PART THREE- TRANSFER MATRICES, STABILITY AND TUNES
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Recall - Hill’s Equation and Solutions

2"+ k+ =5 |z=0
P —
2 —kz=0
Piecewise Solution Courant-Snyder Solution
v esWRs)  esin(VRs) z(s) = /e B(s) cos((s) + Vo)
focanad = —VKsin(vVKs)  cos(vVKs) %
Mactoc quad = ( cosh(v/|K1s) \/ﬁsinh(\/ﬁs) ) Slope=-a/f
+/[K][sinh(y/[K]s)  cosh(y/[K]s)
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The beta function

The beta function is a central quantity in the Courant-Synder formalism

It is a positive function of position in the machine, and has the same periodicity as the lattice itself.

It is determined only by the focusing properties of the lattice.

It is maximised in a focusing quadrupole and minimized in a defocusing quadrupole.

Below is a typical example from a transfer line at the g-2 experiment at Fermilab showing “betatron
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The beta function

The beta function is a central quantity in the Courant-Synder formalism

It is a positive function of position in the machine, and has the same periodicity as the lattice itself.

It is determined only by the focusing properties of the lattice.

It is maximised in a focusing quadrupole and minimized in a defocusing quadrupole.

Below is a typical example from a transfer line at the g-2 experiment at Fermilab showing “betatron

oscillations”.
Note that there is a

s0. _ - _ horizontal beta
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The beta functions of the LHC
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The transfer matrix in terms of Courant-Snyder parameters / functions / lattice functions

Can we write a general transfer matrix between any two points in terms of the ‘lattice
functions’?
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The transfer matrix in terms of Courant-Snyder parameters / functions / lattice functions

Can we write a general transfer matrix between any two points in terms of the lattice functions?
To begin with, we return to the Courant-Snyder form of the solution to Hill’s equation, but written
slightly differently

z(s) = c1v/B(s) cosp(s) + car/ B(s) sinth(s)

where c, and c, are constants yet to be determined. If we define the initial conditions at the point
‘0’ to be

B(0) =Bo a(0)=ag ¥(0)=0
and write the initial particle coordinates to be x, and x,’ then we can fix the unknown constants.

We also need to recall

B ® ds ~1dp(s)
w(s) T 0 (S) Oﬁ(S) o _5 dS .
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The transfer matrix in terms of Courant-Snyder parameters / functions / lattice functions

Can we write a general transfer matrix between any two points in terms of the lattice functions?
To begin with, we return to the Courant-Snyder form of the solution to Hill’s equation, but written
slightly differently

z(s) = c1v/B(s) cosp(s) + car/ B(s) sinth(s)

where c, and c, are constants yet to be determined. If we define the initial conditions at the point
‘0’ to be

oeemines < 5(0) = iy a(0) = ag 1(0) =0

and write the initial particle coordinates to be x, and x,’ then we can fix the unknown constants
to be

x Qo
C1 = SV Co = / ,80.’13’0 | \/,8_0330

B(s)

0

[cos ¥(s) + g sin(s)]] zo + /BoB(s)xg sin(s)
>
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The transfer matrix in terms of Courant-Snyder parameters / functions / lattice functions

Can we write a general transfer matrix between any two points in terms of the lattice functions?
To begin with, we return to the Courant-Snyder form of the solution to Hill’s equation, but written
slightly differently

z(s) = c1v/B(s) cosp(s) + car/ B(s) sinth(s)

where c, and c, are constants yet to be determined. If we define the initial conditions at the point
‘0’ to be

B(0) =By a(0) =ap »(0)=0

and write the initial particle coordinates to be x, and x,’ then we can fix the unknown constants
to be

x Qo
C1 = SV Co = / ,80.’13’0 | \/,8_0330

And so we can write x(s) in the form

z(s) = Bls) [cos () + agsint)(s)]] zo + \/BoB(s)xg sinftﬁ)(s)
>
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The transfer matrix in terms of the Courant-Snyder parameters / functions / lattice

As in the piecewise solutions, we see the expression for x(s) is linear in x, and x,.

r(s) = bls) [cos(s) + agsiny(s :1:‘0 —|— vV BoB (s :EO sinw

Taking the derivative of this expression, we can cast this equation into a convenient
matrix form (as it’s linear)

( ff((?l)) ) = M (s1]s0) ( j’((i(;)) )

\/g—?(cos Y + ap sin ) Vv 8180 sin

ag— o1 1—|—a1a0

mcosw VT sin v \/g— (cost) — ag sinv))

¥ =1(s1) — ¥(s0) 4>

where

M (s1|s0) =
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The transfer matrix in terms of the Courant-Snyder parameters / functions / lattice

Qap—a1 1+aiag _
NG cosw NN sin v \/ cos¢ a1 sin )
¥ (s0)

The subscripts 0 and 1 refer to the beginning and end of the transfer map.

B ( ﬁl (cos ) + agsin 1)) v 8180 sin
P(s

This means the transfer matrix between two points is purely determined by the lattice
functions at each point and the phase advance between the points!
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The one-turn map

The one turn (one period) map is a very useful quantity (we mentioned it
previously for piece-wise solutions to Hill’s equation).

/& (cos b + apsinyp) V/BiPBosin ¢

apg—a 1+ajap Bo .
NG cos ) — N sin v 5 (cos Y — a sin 1))

The map for one turn of the ring means we come back to the same s position, and so

M (s1]s0) =

Bi=06o=0 aci1=aqp=0a 71 =" =7

And so the one turn map is

([ cos(¥) + asin(V) B sin(W¥)
M(s+Cls) = ( —~y sin(P) cos(¥) — asin(V)
Hactrareng hyssi- L= e =
A S :i-—_  where we have used 14+ a?(s)

Crpais Dari - " ey ._..L a o = ’.}/ 8 p—
el -~ T
77T o e \ :
S ‘ll === and the phase advance for one turn is:
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The one-turn map

If we know this map we can determine the lattice functions.
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The one-turn map

If we know this map we can determine the lattice functions.

We can multiply all the piece-wise matrices for all the elements in the ring together
to obtain the total matrix for one turn of the machine

M (s+Cls) =] M (sit1

31’)

o1 T2

M@+qg_(m“”m)

which we can compare with

cos(V) + asin(W) B sin(W) )

M(s+C|s) = ( —~ sin(0) cos(V) — arsin(W)
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The one-turn map

We now have

Ml = (0 7 ) el = (O Lt S )

Mo1 Moo —~ sin(V) cos(¥) — asin(V)

We can get the one-turn phase from the trace of this matrix!

U =
arcCos ( 9

mi1 + m22)

We can get the lattice function from the other matrix elements.

mi2 mi1 — a2 mai
— a = 5 — —
sin W 2sin W i sin W

Note for the phase advance to be real-valued and hence stable, we need
[ ]

TrM| <2 4>
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The one-turn map

We now have

Ml = (0 7 ) el = (O Lt S )

Mo1 Moo —~ sin(V) cos(¥) — asin(V)

We can get the one-turn phase from the trace of this matrix!

U =
arcCos ( 9

mi1 + m22)

We can get the lattice function from the other matrix elements.

mi2 mi1 — a2 mai
— a = 5 — —
sin W 2sin W i sin W

Note for the phase advance to be real-valued and hence stable, we need

TrM| <2
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The one-turn map at a different location

If we know the one-turn map at one location, s, is there a way to calculate it at
another location, s’, provided we know the transfer matrix M for s to s'?

The answer is yes. They are related to each other by the similarity transform

M(s' +Cls") = M(s'|s) - M(s + C|s) - M~ (s|s)

Similarity transforms come from matrix theory. They preserve eigenvalues, traces,
etc.

We’'ll now denote the matrix M(s’|s) (i.e. the map from s to s’) by

Misls) = (ot e )

mao1 Moo

(redefining m,_, etc). Let’s use this to calculate how the lattice

11°
functions transform from place to place if we know the transfer .
matrix. 4>
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The transformation of the lattice functions

Starting with the similarity transform,

M(s' +C|s") = M(s'|s) - M(s+ C|s) - M~ (s'|s)

We can express the one-turn maps in terms of the lattice functions at the locations
sands’

cos(Wp) + apsin(Wy) By sin(Uy)
—7o sin( V) cos(Vy) — agsin(Py)

M (s+Cls) = (

4>

The Cockeroft Institute
‘of Accelerator Science and Technology



The transformation of the lattice functions

Starting with the similarity transform,

M(s' +C|s") = M(s'|s) - M(s+ C|s) - M~ (s'|s)

We can express the one-turn maps in terms of the lattice functions at the locations
sands’

cos(Wp) + apsin(Wy) By sin(Uy)
—7o sin( V) cos(Vy) — agsin(Py)

M (s+Cls) = (

M(s' +Cls') = ( cos(¥1) + a sin(¥1) By sin(Wy) )

—m Siﬂ(llrl) CUS(\IH) —&'18111(‘1’1)
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The transformation of the lattice functions

Starting with the similarity transform,

M(s' +C|s") = M(s'|s) - M(s+ C|s) - M~ (s'|s)

We can express the one-turn maps in terms of the lattice functions at the locations
sands’

M(s+C

) = cos(Uyq) + g sin(Py) Bosin(¥y)
o —o sin(¥y) cos(Wp) — apsin(Py)

and after a page of algebra we obtain the lattice functions at point s’ (or 1) in terms
of the lattice functions at point s (or 0) and the elements of the matrix M. The
answer is

05] M11M22 + M12M21  —M11M21  —M121M22 (875
_ 2 2

B = —2mi1mi2 miq mio Bo
2 2

Y1 —2Mao1Mos msq Mmasg Y0

Knowing M(s’|s), we can transform the lattice functions to any point in the
beam line. H
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Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

1 L

m11:1 m12=L mglzo ?’)’LQQ:l

And so

/61 — —2L 1 L2 5{}
gl 0 0 1 Yo
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Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

1 L

m11:1 m12=L mglzo ?’)’LQQ:l

And so

The lattice functions evolve A particle evolves
2 . /
B1 = Bo — 2a0L + oL r(L) = xo + Lx
a1 = ag — 7YoL 7' (L) = xj

Y1 = 70
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The phase advance and tune

Several times we have used the phase advance for one turn of the closed orbit ( or
any period of a periodic structure). It is

sTC s

s B(s)

We call the phase advance for one complete turn of a ring the tune, and express it
in units of 27

U =

U1 5t ds P
V —m — — —— _ or
2r 21 ), B(s) N

There is one tune for each plane, including the longitudinal plane.
It's an important function for beam stability.
Note we can evaluate the tune at any point in the ring and always get the same

answer (a property not shared by a, B and y)
[ ]
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The phase advance and tune

Several times we have used the phase advance for one turn of the closed orbit ( or
any period of a periodic structure). It is

Y

sTC s

S

B(s)

We call the phase advance for one complete turn of a ring the tune, and express it

in units of

 — — —

2T

A simple approximation to
the tune can come from

the average value of the V =~

beta function B and
average radius R.

2T

1 S—I—C
2 J,
10 K
2 p

ds

B(s)
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Applying beam dynamics tools to a lattice

Let’s apply the
tools we've T Dipoles
developed to a .g

storage ring.

Collimation

Focusing
elements

(L0 J

Extraction Dipoles
o
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Vertical Position [mm]

Bending

The first task is to define the curved reference orbit using a layout of dipole magnets. This
forms the fundamental footprint of the machine and defines our coordinate system for
future analysis. E.g. Fermilab g-2 storage ring

inner coil r t op.h—_’—]ar. insulation

wedge ——

WF’[‘M"
edge

C

40 1

204

—40 4

i
E —p=7112mm
inner coil JLI

By=145T

thermal

muon
ngn fixed NMR probes

/whmoll

=Field homogeneity [ppm]
0.4 /1

—40 -20 0 20 40
Radial Position [mm]

1.0

bt e
(=2 -]
Relative muon intensity [arb. u.]

b
IS

e
N
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Vertical Position [mm]

Bending

The first task is to define the curved reference orbit using a layout of dipole magnets. This
forms the fundamental footprint of the machine and defines our coordinate system for
future analysis. E.g. Fermilab g-2 storage ring

By=145T

In(r:ercoil r lop.h_'—]ar. insulation j
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pml‘.'e ™ outer coil
edge
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.
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Example - the LHC

......
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Example - the LHC

......

p

/Bdl = NIB = 2n—
q

9
B] = Vsm 2 1232 - 15m - 3 x 10%[m/s|q &>
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The FODO cell

Recall that two quadrupoles of opposite polarity could provide focusing in both planes at the
same time. This is the fundamental building block of the FODO lattice.

The basic building block of this periodic structure is the FODO cell, consisting of a horizontally
focusing quadrupole (F), a space (O), a defocusing quadrupole (D) and a space (O).

QF QD QF
L]

We can repeat the FODO cell to make a FODO channel. Note the drift space (O)
can contain nothing, a bend, some diagnostics, an RF cavity or even a whole
particle physics experiment!

HHHHHE
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The dynamics in a FODO cell

To understand the beam dynamics in a FODO cell we need to compute the one-period map.

To do this we simply multiply the matrices of the components of the cell together,
conventionally starting in the middle of one of the quadrupoles, which means we start and
end with a quadrupole matrix of half strength (length)

Recall
Moe quad = COS(.\/ES) \/% Sin(\/I?S)
—VK sin(VKs) cos(v K s)
cosh(y/|K]s) ﬁ sinh(/| K|s)
IRTsinb(y/TETs) " cosh(y/KTs)

1 L
Maris, = ( 0 1 ) First element!

and we multiply these matrices in sequence
\'4
Mropo = Myn - Mavigt - M - Mariee - Myn
4>
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The FODO cell

Let’s be concrete and take some real numbers
K=4+/-0.541244 m?2
Iq =0.5m
L=25m

Multiplying out the matrices

! 0.983134 0.248593 '1 r 5 .06842 0.511352y (1 2.5, [ 0.983134 0.248593
L -0.134549 0.983134 ‘ 1 | E) 276767 1.06842 | 1n, 0 1 ,Il ’ | -0.134549 0.983134 .ll
We obtain

[' 0.707107 8.20716

Mropo = | _0.0609224 0.707107 |

4>
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The FODO cell

Let’s be concrete and take some real numbers

K=4+/-0.541244 m?2
_ O.707107 8.20716
Iq =0.5m

Mgopo = f _0.0609224 0.707107 |
L=25m

This is the one period map of the FODO cell, and so has the form

mus+1¢g::(‘”sm*””$”m [ sin ¥ )

—~ysin W cosV — asin W

Recall

z(s) = Vep(s) cos(v(s) +1ho)  ¥(s)

1+ a%(s)
27as. 9T ThG




Properties of our FODO cell

Is the FODO cell stable? For this we need the trace of the one-turn map to be less than or equal
to 2. Here it is 1.414. So this FODO cell will give stable dynamics in this plane.

What is the phase advance per cell? Recall

mi1 + M22
U = arccos

2

The phase advance per cell is 45 degrees. This is a “45 degree cell”.

What are the lattice functions at the middle of the focusing quadrupole? We use

M2 . Mi1 — Mma22
sin U 2sin W

And find that =9.645 m and a=0.
i.e. The beam size is at a maximum.

4>
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A thin lens FODO cell

We can also make our life easier and compute the matrix for our FODO cell using the thin lens
matrices. Again, starting from the middle of QF we have

b e Tl

We end up with the matrix in terms of L and f

Mropo =

L’ L
Meone — 1 — 55 2L(1 + : )
L L L
—sp(l—g7)  1-3p

We can ask for what parameters the FODO cell gives stable motion. This means

(M) <2 |f] > 2

We can also write the cell phase advance in terms of the parameters:

1 I (U T
COS(\I/):ﬁTT(M):l_ﬁ i) ~2f] >
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Transfer line stability

Our stability equation from the previous slide seems slightly odd at first

Tr(M)§2—>|f\>§

It seems to say motion is stable when focusing is weak...

This makes sense though. If the focussing is too strong then the periodicity of beta can’t match
the periodicity of the lattice.

4>
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Beta in a FODO cell

Finally...
We can now compute all the lattice functions for a FODO cell.
Note that BX is maximised in the middle of the focusing quadrupoles, and this maximum

depends solely on the cell length and phase advance.

M2 My — M2
Using = an U ~ 2sin¥
1
2L(1 + &) _ _
_ f/oap=0 YF=
We get 5F — Sin(\P) 4 BF
L
4y — 2L(1 — ﬁ)
IntheDquad  f — —f P sin(0)

T ] ¢,
L] i '] | L] ] L} ) 1 ]
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ERROR AND RESONANCES

4>
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A reminder of some of the terms we ignored...

//

|

| N ;
[ 2" (K24 k) &)= Kb — K202 + Ka0® — (B + Kekiy) Y (4.75)
T (o ek 2kt Sksg )y — Am(Et — )
y v )

— (52 + 26.k) % — (hmﬁg — L k:k+ 2ky k — 3 Ky) y?

= re(2” —y') + 6l (z2 +yy') + &, (2'y — 2y') + w2y’

~tra(e® - 3v%) + ry (v — 32%)

+35 (kym — 11k, m+ 262k — 1062k + K" — Kyky

12 3
+!€xﬁ-$—ﬁ‘ + Ky ) T

—(2K.m + Ky + K2k + 2K Kyk) 7Y

+3%(Bkgm — Thym-l—ﬁhdk-i-}‘f Kk, —Eﬁ*.fc

2 4 2
+Brgrl + Ky — Ky — kgtiyk) TY

+ 3 (1065 Ky k + 8Ky ky + Kam + 4&?& + k" + 2k K, + 5Kym) y?

— (262 + 3k) rx'® — (K Ky + K. ny} rx'y — Kk z2z’

S2ISAUd 101e18]900Y 3|dIled ‘UuBWaPaIM H

—k'z%y — kyrl 2y — KakyTT'Y 2(k+ 3koky) Ty

+'zyy — Lk + K2) 2y? — 262 - K)z'yy + 3Ky — skyy”
+(262 + k)T 6+ (2Rg6y + E)yd — Keyy'd + ra; zy'd
-I-%nm(:c"z L (3ryk + h:xﬁi — Lhgk 3Ky — sm) )
—I—(% m + 2k k + .-«;3) 226 + (m + 2R2Ru + 26,k + 2k.k) 2Yd
—(k + 252) 267 — (k + 2k.5,) y8° + O(4) .
°
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Real life and field errors

Recall that we started with an arbitrary magnetic field and made an expansion

e 1 1, 1
EBZ(CE) = + kx + 5 M + 379% + ...

where the first term is the dipole (steering) field, the second is the quadrupole(focussing)
term, the next is the sextupole term, etc.

To create these fields we build magnets with a specified field quality. These magnets will
never be perfect. Therefore any magnet will have small contributions of higher-order field
components.

In addition, magnets will not be perfectly aligned. E.g. if a quadrupole is displaced it will
apply an additional dipole field to the beam.

Finally, the magnet strength may differ from the design value and may vary with time. E.g.
a power supply may deliver too much or too little current to an electromagnet.

In this lecture we include the effects of some of these ‘field errors’ into our solutions to
Hill's equation.

4>
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Closed orbit distortion

The design orbit defined by all of the dipoles in the ring is sometime referred to as the “closed
design orbit”.

This is the orbit a reference particle would follow in a perfect situation.

If there is a small additional dipole kick - the orbit will distort, and this distortion will affect the
orbit around the entire ring. i.e. the effects of a small kick at any location are not localised; they
will be seen everywhere in the ring!

x(s)

This closed orbit distortion defines a position-dependent orbit offset around the ring. In effect the
particles no longer undergo betatron oscillations around the design orbit but around a new closed
orbit

X(S) =X,(8)+ X, () >
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Closed orbit distortion

Imagine we have a “dipole kick” error of strength AB and length |, at some location s,

_JBdl Ay DB
Bp Bp

Recall the transport map in terms of the Twiss parameters

0

% (cos ) + ag sin 1)) v 5150 sin )

M(s1]so) =
Qap—Q _ 1d4ai1ag o Bo . x
A cos Y VT sin 9 5 (cos Y — a1 sin )

The M_, element shows how a horizontal angular kick (Ax’) will translate into a

horizontal displacement at another point in the ring.
On each “turn” we experience another kick.

We need to apply this map for many turns, summing over the kicks, to see how the
displacement accumulates.

4>
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Closed orbit distortion

Imagine we have a “dipole kick” error of strength AB and length |, at some location s,

_JBdl Ay DB
Bp Bp

Recall the transport map in terms of the Twiss parameters

0

%(COS Y + aosiny) v 5180 sin ¢
ey - sy |y - o)

M (s1|s0) =

Theelement shows how a horizontal angular kick (Ax’) will translate into a

horizontal displacement at another point in the ring.
On each “turn” we experience another kick.

We need to apply this map for many turns, summing over the kicks, to see how the
displacement accumulates.

4>

The Cockcroft Institute
‘of Accelerator Science and Technology



Closed orbit distortion

A short(ish) analysis adding up the effects from each kick after a large number of turns
gives the distorted closed orbit in terms of the beta function at s and the beta function at

any other position in the ring s.

' : . N/} s+C
Af ullﬁ{ﬂ:l}ﬁ{”{:{JE[.-TV—|1|!J'{~'I-']—w{-"'.::.}h ) — — — ﬁ

2 Js  B(s)

X (5)= _
- 2sin{mv)

We can minimise this distortion by monitoring the position of the beam and using orbit
correction magnets.

closed orbit after quad offset
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Resonances

Our expression for the closed orbit distortion has an overall factor of

1

28N T

This means that every time the tune becomes an integer, the argument of the sine becomes a
multiple of n, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine.

* Then the particle would encounter a dipole error at the same point in the machine and at
the same phase in its betatron oscillation on every turn.

* This means the effect of the dipole error accumulates constructively on every turn.

* We avoid this by minimising magnet errors and staying away from dangerous values of the
tune.

NB Consider what happens to the one turn map in this case.
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Resonances

Our expression for the closed orbit distortion has an overall factor of

1

28N T

This means that every time the tune becomes an integer, the argument of the sine becomes a
multiple of n, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine.

* Then the particle would encounter a dipole error at the same point in the machine and at
the same phase in its betatron oscillation on every turn.

* This means the effect of the dipole error accumulates constructively on every turn.

* We avoid this by minimising magnet errors and staying away from dangerous values of the
tune.

More generally resonances occur when

Mz +nvy =p m,n,p = integer &>
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Quadrupole errors

Imagine we have an extra quadrupole in our ring (or a quadrupole field error) of strength k and
length L at location s,. Unlike the dipole error, this will change the focussing properties of the
lattice causing:

1)A change in the beta function
2)A change in the tune.

)} s+C ds
Recall that the tune is given by: V= _— = / S
S

27 B(s)
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Quadrupole errors

Imagine we have an extra quadrupole in our ring (or a quadrupole field error) of strength k and
length L at location s,. Unlike the dipole error, this will change the focussing properties of the

lattice causing:

1)A change in the beta function
2)A change in the tune.

Change in the tune: Ay — B(so)kL _ B(so)
47 A7 f

. The perturbed tune increases if k > 0, which corresponds to a focusing quadrupole
i.e. focussing more means more oscillations. So we get a positive tune shift for
increased particle focusing.

. This means a pure quadrupole field error would shift the tune one way in one
plane and the other way in the other plane

. However, we can also get tune shifts from space-charge, beam-beam effects and
electron clouds, which can cause same-sign tune shift in both planes

. The effect of the quadrupole error is proportional to the local beta function. This
is a common feature - the beta function magnifies local field errors.
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A distribution of quadrupole errors

If we have a distribution of quadrupole errors, k(s), around the ring, the approximate
tune shift can be calculated from

Ap — i' dsB(s)k(s)

This effect can also be used deliberately to measure the beta functions.

* We vary the strength of a single quadrupole in the ring.
* We measure the tune.

* The response is proportional to the beta function at the quadrupole.

In general the beta function tells you how sensitive the beam is to perturbations.
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Beta beat

The change in the beta function is itself a function of s, and oscillates
twice as fast as the original beta function:

AB(S) _  KB(S)
p 2sin(2v)

cos(2mv - 2‘1/)(5)- l/J(SD)D

This is why it's called a ‘beta beat’.

The strength of the distortion is proportional to the quadrupole error (k)
and to the beta function at the position of the error s,

As before we have a sinusoidal term in the denominator that depends on
the tune.

This gives us a ‘half-integer resonance’.
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Resonance diagram

Similarly, higher-order resonances are generated by errors in high-order multipoles.
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Beta beat at the LHC
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* Dipole Errors
* |Introduce closed orbit distortion
» Betatron oscillations occur around the new orbit
* Give resonance on integer values of the tune
e Quadrupole Errors
* [ntroduce a ‘beta beat’
* |Introduce a tune shift
* Give resonances on half-integer values of the tune.
* Detailed simulation needed to calculate tune and avoid all resonances.
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