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Cosmogenic muons deposit a lot of energy, 
making large population of excimers

Long lived excimers emit EUV photons, 
generating ~10 eV photoelectrons at He-Cu 
interface
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Electron Bubbles 
• When electrons are injected into the 

superfluid 3He, a “bubble” forms around 
it with an effective mass ~300 GeV


• Cu photoelectric work function is 5 eV, 
He scintillation photon energy is 15 eV, 
photoelectrons therefore have ~10 eV


• An electron bubble carrying 10 eV kinetic 
energy is moving at 2.4 km/s


• This is 4-5 orders of magnitude higher 
than the Landau critical velocity ( (cm/s))


• Bubble energy dissipation should happen 
rapidly via quasiparticle generation

𝒪


d = 1-2 nm
m ≈ 300 GeV
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Acoustic/Vibrational Noise
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• Two bolometers in the same fridge will be subject to the same acoustic and vibrational 
environment


• If there is shared acoustic and vibrational noise, this will produce cross-correlation 
between channels

Start with two bolometer 
baseline signals Subtract their means Compute 

R(l) =
1

(N − 1)σxσy

N

∑
i

xiyi−lAll plots here, courtesy of Rob Smith 🙂
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Intuitively: 
Principal component analysis (PCA) finds the dominant patterns of 
variation in multivariate data. In our case, we might consider time-series 
data from two bolometers A, B

A = [a1, a2, a3, …, aN]
B = [b1, b2, b3, …, bN] X = [a1 a2 a3 … aN

b1 b2 b3 … bN]
1

N − 1
XX⊤ = [ σ2

A cov(A, B)
cov(A, B) σ2

B ] = CAssuming:  
E[A] = E[B] = 0
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Eigen-decomposition: 
The covariance matrix  can be 
factored into matrices constructed 
by its eigenvectors  and 
eigenvalues 

C

⃗v
λ

V = [ ⃗v0, ⃗v1] Λ = diag(λ0, λ1)

λ0 ⃗v0

λ1 ⃗v1

Transformation matrix that mixes 
time series data into projections 
upon covariance eigenvectors

C = VΛV⊤
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V⊤X = [v00 v10
v01 v11]

⊤

[a1 a2 a3 … aN

b1 b2 b3 … bN] = [s1 s2 s3 … sN
t1 t2 t3 … tN]

Defines new series  
and ; i.e. principal 
components of 

S
T

X
Quick example with:
A = cos(t) & B = cos(t)

X = [cos(t1) cos(t2) … cos(tN)
cos(t1) cos(t2) … cos(tN)]

C =
1
2 [1 1

1 1] ⇒ Λ =
1

2 [1 1
1 −1]

∴ S =
1

2
(cos(t) + cos(t)) = 2 cos(t)

T =
1

2
(cos(t) − cos(t)) = 0
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Et voila!
import numpy as np 

t = np.linspace(0,4.*np.pi,100) 
A = np.cos(t) 
B = np.cos(t) 

X = np.stack([A,B]) 
cov = np.cov(X) 
Lambda, V = np.linalg.eigh(cov) 

S, T = V.T @ X



Principal Component Analysis

11

Now let’s make something a little more realistic 
Two bolometer time series over 10s with 3 components:


I. Gaussian baseline fluctuations as a proxy for Johnson-Nyquist noise (independent in each 
channel)


II. Sinusoidal acoustic/vibrational noise components at several frequencies (shared between 
channels)


III. Small Winkelmann pulse at 2s (only appearing in one channel)
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Why does this happen? 
• Essentially because the Winkelmann pulse happens to rise and fall on somewhat similar 

timescales as one or more of the acoustic noise sinusoid modes

• Some of that correlation ends up being attributed to the acoustic noise and is removed from 

both bolometer signals when we filter it out
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Intuitively: 
Independent component analysis (ICA) is similar to PCA, but with an 
additional condition that components must be statistically independent 
(i.e. not just uncorrelated). Start by proposing that observed data X is the 
sum of physical sources S with some mixing M

X = [a1 a2 a3 … aN

b1 b2 b3 … bN] = M S

S = [η1 η2 η3 … ηN

ζ1 ζ2 ζ3 … ζN] Pure, independent  
physics signals

Where
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As with PCA:
Assuming: 1

N − 1
XX⊤ = C =

1
N − 1

MM⊤ = VΛV⊤
E[η] = E[ζ] = 0
SS⊤ = I
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C = (VΛ1/2V⊤)(VΛ1/2V⊤)⊤ So M = VΛ1/2V⊤?
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As with PCA:
1

N − 1
XX⊤ = C =

1
N − 1

MM⊤ = VΛV⊤

But now we go further: 
Because  is symmetric and positive definite, we can writeC

C = (VΛ1/2V⊤)(VΛ1/2V⊤)⊤ So M = VΛ1/2V⊤? Yes, but not 
uniquely

More generally: 
For any orthogonal matrix Q

C = (VΛ1/2Q)(VΛ1/2Q)⊤ = VΛV⊤ ⇒ ∴ M = VΛ1/2Q

Assuming: 
E[η] = E[ζ] = 0
SS⊤ = I
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The goal with ICA:
X = M S

= (VΛ1/2Q) S

∴ S = (Q⊤Λ−1/2V⊤) X
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The goal with ICA:
X = M S

= (VΛ1/2Q) S

∴ S = (Q⊤Λ−1/2V⊤) X

Solve for  such that components in data 
matrix  are statistically independent 
• A number of algorithms already exist that handle this, 

including FastICA in the scikit-learn package

Q⊤

S
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The goal with ICA:
X = M S

= (VΛ1/2Q) S

∴ S = (Q⊤Λ−1/2V⊤) X

Solve for  such that components in data 
matrix  are statistically independent 
• A number of algorithms already exist that handle this, 

including FastICA in the scikit-learn package

Q⊤

S

What does this mean? 
In PCA, we rotate into a data-space where variance is 
maximised (i.e. minimising off-diagonal elements of the 
covariance matrix), resulting in principal components 
that are uncorrelated but not necessarily independent. 
To achieve the latter, we need to maximise higher-order 
central moments alongside variance.

🧐
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Let’s try ICA on the same test setup as PCA
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Let’s try ICA on the same test setup as PCA
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Time [s]Time [s]
Blind Wire Reference

Now let’s try adding 
a 3rd signal
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With PCA With ICA
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Time [s]Time [s]
Blind Wire Reference

Now let’s try smaller 
signals
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With PCA With ICA
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Time [s]Time [s]
Blind Wire Reference

Now let’s moving the 
signals
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With PCA With ICA
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Time [s]Time [s]
Blind Wire Reference

Now let’s phase shift 
the reference signal
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With PCA With ICA
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• Scintillation photons can produce photoelectrons inside the 
bolometer leading to many small heating events


• Acoustic/vibrational noise can be picked up in multiple wires in 
the same dilution fridge: can we subtract this out? Yes!

• Caveat 1: using ICA may not be perfect at isolating correlated noise, so 

we’d have to add data quality cuts

• Caveat 2: we have to make sure signals are in phase with each other, 

which can be done using Rob’s work 


• Extending ICA to Spectral Matching ICA (SMICA) also provides 
us an opportunity to cleanly measure acoustic/vibrational noise 
in-situ


