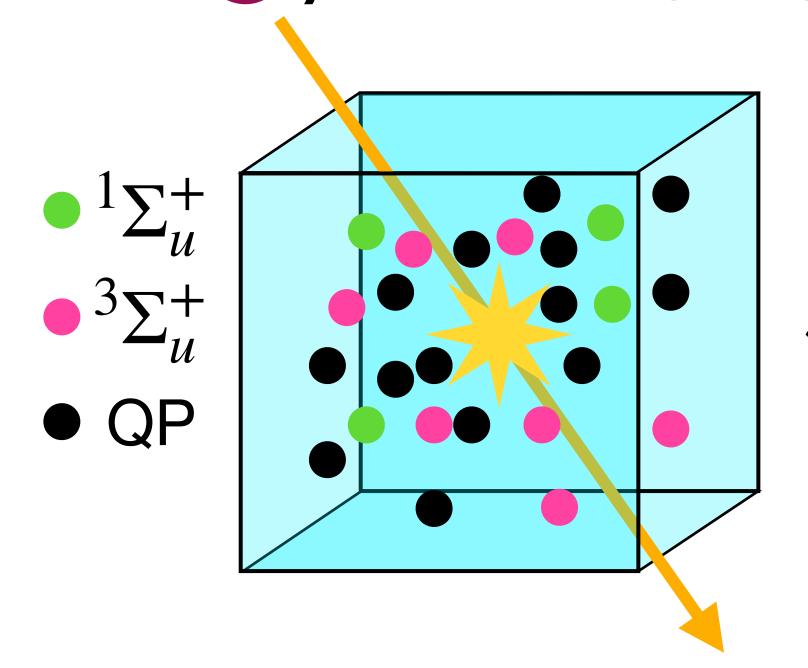


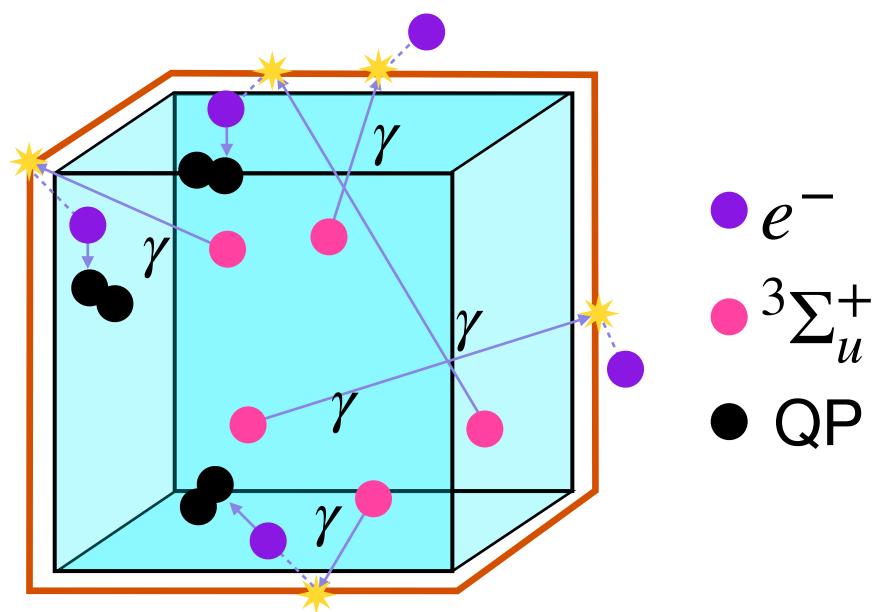
Understanding our Baseline: Noise Mitigation and Modelling

Joe McLaughlin QUEST-DMC Collaboration Meeting University of Liverpool 16 October, 2025

Cosmogenic muons deposit a lot of energy, making large population of excimers



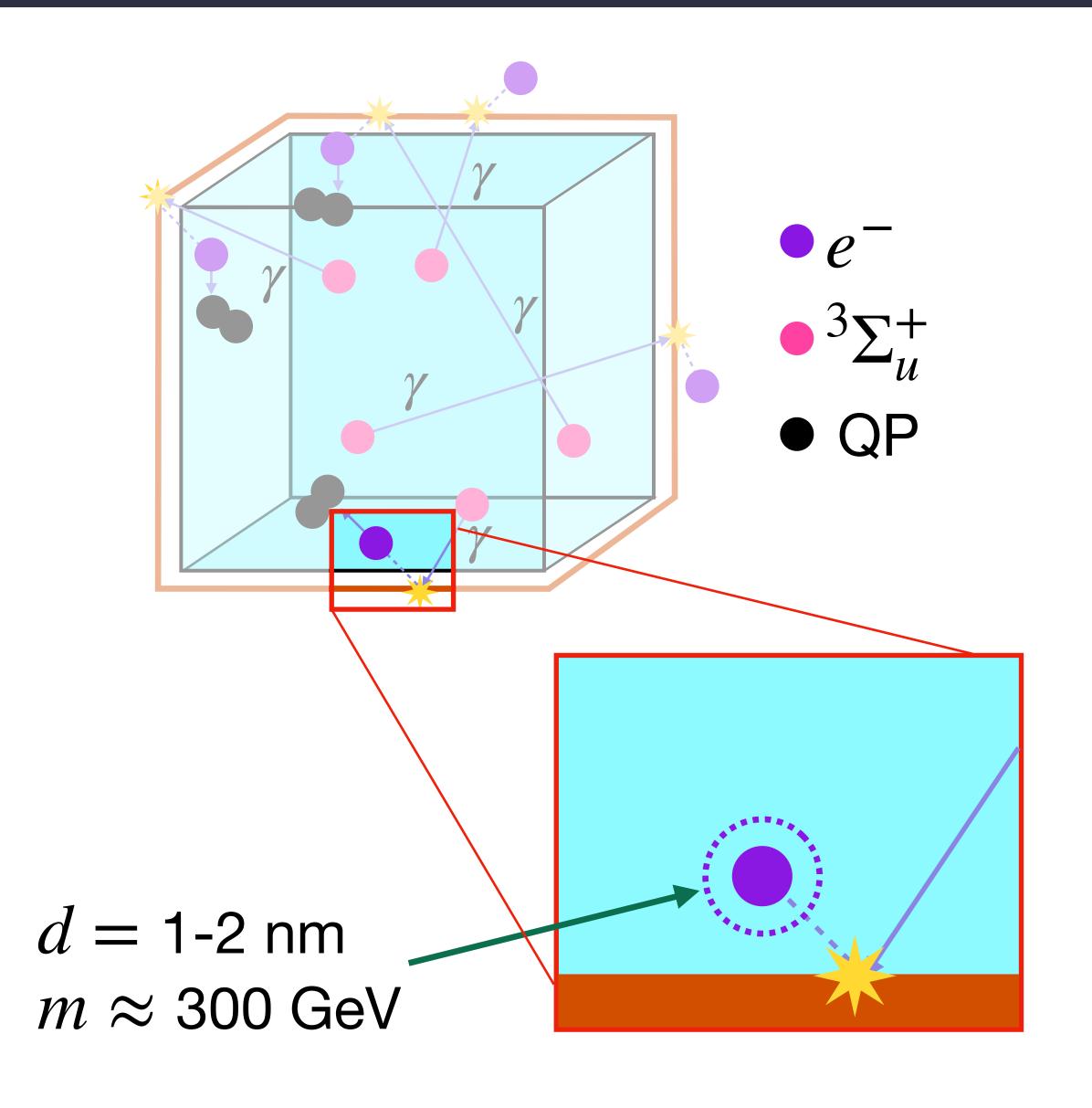
~10 s later...



$$^{1}\Sigma_{u}^{+} \xrightarrow{\sim \text{ns}} 2 ^{3}\text{He} + \gamma$$

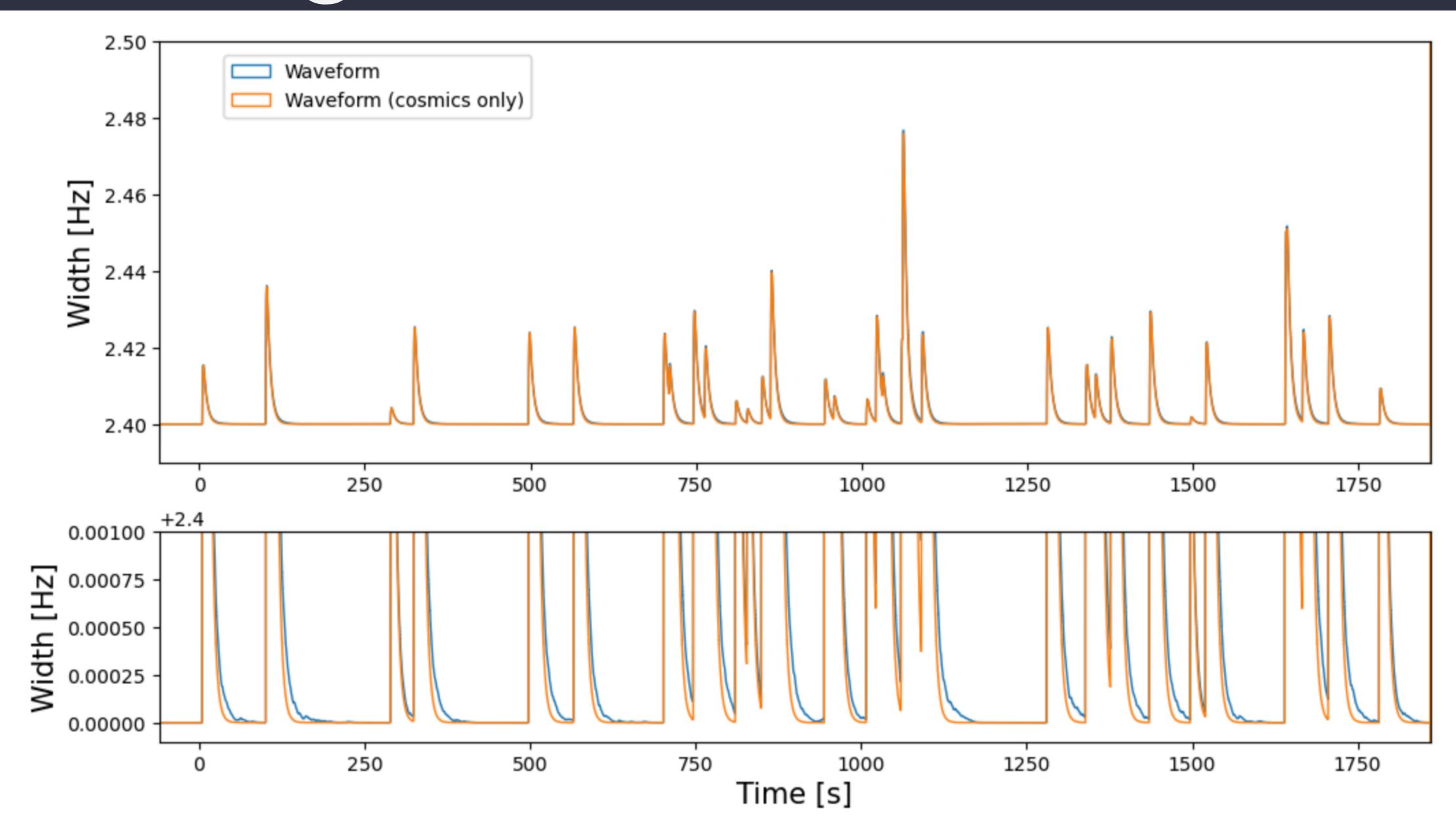
$$^{3}\Sigma_{u}^{+} \xrightarrow{\sim 13s} ^{2} ^{3}He + \gamma$$

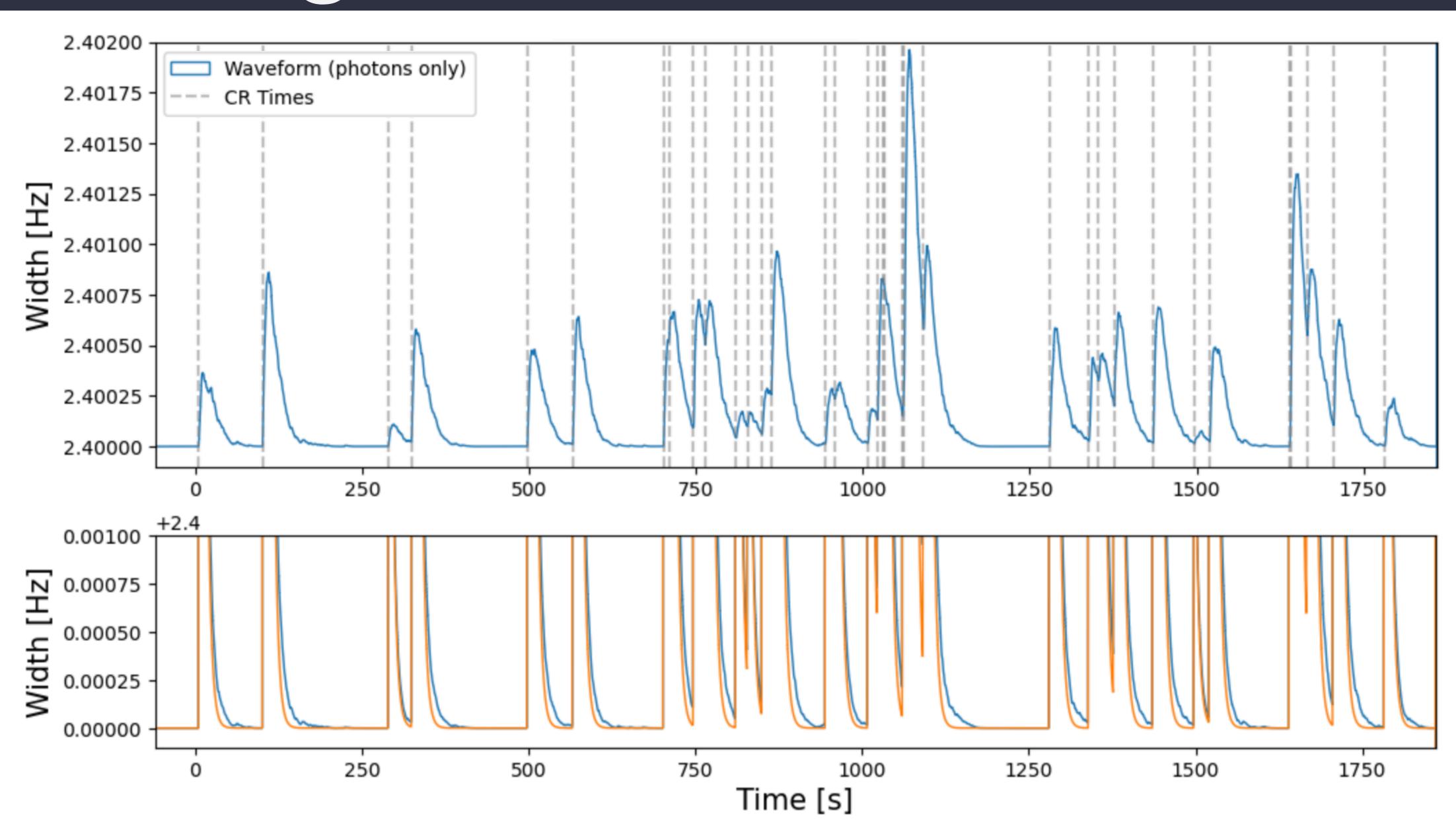
Long lived excimers emit EUV photons, generating ~10 eV photoelectrons at He-Cu interface



Electron Bubbles

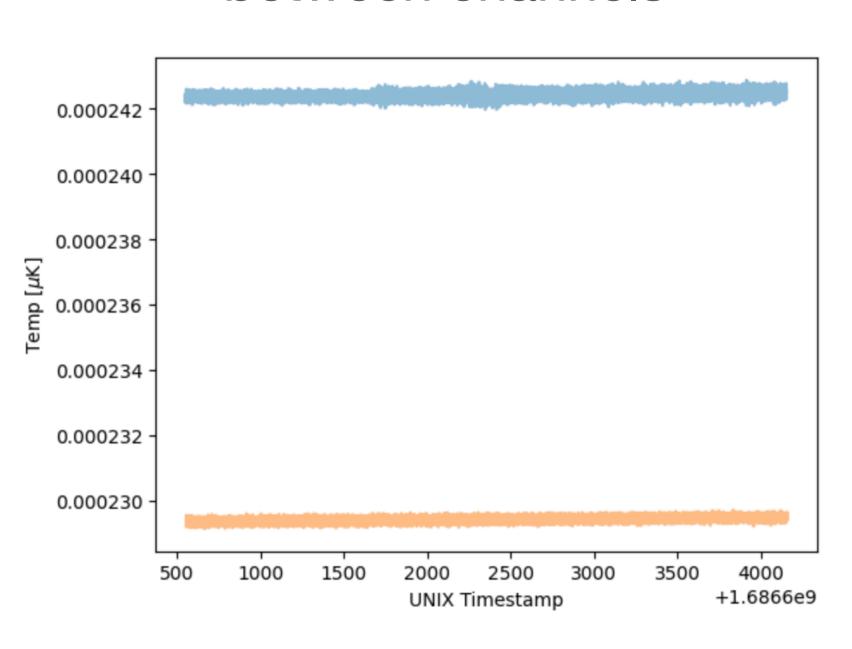
- When electrons are injected into the superfluid ³He, a "bubble" forms around it with an effective mass ~300 GeV
- Cu photoelectric work function is 5 eV, He scintillation photon energy is 15 eV, photoelectrons therefore have ~10 eV
- An electron bubble carrying 10 eV kinetic energy is moving at 2.4 km/s
- This is 4-5 orders of magnitude higher than the Landau critical velocity ($\mathcal{O}(\text{cm/s})$)
- Bubble energy dissipation should happen rapidly via quasiparticle generation

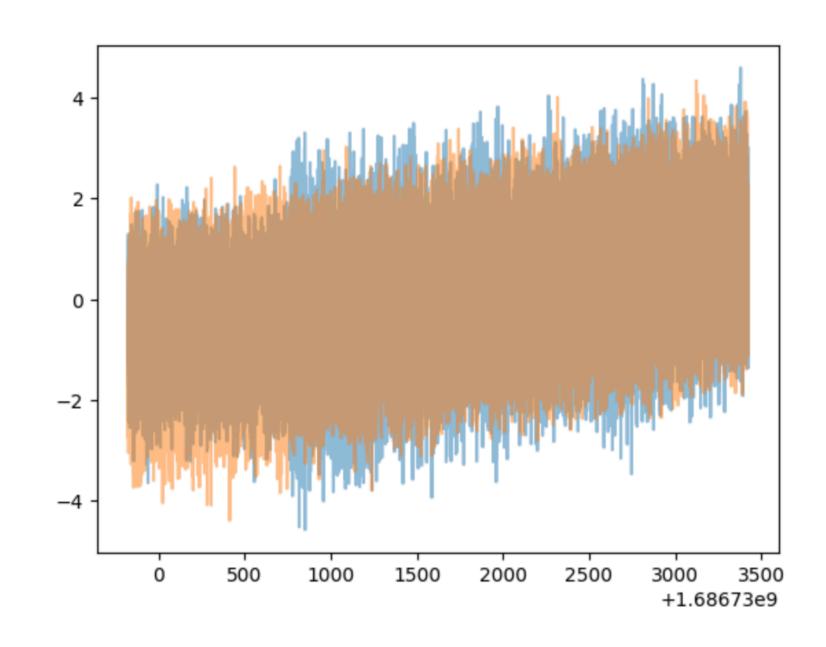


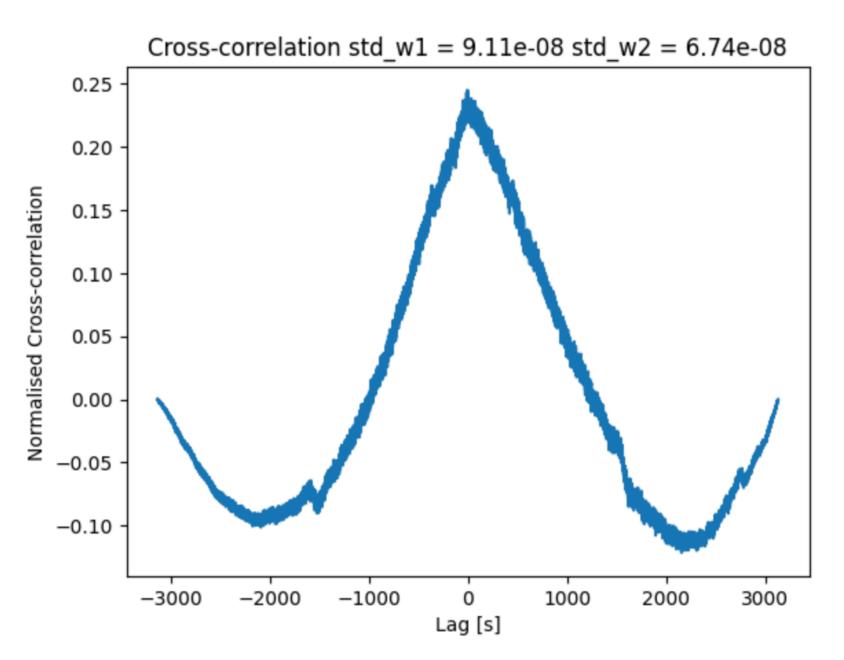


Acoustic/Vibrational Noise

- Two bolometers in the same fridge will be subject to the same acoustic and vibrational environment
- If there is shared acoustic and vibrational noise, this will produce cross-correlation between channels







Start with two bolometer baseline signals

Subtract their means

Compute

$$R(l) = \frac{1}{(N-1)\sigma_x \sigma_y} \sum_{i}^{N} x_i y_{i-l}$$

Intuitively:

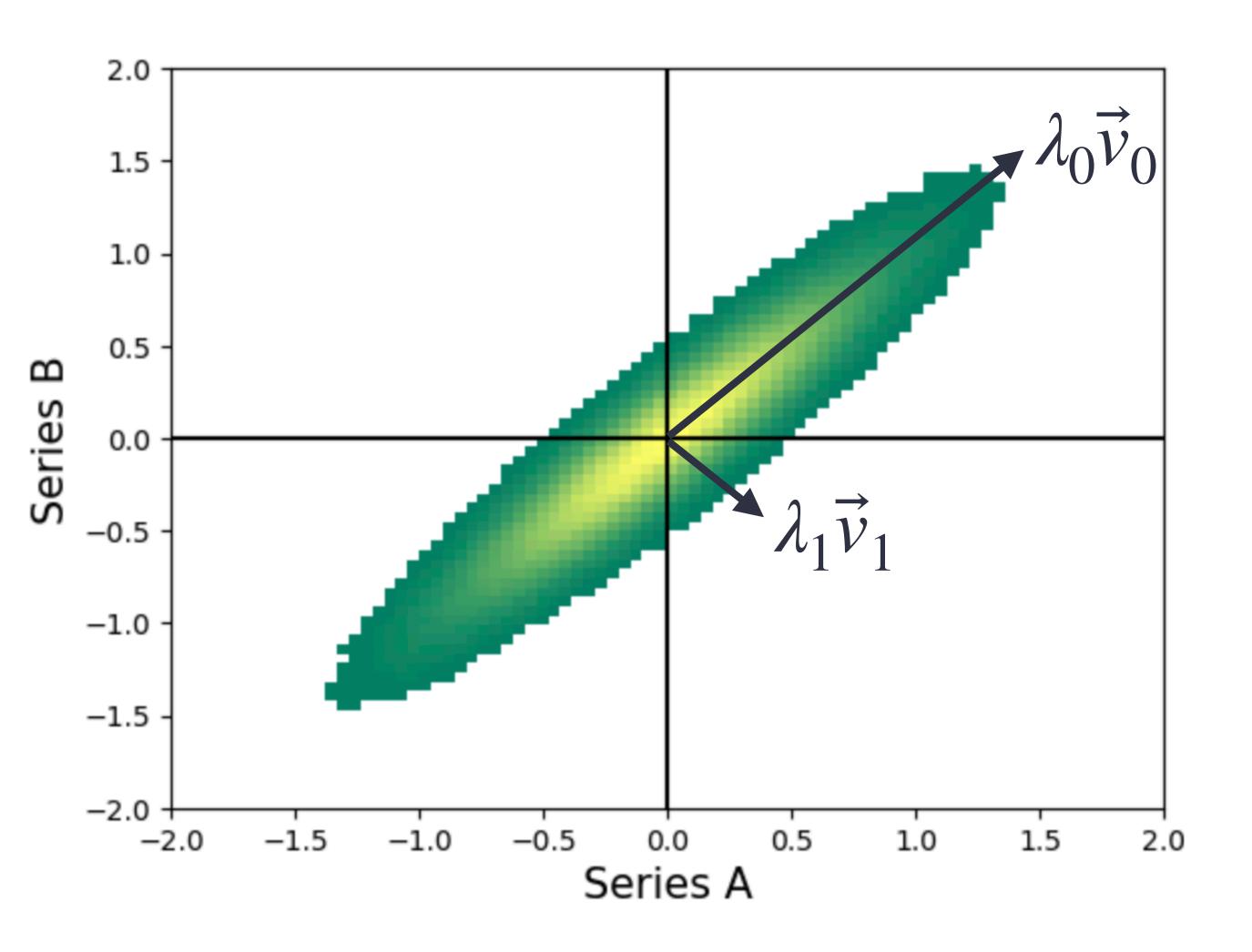
Principal component analysis (PCA) finds the dominant patterns of variation in multivariate data. In our case, we might consider time-series data from two bolometers **A**, **B**

$$A = [a_1, a_2, a_3, \dots, a_N] B = [b_1, b_2, b_3, \dots, b_N]$$

$$X = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_N \\ b_1 & b_2 & b_3 & \dots & b_N \end{bmatrix}$$

Assuming:
$$E[A] = E[B] = 0$$

$$\frac{1}{N-1}XX^{\top} = \begin{bmatrix} \sigma_A^2 & \text{cov}(A, B) \\ \text{cov}(A, B) & \sigma_B^2 \end{bmatrix} = C$$



Eigen-decomposition:

The covariance matrix C can be factored into matrices constructed by its eigenvectors \vec{v} and eigenvalues λ

$$C = V\Lambda V^{\mathsf{T}}$$

$$V = [\vec{v}_0, \vec{v}_1] \quad \Lambda = \operatorname{diag}(\lambda_0, \lambda_1)$$

Transformation matrix that mixes time series data into projections upon covariance eigenvectors

$$V^{\mathsf{T}}X = \begin{bmatrix} v_{00} & v_{10} \\ v_{01} & v_{11} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_N \\ b_1 & b_2 & b_3 & \dots & b_N \end{bmatrix} = \begin{bmatrix} s_1 & s_2 & s_3 & \dots & s_N \\ t_1 & t_2 & t_3 & \dots & t_N \end{bmatrix} \right\} \begin{array}{l} \textbf{Defines} \text{ new series } S \\ \textbf{and } T; \text{ i.e. } \textit{principal components of } X \end{array}$$

Quick example with:

$$A = \cos(t) \& B = \cos(t)$$

$$X = \begin{bmatrix} \cos(t_1) & \cos(t_2) & \dots & \cos(t_N) \\ \cos(t_1) & \cos(t_2) & \dots & \cos(t_N) \end{bmatrix}$$

$$1 \begin{bmatrix} 1 & 1 \end{bmatrix} \qquad 1 \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$C = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow \Lambda = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad T = \frac{1}{\sqrt{2}} (\cos(t) - \cos(t)) = 0$$

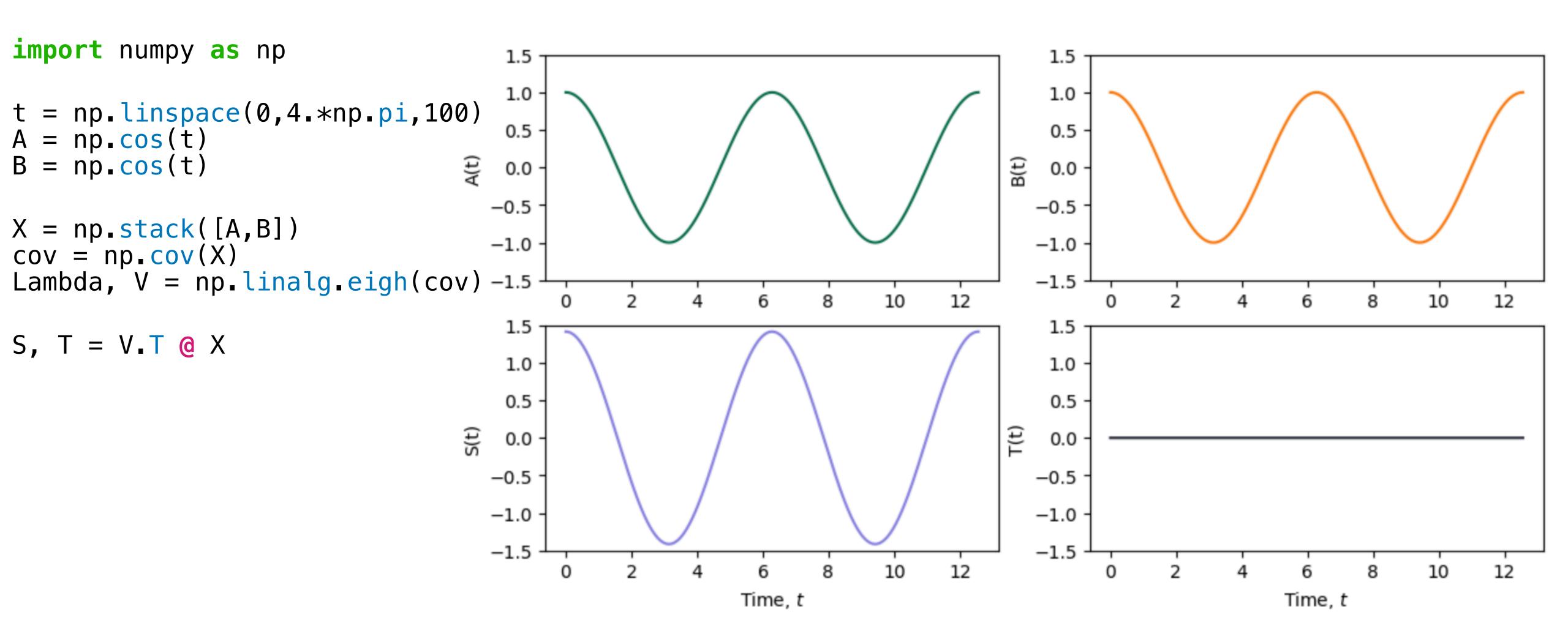
$$X = \begin{bmatrix} \cos(t_1) & \cos(t_2) & \dots & \cos(t_N) \\ \cos(t_1) & \cos(t_2) & \dots & \cos(t_N) \end{bmatrix}$$

$$\therefore S = \frac{1}{\sqrt{2}} \left(\cos(t) + \cos(t) \right) = \sqrt{2} \cos(t)$$

$$C = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow \Lambda = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$T = \frac{1}{\sqrt{2}} \left(\cos(t) - \cos(t) \right) = 0$$

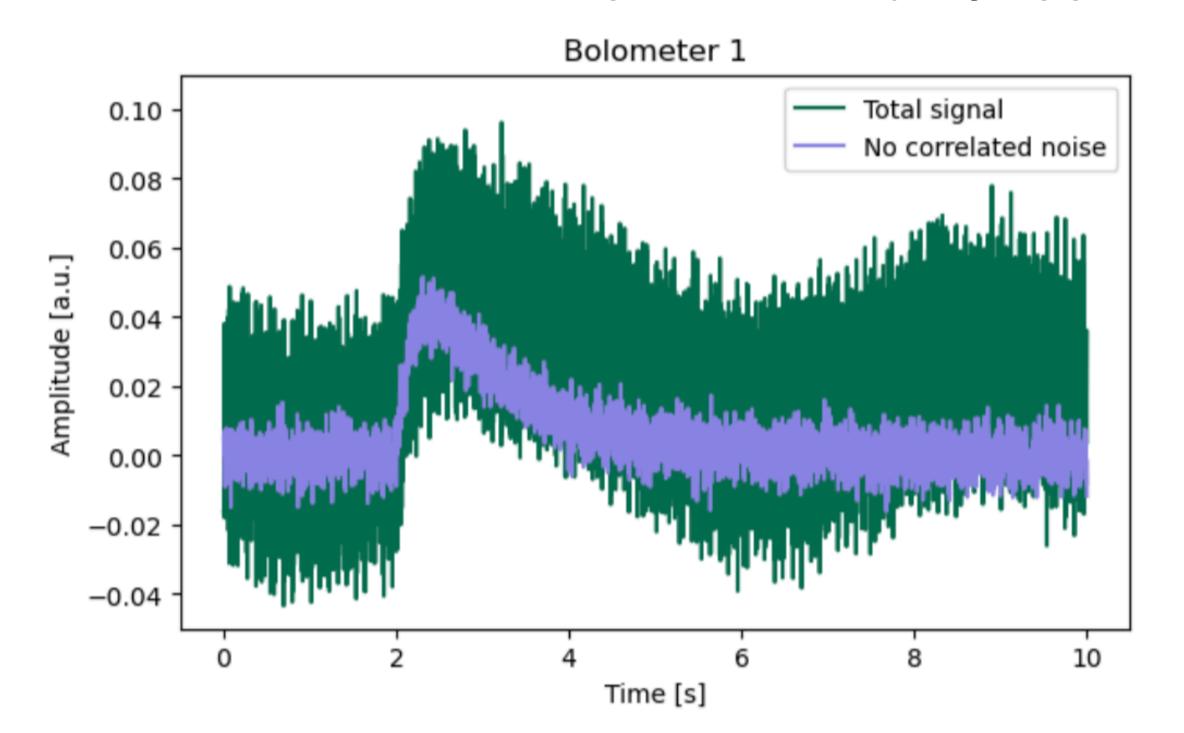
Et voila!

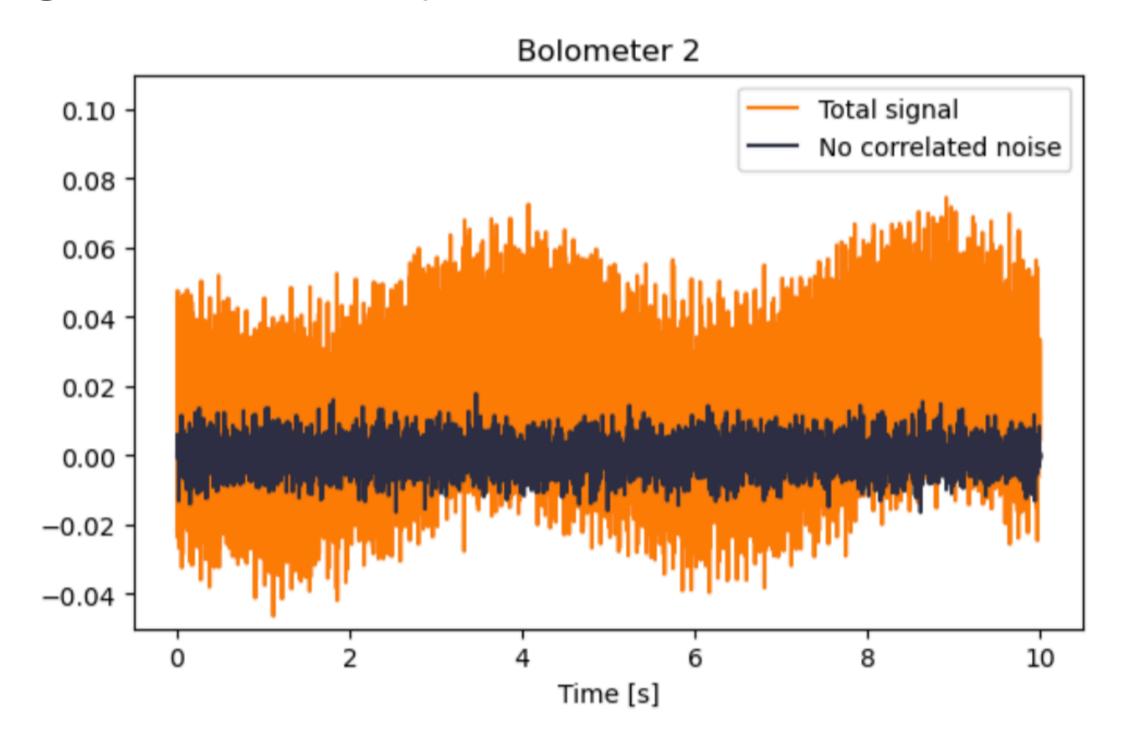


Now let's make something a little more realistic

Two bolometer time series over 10s with 3 components:

- I. Gaussian baseline fluctuations as a proxy for Johnson-Nyquist noise (independent in each channel)
- II. Sinusoidal acoustic/vibrational noise components at several frequencies (shared between channels)
- III. Small Winkelmann pulse at 2s (only appearing in one channel)

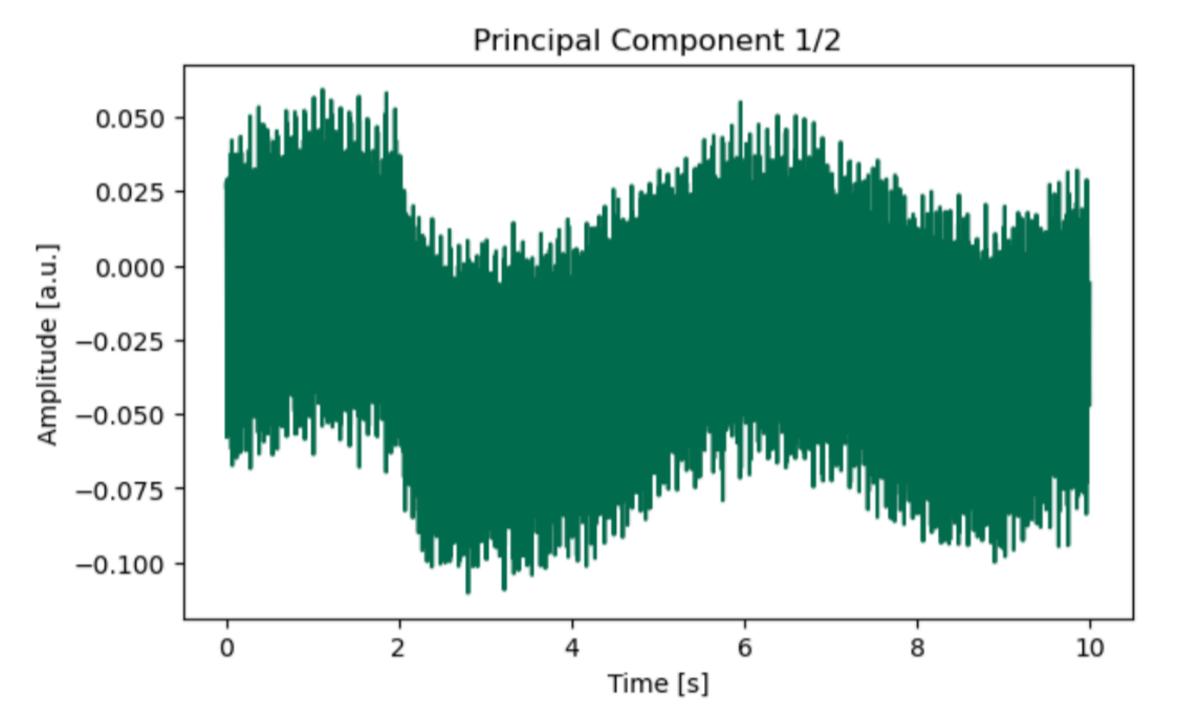


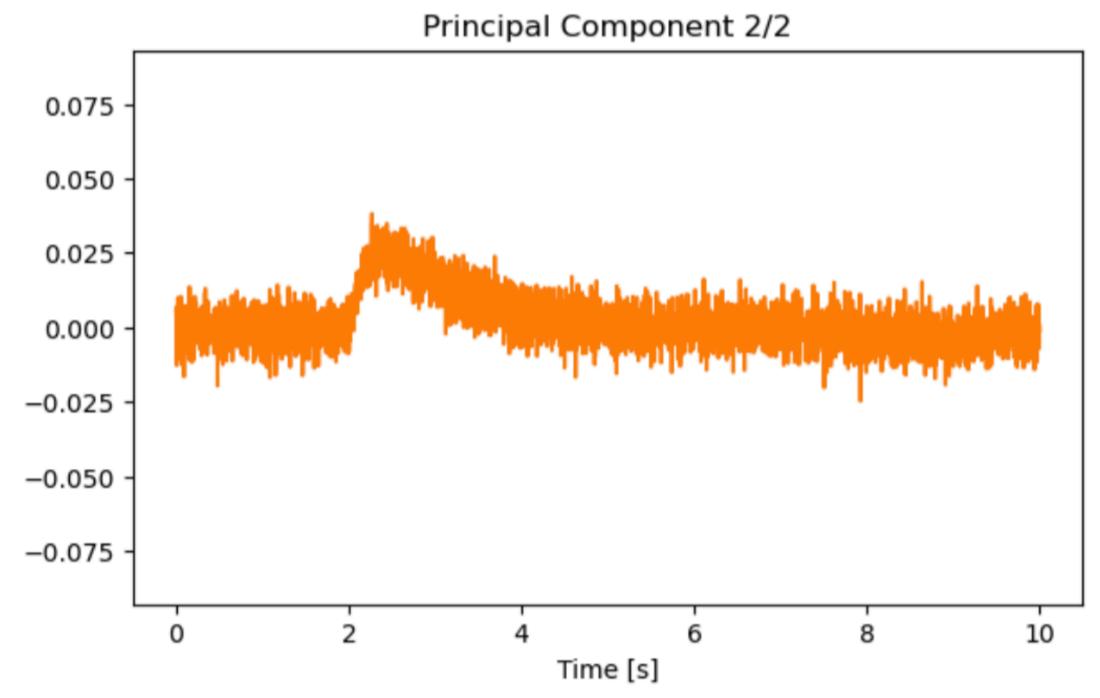


Now let's make something a little more realistic

Two bolometer time series over 10s with 3 components:

- I. Gaussian baseline fluctuations as a proxy for Johnson-Nyquist noise (independent in each channel)
- II. Sinusoidal acoustic/vibrational noise components at several frequencies (shared between channels)
- III. Small Winkelmann pulse at 2s (only appearing in one channel)

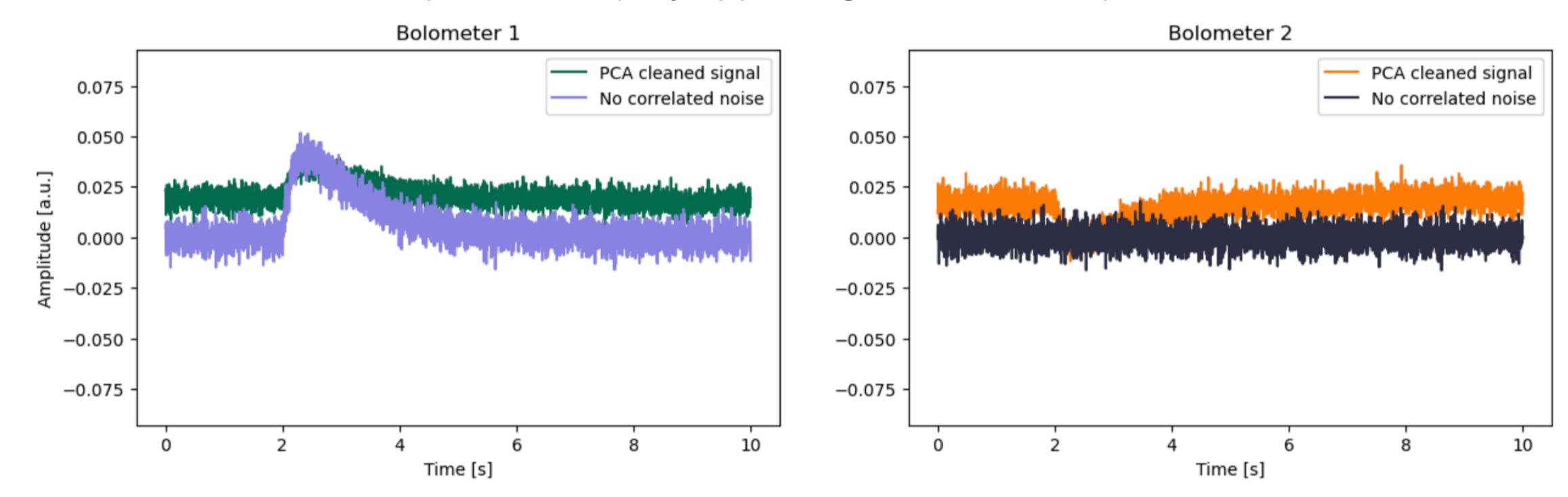




Now let's make something a little more realistic

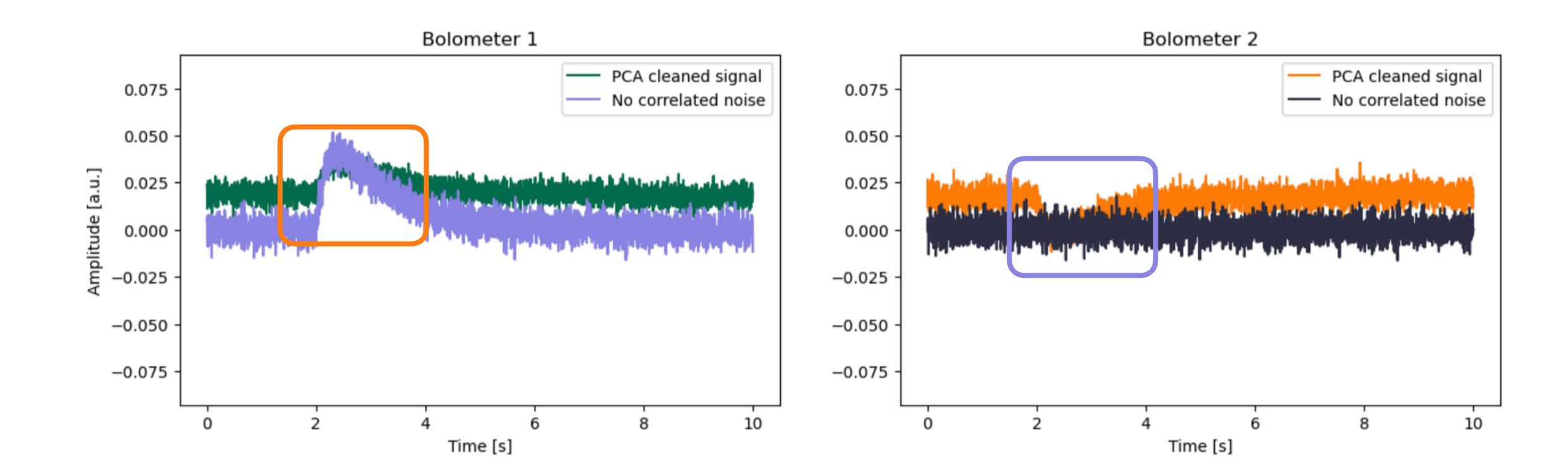
Two bolometer time series over 10s with 3 components:

- I. Gaussian baseline fluctuations as a proxy for Johnson-Nyquist noise (independent in each channel)
- Sinusoidal acoustic/vibrational noise components at several frequencies (shared between channels)
- III. Small Winkelmann pulse at 2s (only appearing in one channel)



Why does this happen?

- Essentially because the Winkelmann pulse happens to rise and fall on somewhat similar timescales as one or more of the acoustic noise sinusoid modes
- Some of that correlation ends up being attributed to the acoustic noise and is removed from both bolometer signals when we filter it out



Intuitively:

Independent component analysis (ICA) is similar to PCA, but with an additional condition that components must be statistically independent (i.e. not just uncorrelated). Start by proposing that observed data **X** is the sum of physical sources **S** with some mixing **M**

$$X = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_N \\ b_1 & b_2 & b_3 & \dots & b_N \end{bmatrix} = MS$$

Where
$$S = \begin{bmatrix} \eta_1 & \eta_2 & \eta_3 & \cdots & \eta_N \\ \zeta_1 & \zeta_2 & \zeta_3 & \cdots & \zeta_N \end{bmatrix}$$
 Pure, independent physics signals

As with PCA:

$$E[\eta] = E[\zeta] = 0$$
$$SS^{\top} = I$$

Assuming:

$$E[\eta] = E[\zeta] = 0$$

$$\frac{1}{N-1}XX^{\top} = C = \frac{1}{N-1}MM^{\top} = V\Lambda V^{\top}$$

As with PCA:

$$E[\eta] = E[\zeta] = 0$$

$$SS^{\top} = I$$

Assuming:
$$E[\eta] = E[\zeta] = 0$$

$$\frac{1}{N-1}XX^{\top} = C = \frac{1}{N-1}MM^{\top} = V\Lambda V^{\top}$$

But now we go further:

Because C is symmetric and positive definite, we can write

$$C = (V\Lambda^{1/2}V^{T})(V\Lambda^{1/2}V^{T})^{T}$$
 So $M = V\Lambda^{1/2}V^{T}$?

As with PCA:

$$E[\eta] = E[\zeta] = 0$$
$$SS^{\top} = I$$

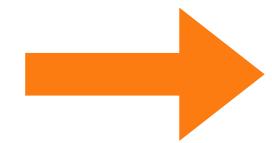
Assuming:
$$E[\eta] = E[\zeta] = 0$$

$$\frac{1}{N-1}XX^{\top} = C = \frac{1}{N-1}MM^{\top} = V\Lambda V^{\top}$$

But now we go further:

Because C is symmetric and positive definite, we can write

$$C = (V\Lambda^{1/2}V^{\top})(V\Lambda^{1/2}V^{\top})^{\top}$$
 So $M = V\Lambda^{1/2}V^{\top}$? Yes, but not uniquely



So
$$M = V\Lambda^{1/2}V^{\mathsf{T}}$$
?

uniquely

As with PCA:

$$E[\eta] = E[\zeta] = 0$$
$$SS^{\top} = I$$

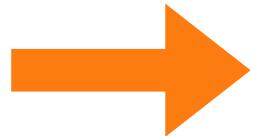
Assuming:
$$E[\eta] = E[\zeta] = 0$$

$$\frac{1}{N-1}XX^{\top} = C = \frac{1}{N-1}MM^{\top} = V\Lambda V^{\top}$$

But now we go further:

Because C is symmetric and positive definite, we can write

$$C = (V\Lambda^{1/2}V^{\top})(V\Lambda^{1/2}V^{\top})^{\top}$$
 So $M = V\Lambda^{1/2}V^{\top}$? Yes, but not uniquely



uniquely

More generally:

For any orthogonal matrix Q

$$C = (V\Lambda^{1/2}Q)(V\Lambda^{1/2}Q)^{\top} = V\Lambda V^{\top} \Rightarrow \therefore M = V\Lambda^{1/2}Q$$

The goal with ICA:

$$X = MS$$

$$= (V\Lambda^{1/2}Q)S$$

$$\therefore S = (Q^{T}\Lambda^{-1/2}V^{T})X$$

The goal with ICA:

$$X = MS$$

$$= (V\Lambda^{1/2}Q)S$$

$$\therefore S = (Q^{T}\Lambda^{-1/2}V^{T})X$$

, Solve for Q^{T} such that components in data matrix S are statistically independent

• A number of algorithms already exist that handle this, including FastICA in the scikit-learn package

The goal with ICA:

$$X = MS$$

$$= (V\Lambda^{1/2}Q)S$$

$$\therefore S = (Q^{T}\Lambda^{-1/2}V^{T})X$$

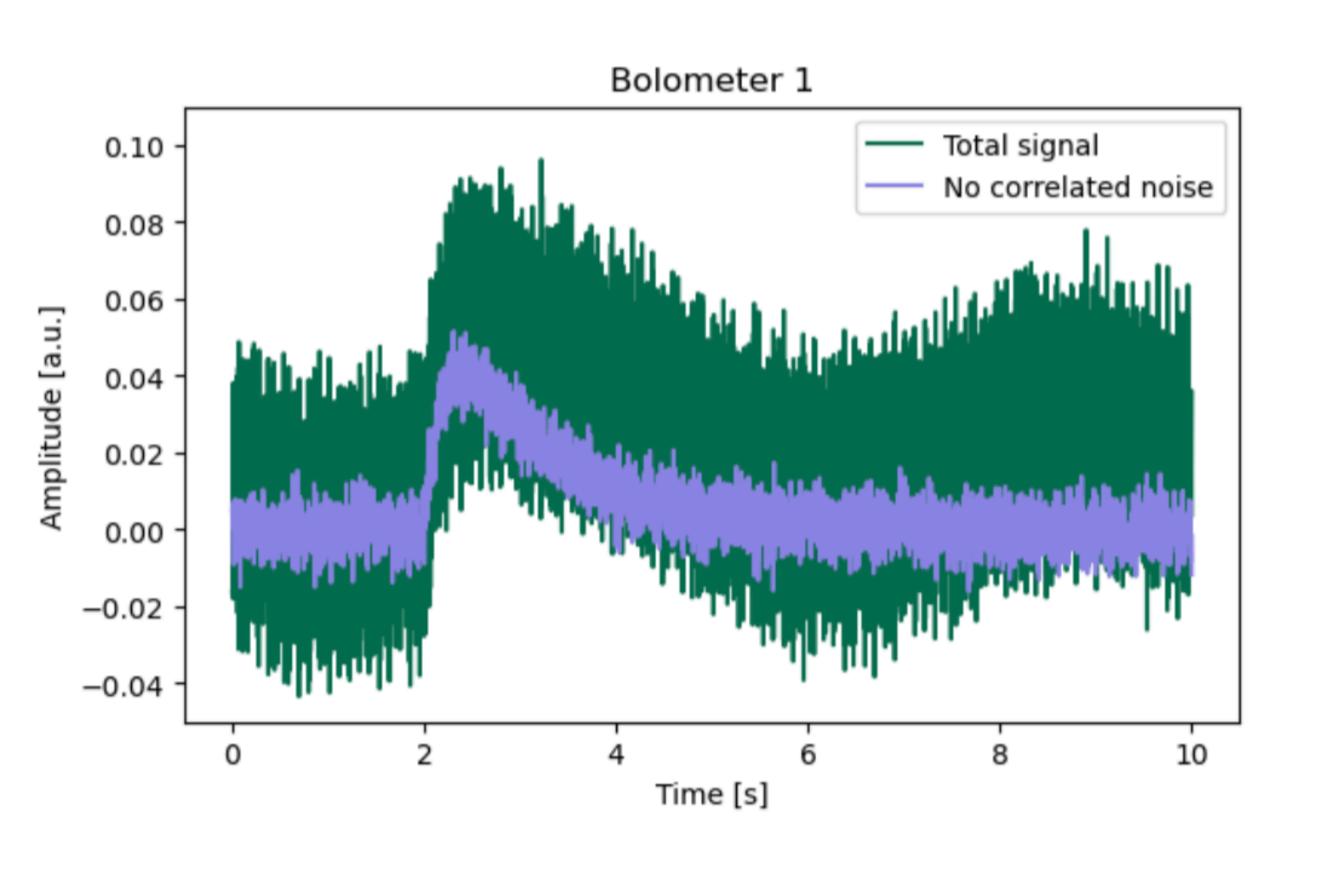
Solve for Q^{T} such that components in data matrix S are statistically independent

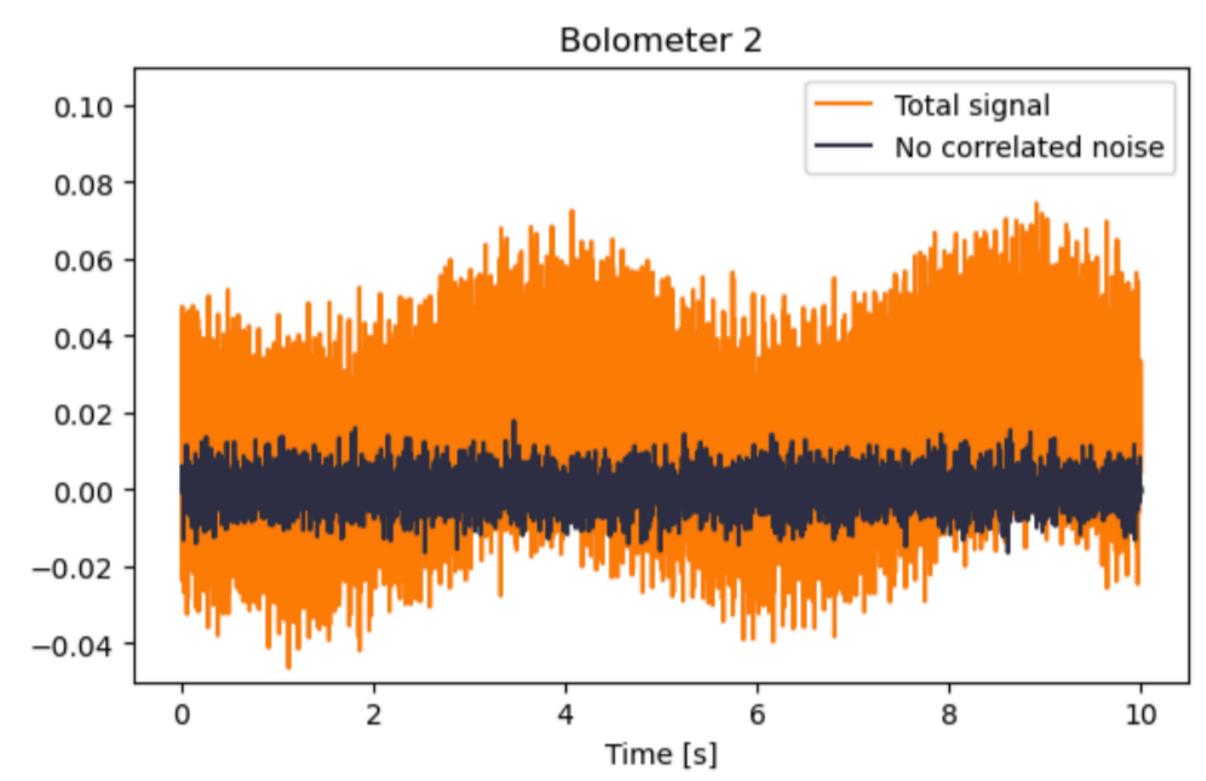
• A number of algorithms already exist that handle this, including FastICA in the scikit-learn package

What does this mean?

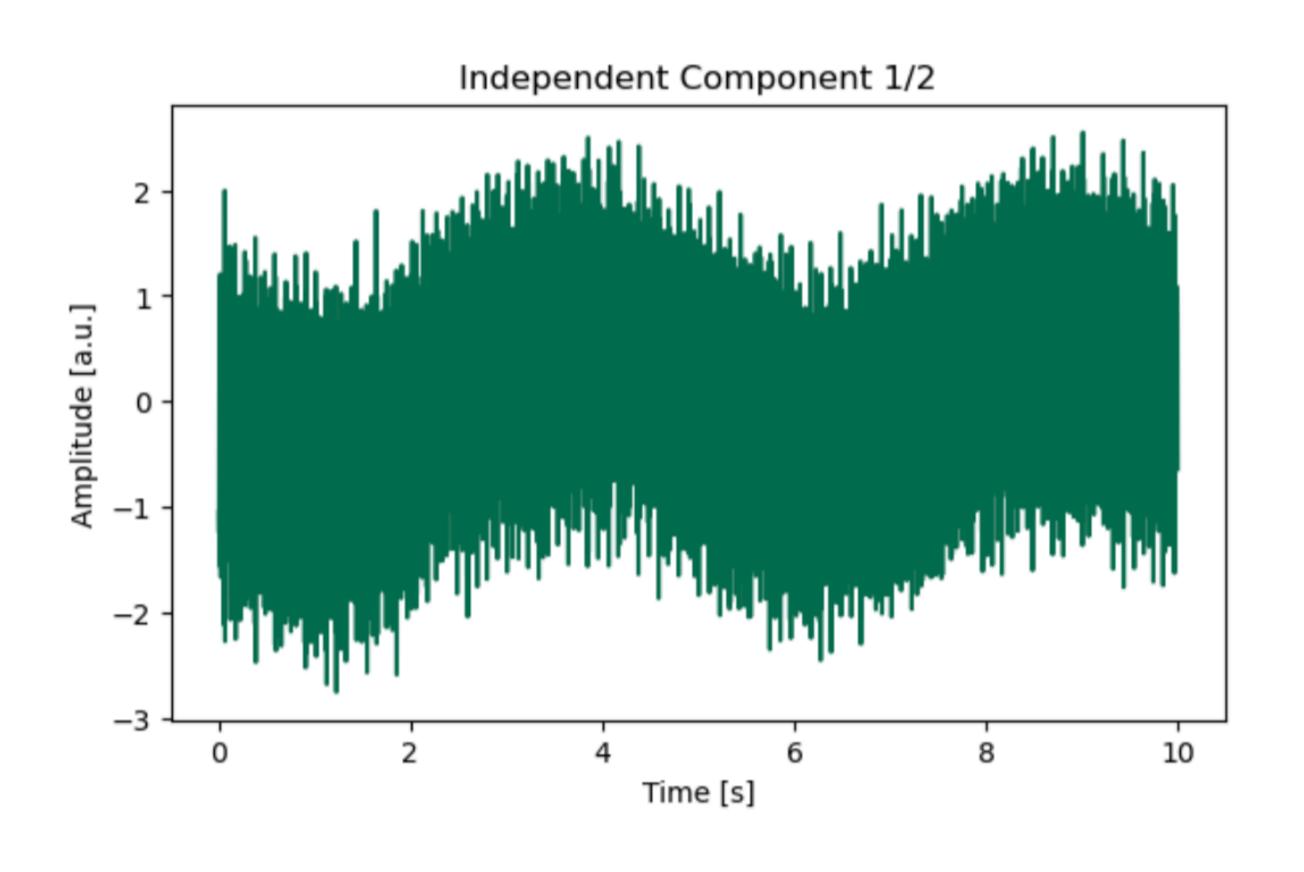
In PCA, we rotate into a data-space where variance is maximised (i.e. minimising off-diagonal elements of the covariance matrix), resulting in principal components that are *uncorrelated* but not necessarily *independent*. To achieve the latter, we need to maximise higher-order central moments alongside variance.

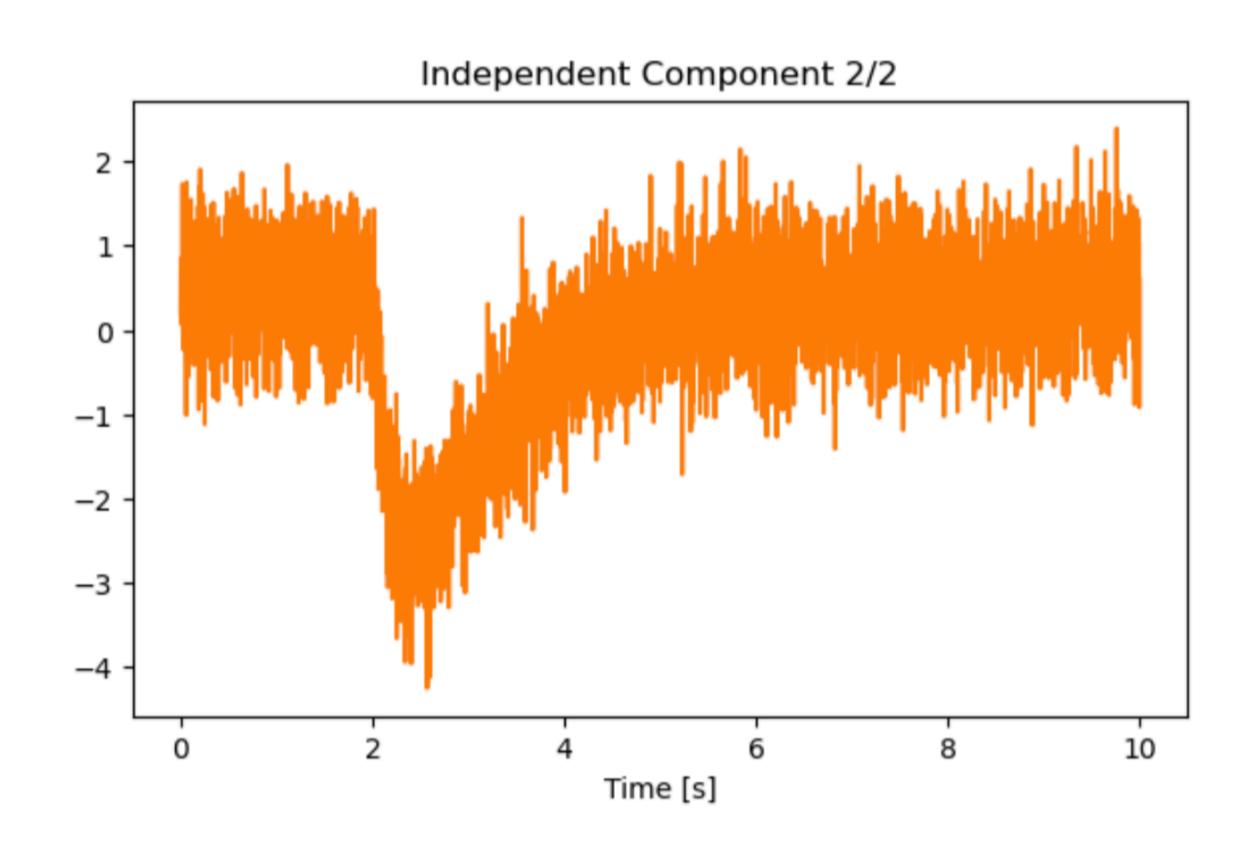
Let's try ICA on the same test setup as PCA



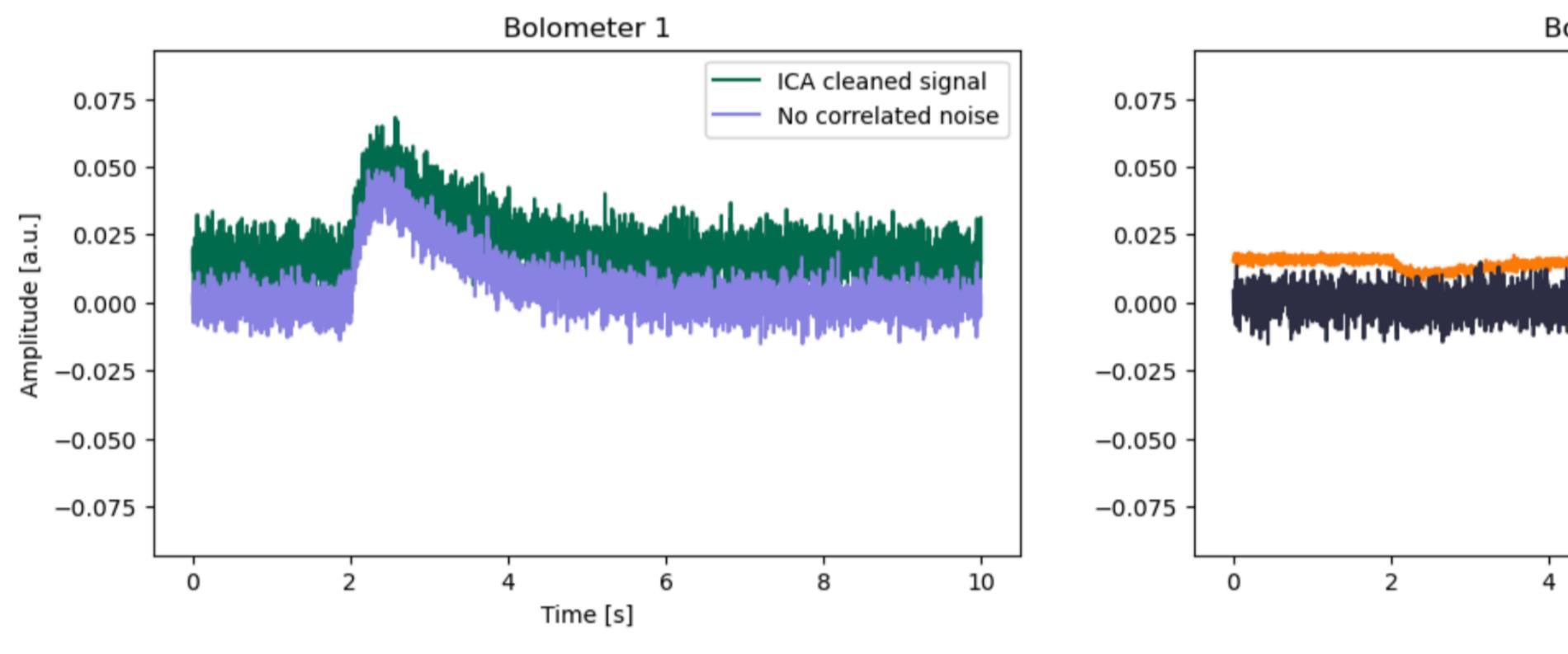


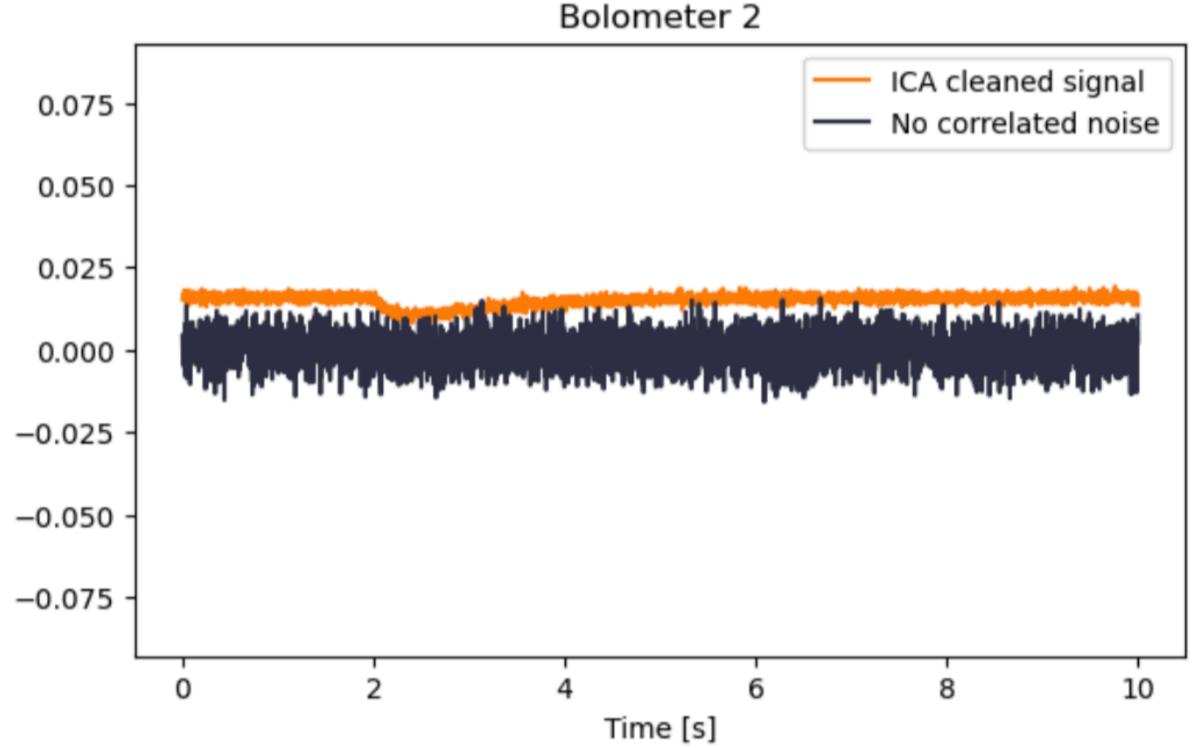
Let's try ICA on the same test setup as PCA

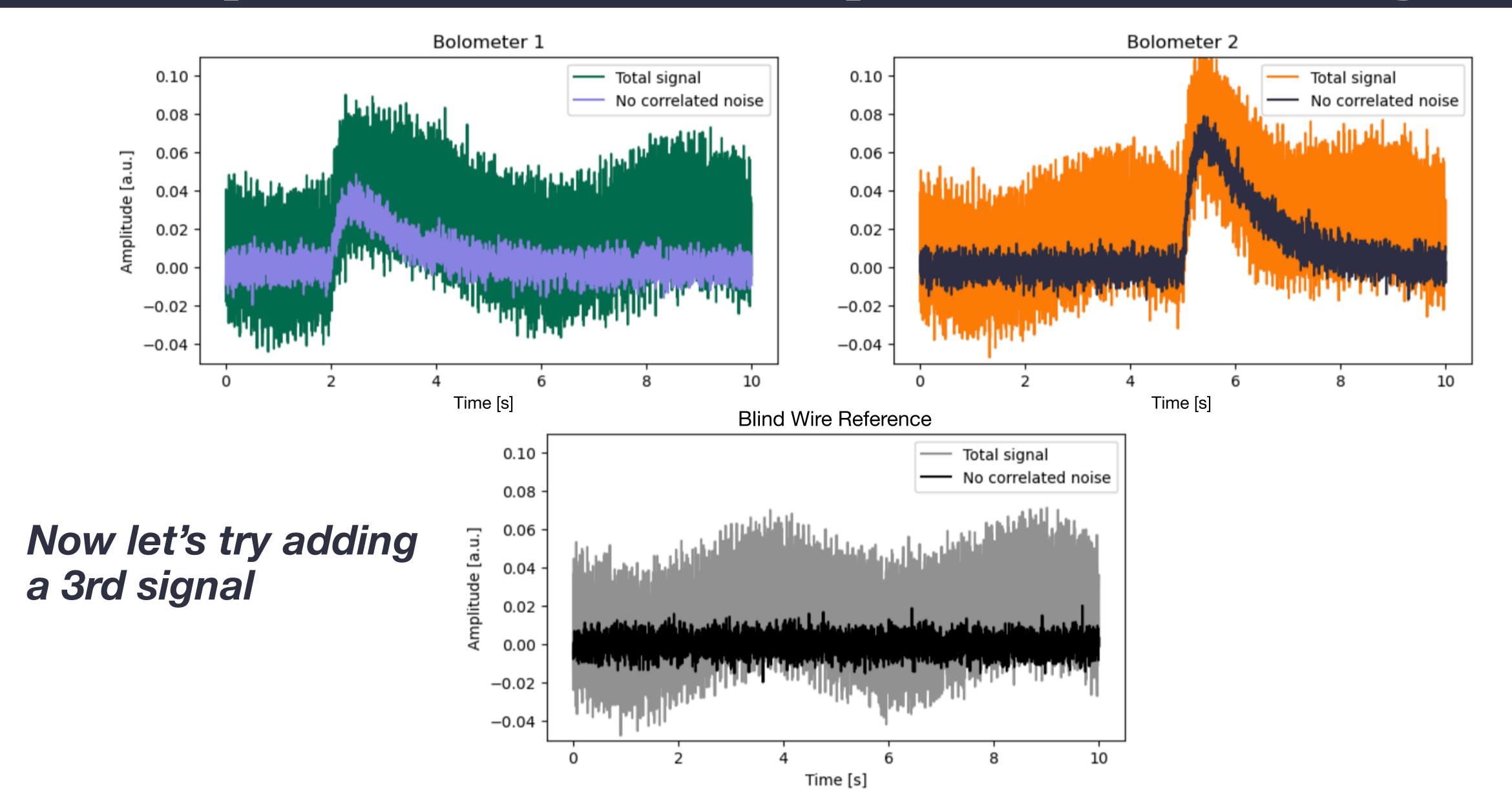




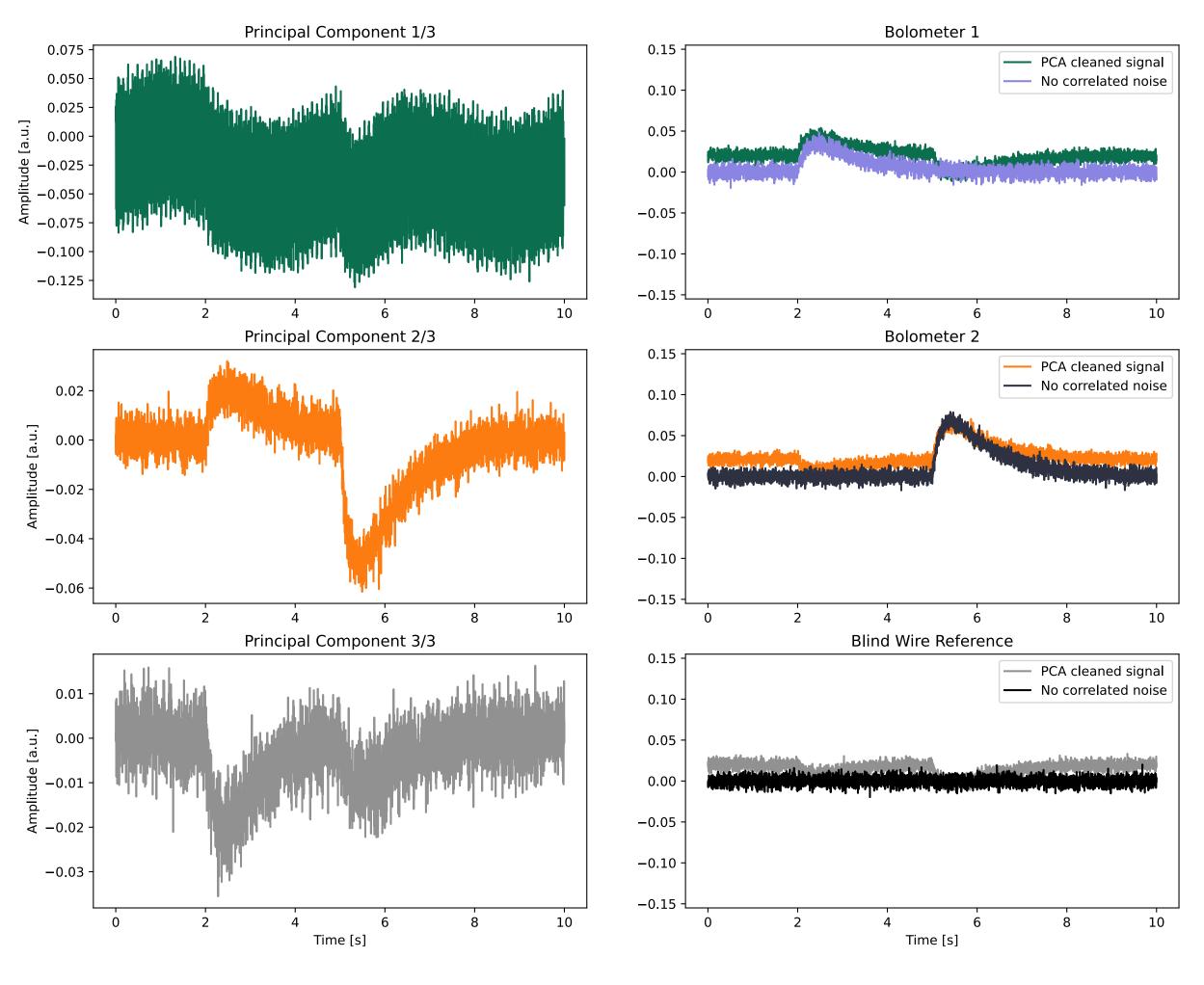
Let's try ICA on the same test setup as PCA



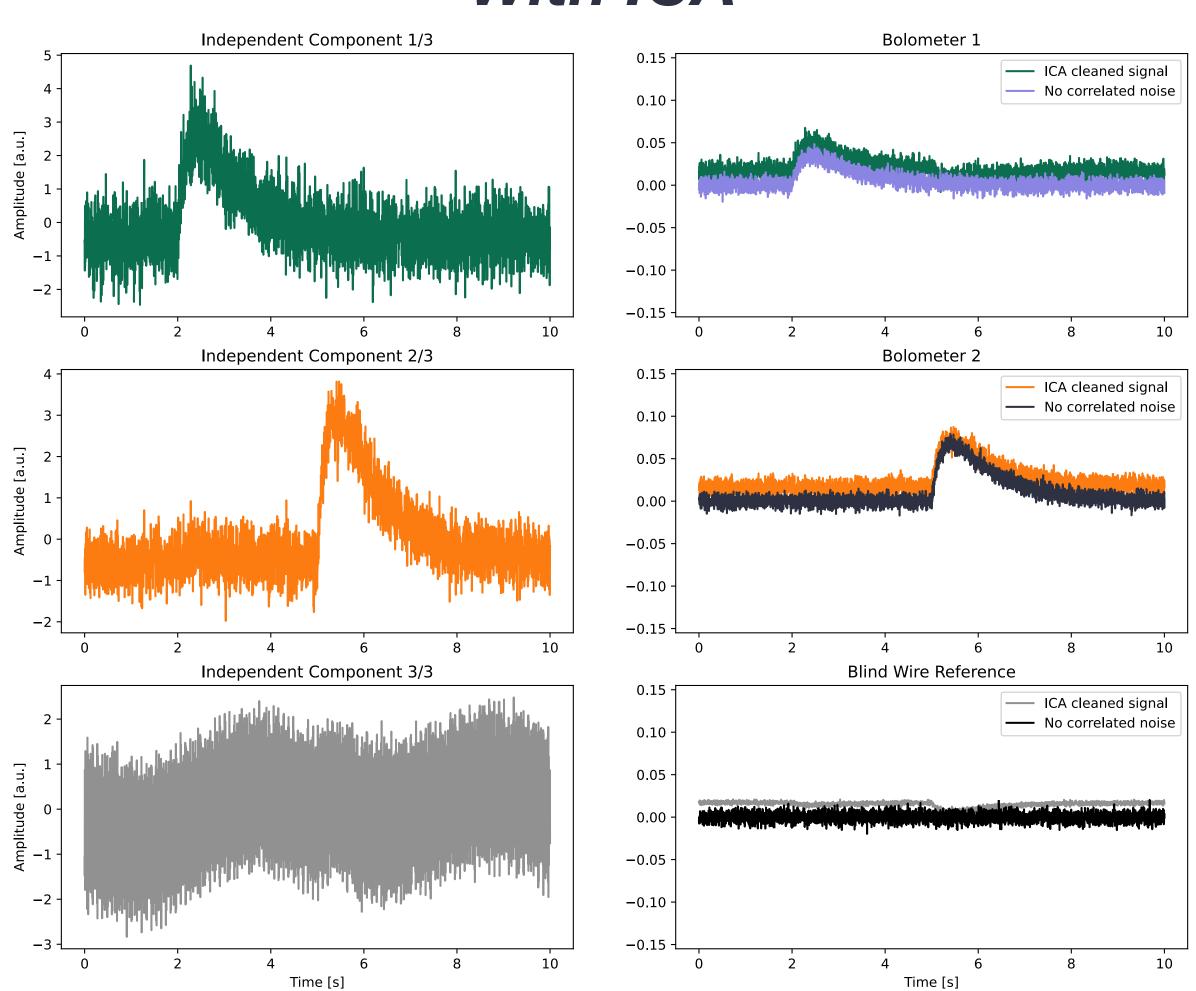


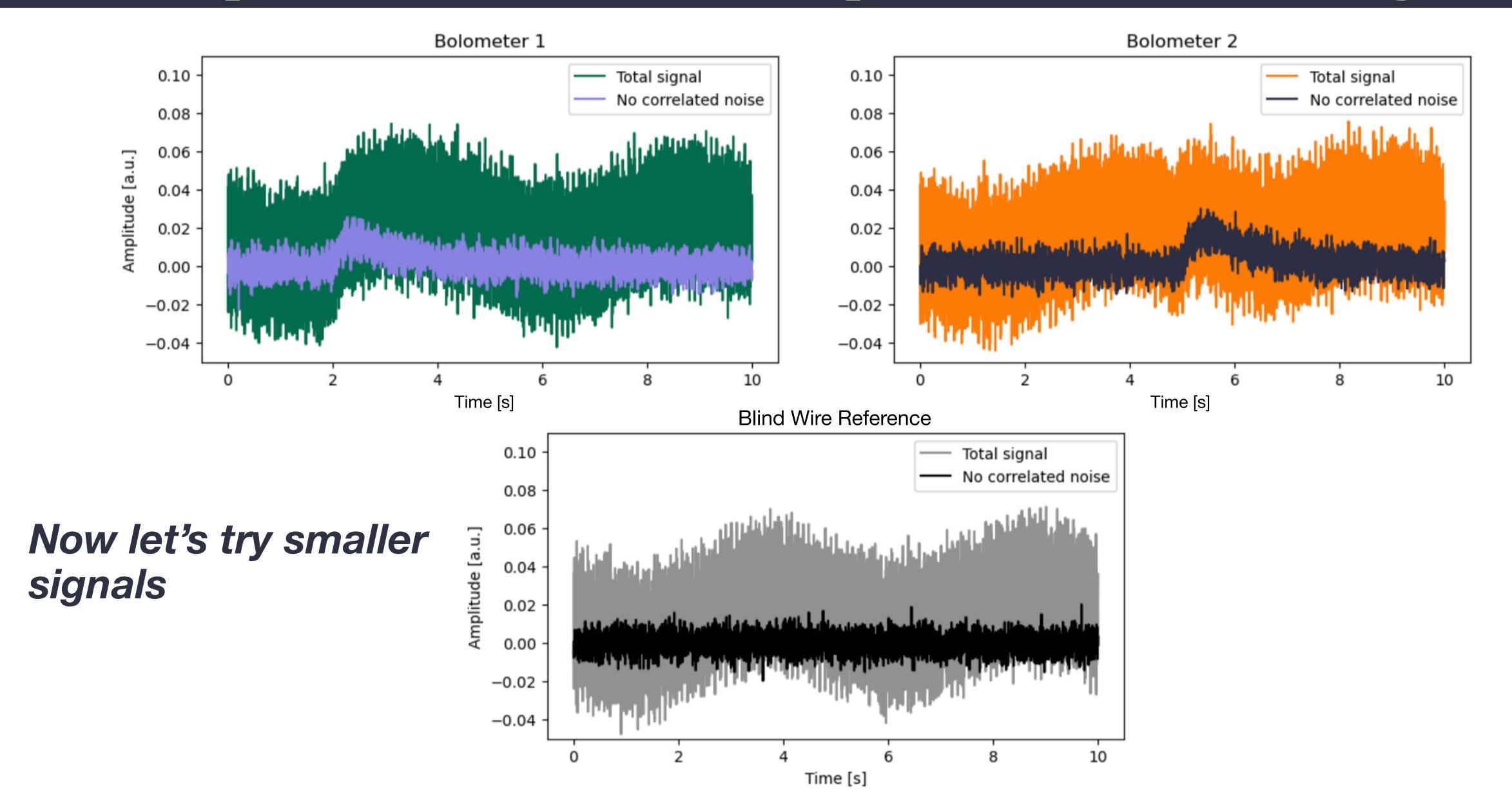


With PCA

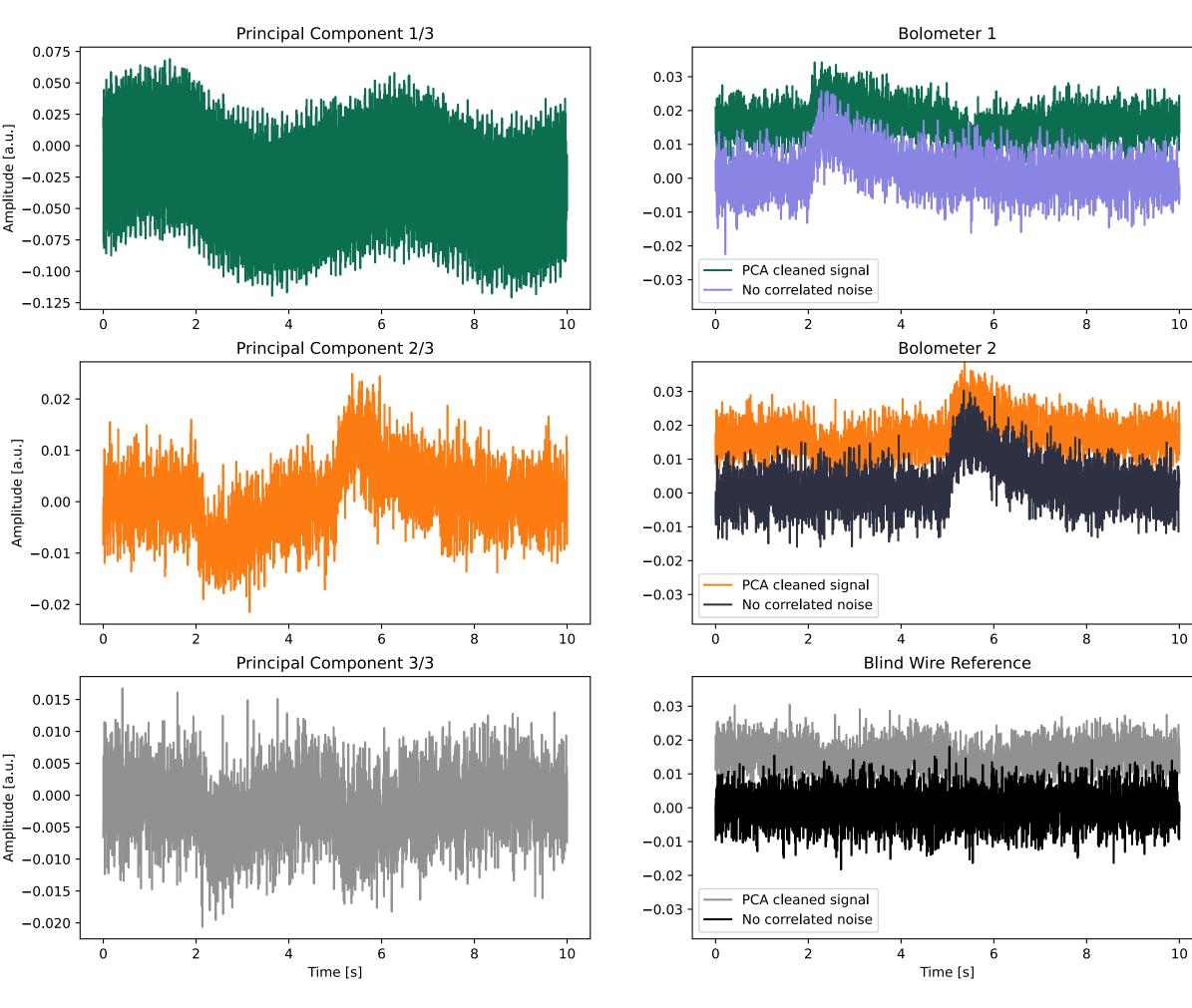


With ICA

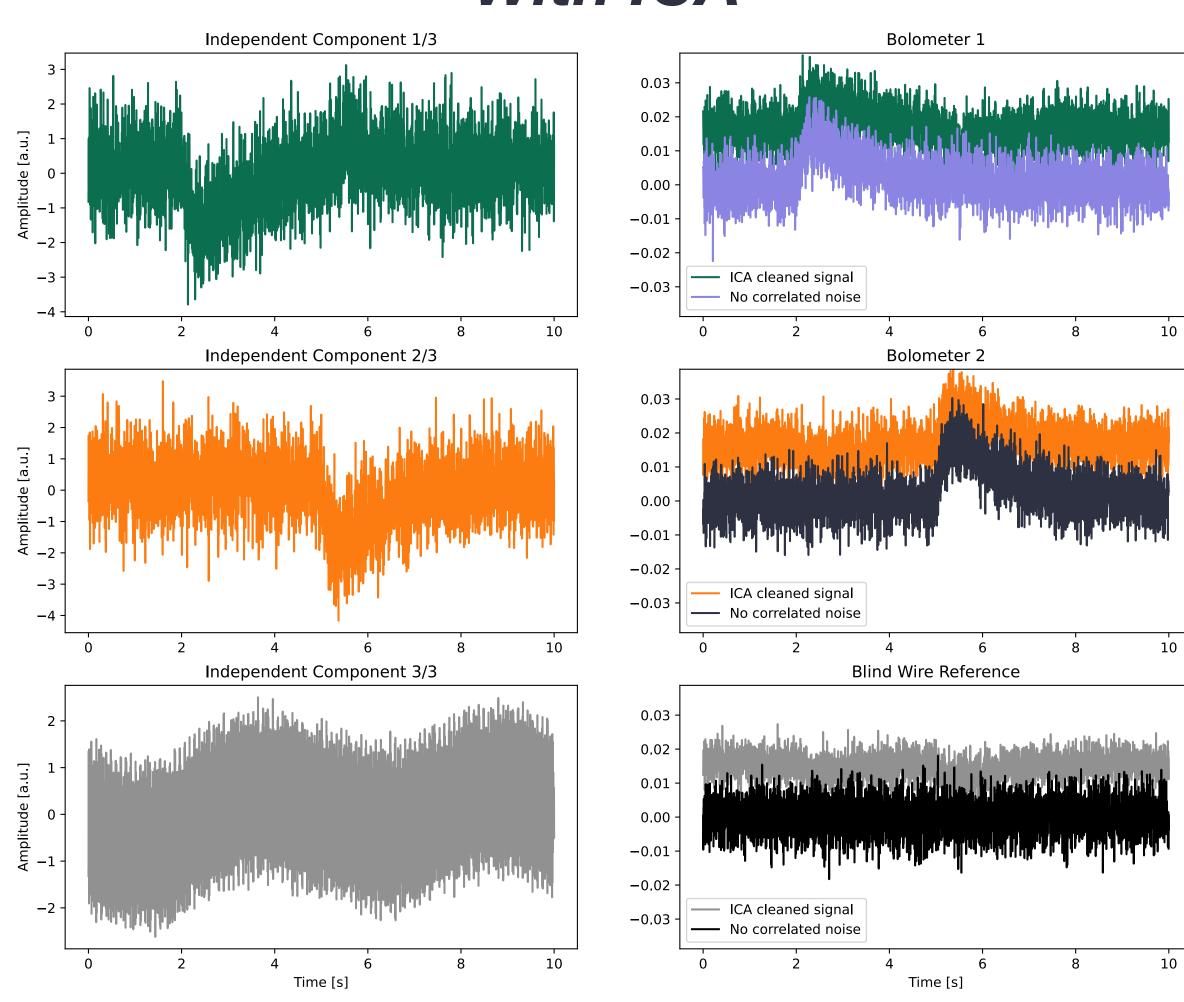


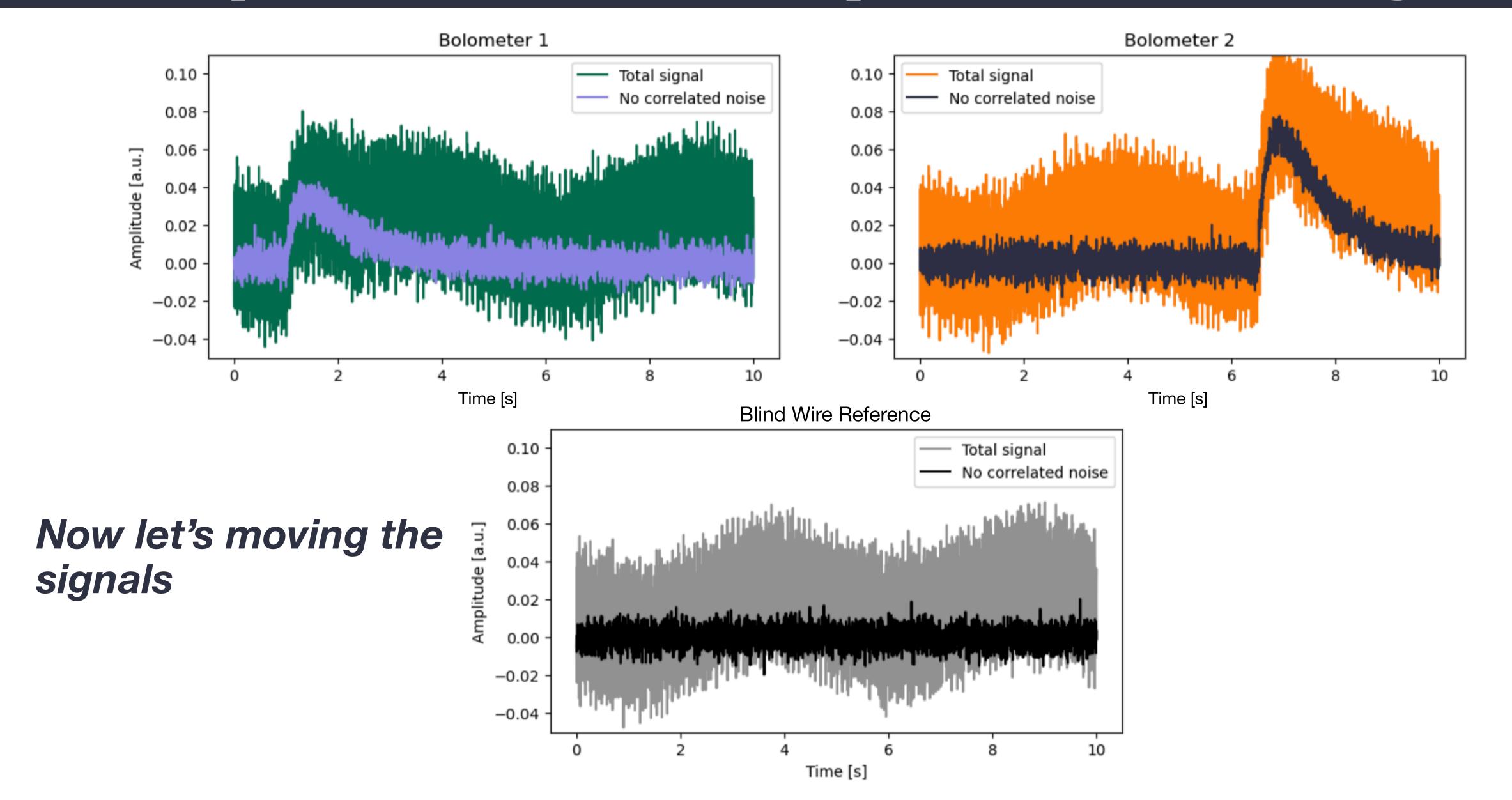


With PCA

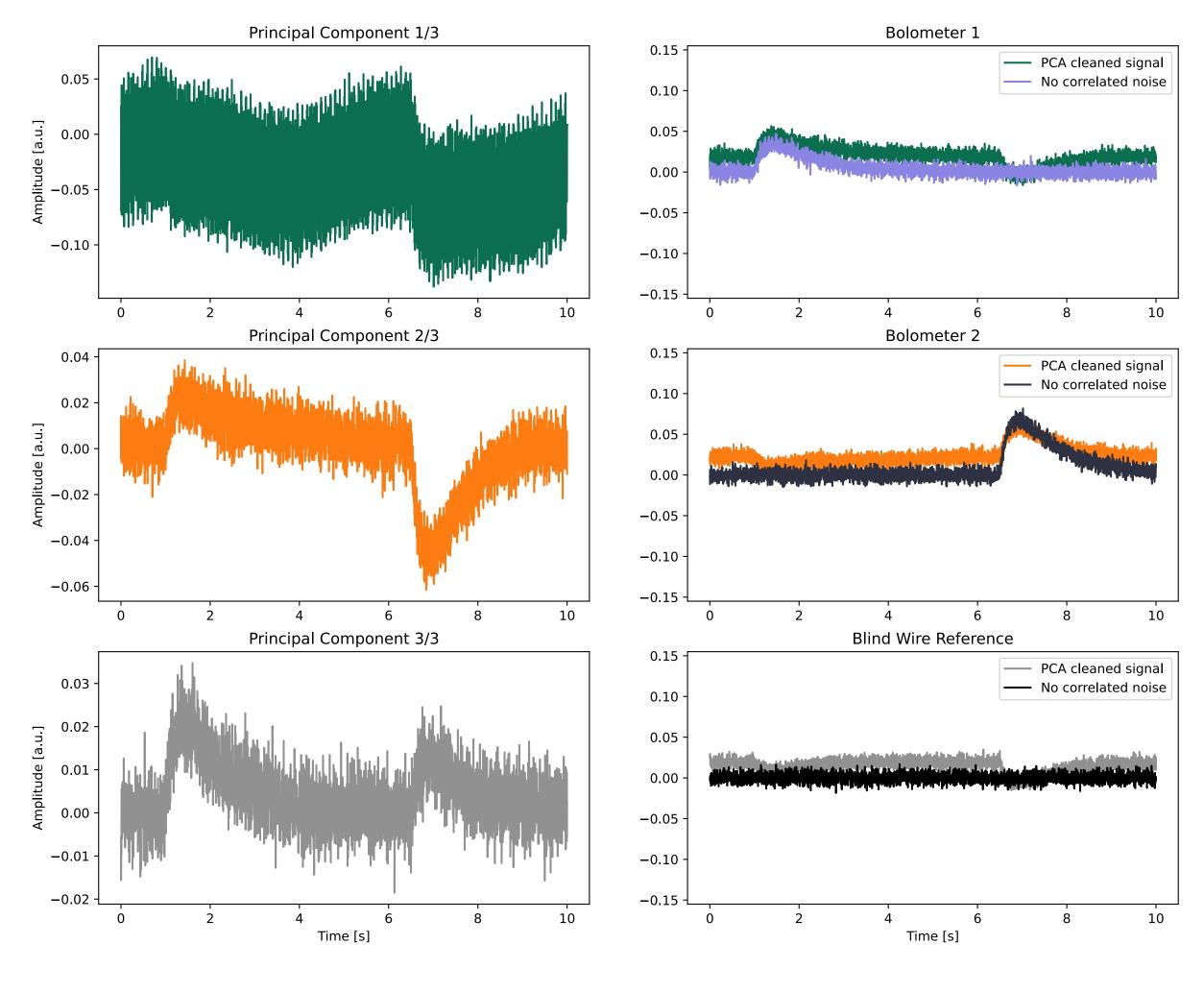


With ICA

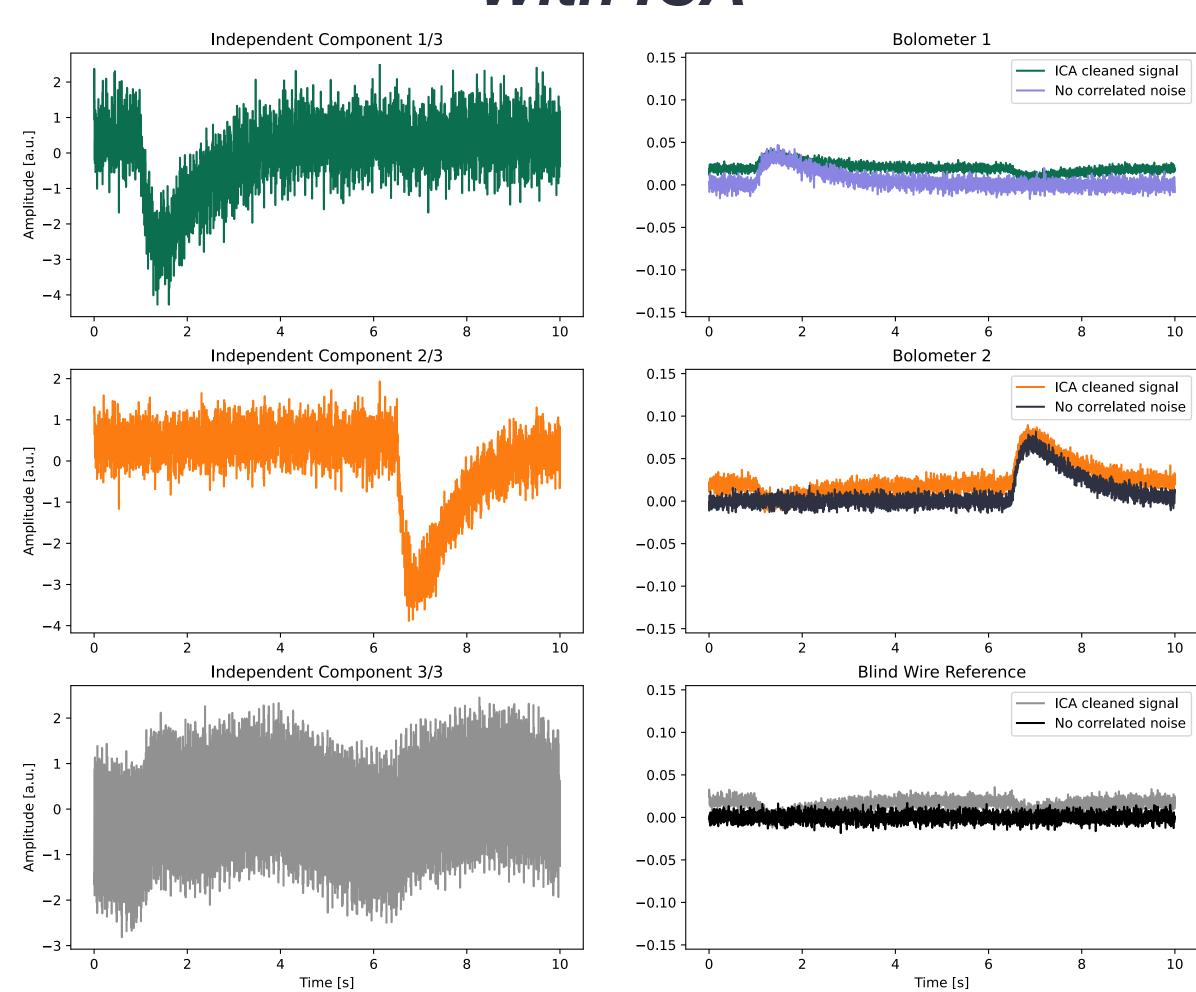


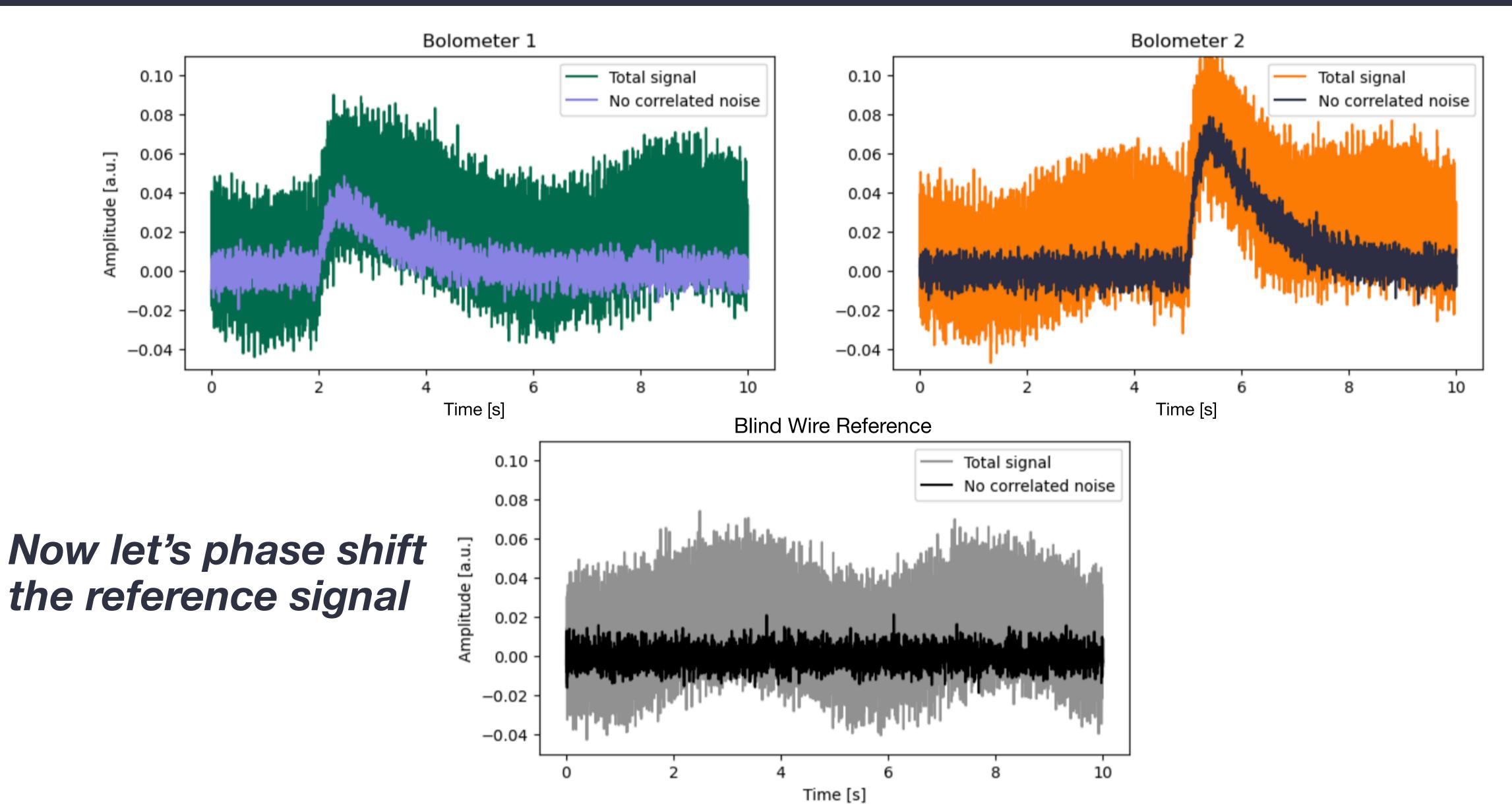


With PCA

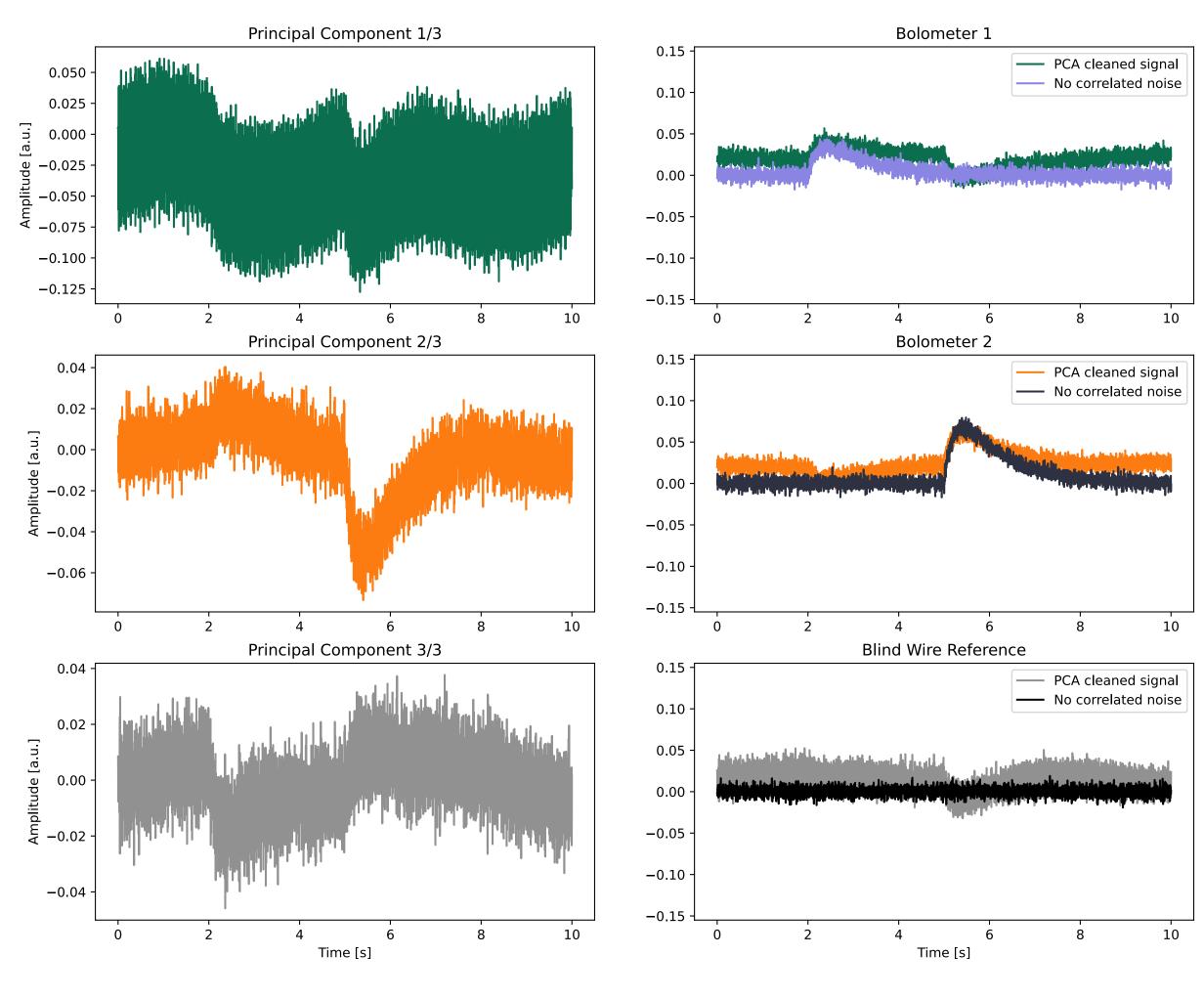


With ICA

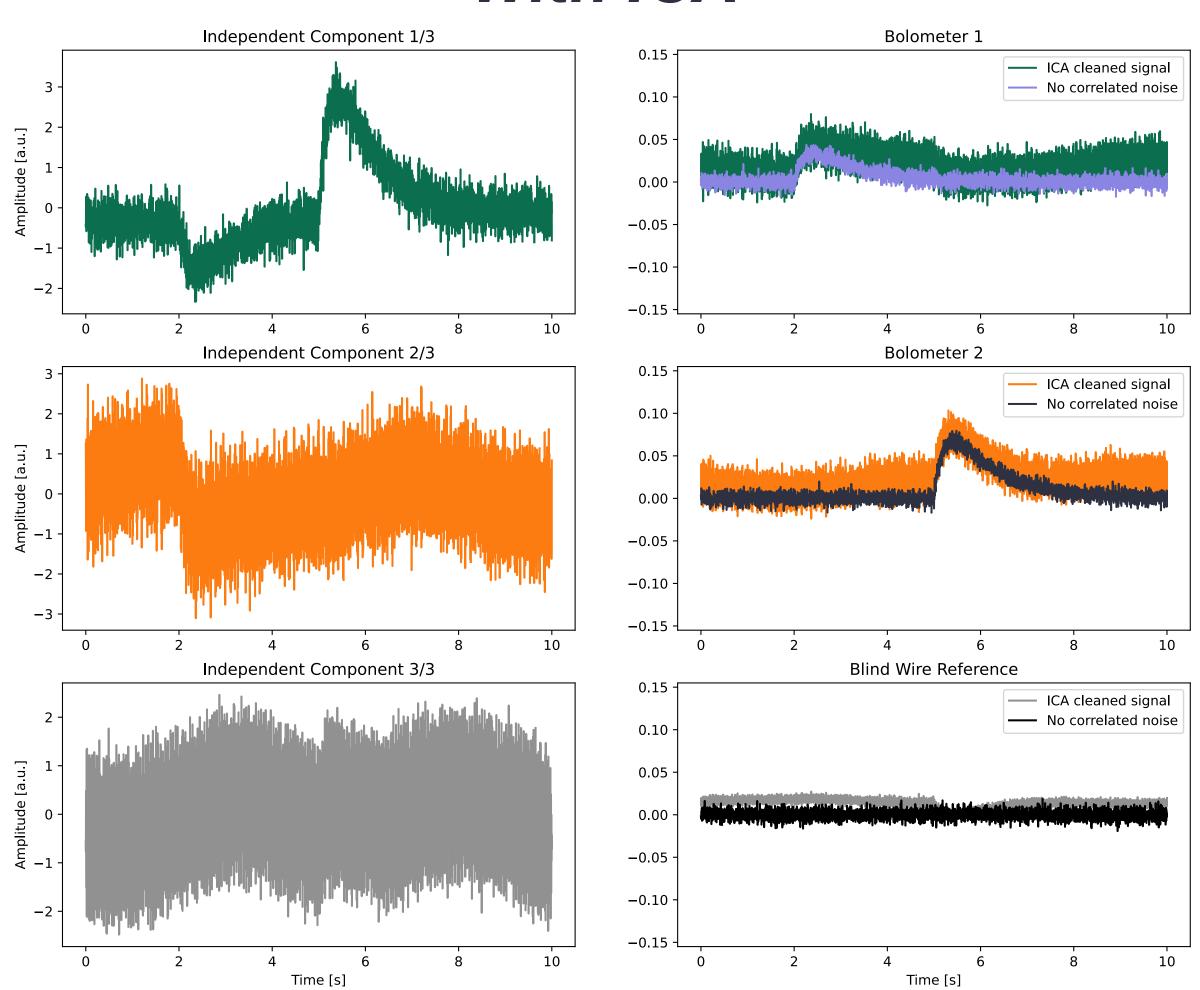




With PCA



With ICA



Summary

- Scintillation photons can produce photoelectrons inside the bolometer leading to many small heating events
- Acoustic/vibrational noise can be picked up in multiple wires in the same dilution fridge: can we subtract this out? Yes!
 - Caveat 1: using ICA may not be perfect at isolating correlated noise, so we'd have to add data quality cuts
 - Caveat 2: we have to make sure signals are in phase with each other, which can be done using Rob's work
- Extending ICA to Spectral Matching ICA (SMICA) also provides us an opportunity to cleanly measure acoustic/vibrational noise in-situ