 training examples 

▸ 10000 test examples 

▸ These are 8 bit greyscale images (one number required to represent 
each pixel) 

▸ Renormalise [0, 255] on to [0, 1] for processing. 

▸ Each image corresponds to a 28x28 pixel array of data. 

▸ For an MLP this translates to 784 features.
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APPENDIX: DATA — CFAR-10
▸ 60k 32x32 colour images (so each image is a tensor of 

dimension 32x32x3). 

▸ This is a labelled subset of an 80 million image dataset. 

▸ 10 classes:
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�
https://www.cs.toronto.edu/~kriz/cifar.html 
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APPENDIX: DATA — CFAR-100
▸ 100 class variant on the CFAR10 sample: 

▸  32x32 colour images (so each image is a tensor of 
dimension 32x32x3). 

▸ 100 classes:

�49

�
https://www.cs.toronto.edu/~kriz/cifar.html 

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

APPENDIX: DATA — KAGGLE
▸ Well known website for machine learning competitions; lots of problems and 

lots of different types of data. 

▸ Also includes training material at: 

▸ https://www.kaggle.com/learn/overview  

▸ e.g. Intro to machine learning includes a data science problem on 
predicting titanic survivors from a limited feature space. 

▸ Since the outcome is known, this is a good sample of real world data to 
try out your data science skills. 
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APPENDIX: DATA — UCI ML DATA REPOSITORY

▸ Hundreds of data sets covering life sciences, physical 
sciences, CS / Engineering, Social Sciences, Business, Game 
and other categories of data. 

▸ Different types of problem: including Classification, 
regression and clustering samples. 

▸ Different types of data: e.g. Multivariate, univariate, time-
series etc. 

▸ https://archive.ics.uci.edu/ml/datasets.php 
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APPENDIX: DATA — TIMIT
▸ A corpus of acoustic-phonetic continuous speech data, 

provided with extensive documentation. 

▸ Includes audio files and transcripts 

▸ 630 speakers, each with 10 sentences, corresponding to 
a corpus of 25200 files (4 files per speaker). 

▸ Total size is approximately 600Mb.
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https://catalog.ldc.upenn.edu/LDC93S1 
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APPENDIX: DATA — RCV1-V2
▸ RCV1: A New Benchmark Collection for Text 

Categorization Research  

▸ A detailed description of this text categorisation data set 
can be found in: http://www.jmlr.org/papers/volume5/
lewis04a/lewis04a.pdf 
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http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm  
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APPENDIX: DEEP LEARNING USING LOW LEVEL FEATURES
▸ Baldi et al. have reported the ability for a deep network to learn additional 

information from low level features over and above the high level features; 
doing function approximation from energy and momenta. 

▸ 2.6 million (100k) training (validation) examples. 

▸ 5 layer network with 300 hidden units in each layer. 

▸ learning rate 0.05 and weight decay coef. of 10-5. 

▸ Improves discovery significance over and above a NN. 

▸ Good illustration, is not a realistic scenario as: 

▸ No systematics included. 

▸ Relies on very large training samples (unrealistic for many LHC 
scenarios). 

▸ FOM optimised is the AUC - we measure limits, cross sections and 
parameters relating to decay properties or fundamental quantities of the 
(SM) model. 

▸ Anecdotally I’ve found smart learning (SL) and deep learning (DL) 
perform equally well in many scenarios with realistic HEP Monte Carlo/
data control sample constraints.  SL algs. are less resource hungry than 
DL ones.
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Baldi, Sadowski, Whiteson: DOI: 10.1038/ncomms5308. 
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APPENDIX: CROSS VALIDATION
▸ In statistics cross validation is used to understand the mean and variance 

of estimations of model predictions from data. 

▸ The bias will be irreducible and mean that the predictions made will 
have some systematic effect related to the average output value. 

▸ The variance will depend on the size of the training sample. 

▸ The central limit theorem tells us that: 
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If one takes N random samples of a 
distribution of data that describes 
some variable x, where each 
sample is independent and has a 
mean value μi and variance σi2, 
then the sum of the samples will 
have a mean value M and variance 
V where:

M =
NX

i=1

µi

V =
NX

i=1

�2
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APPENDIX: CROSS VALIDATION
▸ Application of this concept to machine learning can be 

seen via k-fold cross validation and its variants* 
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validation

validation

validation

validation

validation

*Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV.  These involve reserving 1 example, 50% of 
examples and p examples for testing, and the remainder of data for training, respectively. 

▸ Divide the data sample for training and 
validation into k equal sub-samples. 

▸ From these one can prepare k sets of validation 
samples and residual training samples. 

▸ Each set uses all examples; but the training and 
validation sub-sets are distinct. 

▸ One can then train the data on each of the k 
training sets, validating the performance of the 
network on the corresponding validation set.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320–328. 
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).
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APPENDIX: CROSS VALIDATION
▸ Application of this concept to machine learning can be 

seen via k-fold cross validation and its variants* 
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*Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV.  These involve reserving 1 example, 50% of 
examples and p examples for testing, and the remainder of data for training, respectively. 

▸ The ensemble of response function outputs will 
vary in analogy with the spread of a Gaussian 
distribution. 

▸ This results in family of ROC curves; with a 
representative performance that is neither the 
best or worst ROC. 

▸ The example shown is for a Support Vector 
Machine, but the principle is the same. 

▸ It is counter-intuitive, but the robust response 
comes from the average, not the best 
performance using the ROC FOM.
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