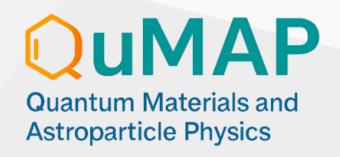
Heating via nuclear scattering

Jack D. Shergold



Contents

Sub-threshold scattering

Heating channels

• Progress: Where are we now?

Contents

- ullet Sub-threshold scattering \leftarrow
- Heating channels
- Progress: Where are we now?

If our DM is too light to break sufficiently many Cooper pairs, can we detect it?

Perhaps! We have access to time-series temperature data.

Suppose we have no *dark* channel for heating:

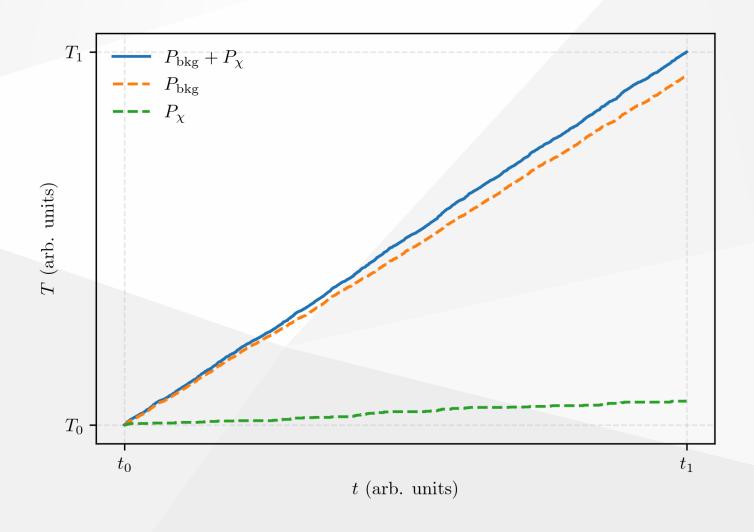
$$rac{dT}{dt} \sim P_{
m bkg}(t),$$

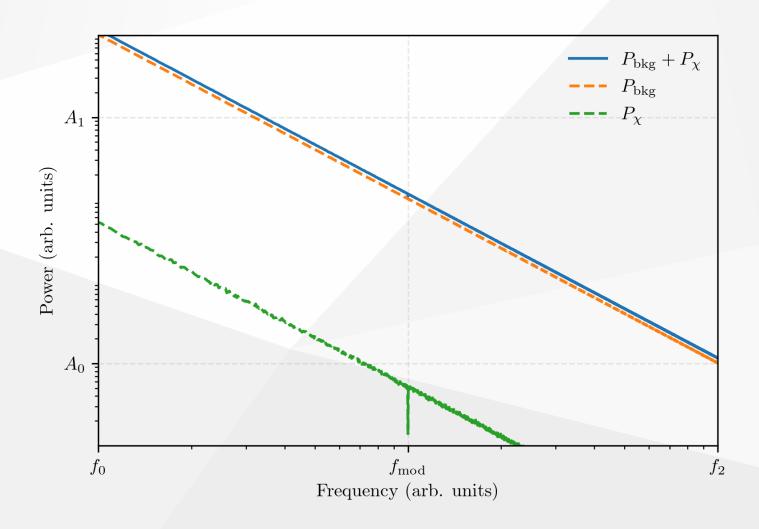
with $P_{
m bkg}$ some background heating power (e.g. cosmic rays, surroundings).

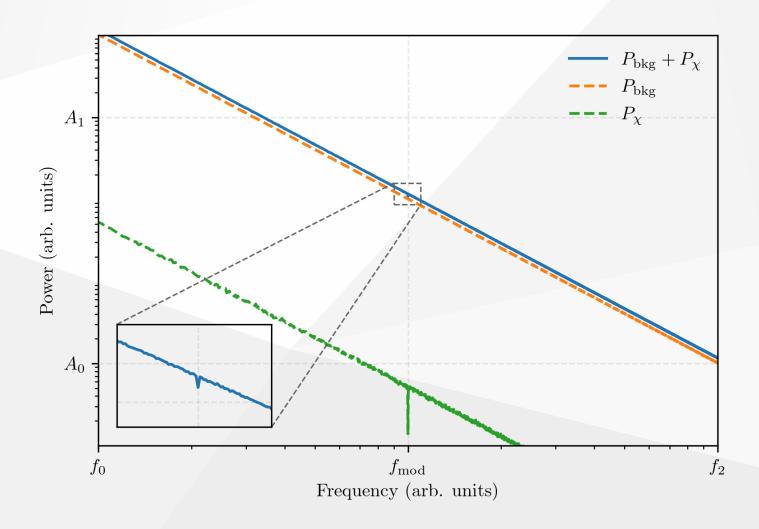
The presence of DM scattering adds an additional heating channel:

$$rac{dT}{dt} \sim P_{
m bkg}(t) + P_{\chi}(t),$$

where one or both of these terms may be time-dependent.







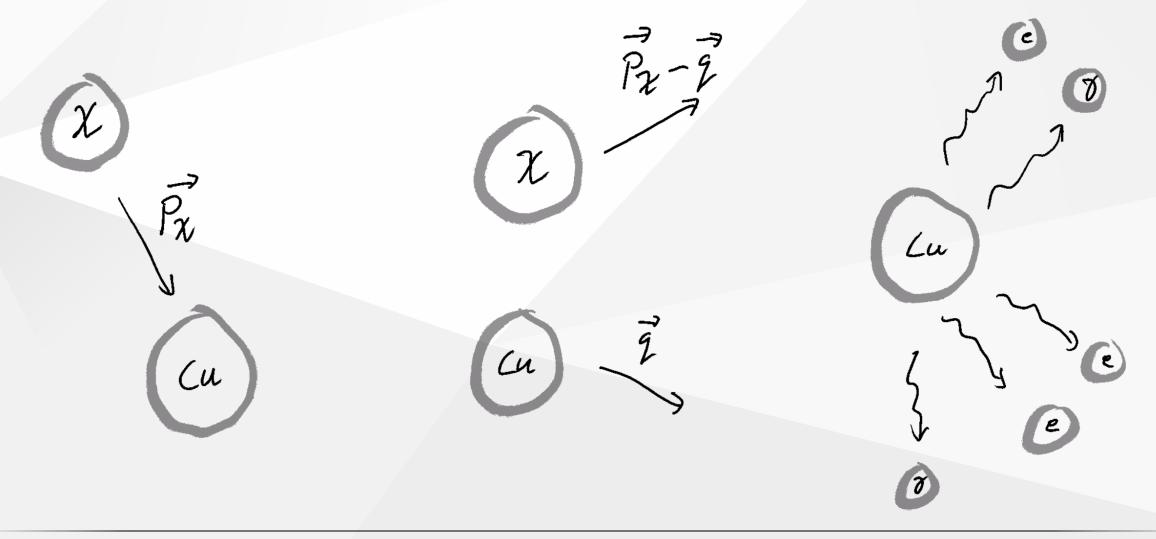
Contents

- Sub-threshold scattering
- Heating channels ←
- Progress: Where are we now?

Heating Sources

• Direct scattering on electrons (See Tania's talk)

- Scattering on nuclei:
 - Nuclear recoil
 - The Migdal effect



In the free nucleus picture:

$$Q\simeq E_N\simeq rac{q^2}{2m_N}$$

For DM of mass m_{χ} :

$$q \simeq m_\chi v_{
m DM}$$

In the free nucleus picture:

$$Q\simeq rac{m_\chi^2 v_{
m DM}^2}{2m_N}$$

For a copper nucleus:

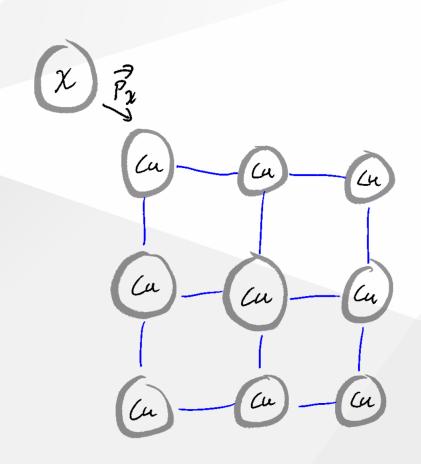
$$Q(m_\chi=10\,{
m MeV})\simeq 0.8\,{
m meV}$$

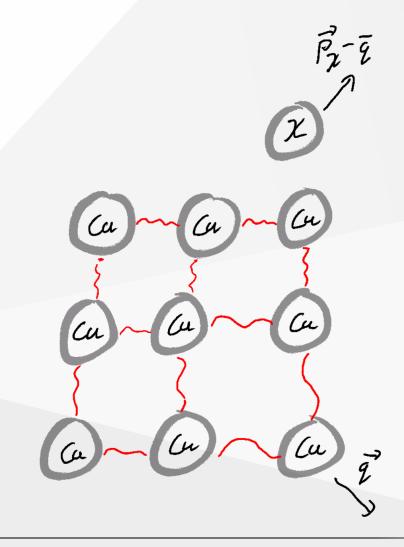
The heating rate is found via:

$$P_{
m nuc} = \int dE_N \, rac{dR_{
m nuc}}{dE_N} E_N$$

In this free nucleus picture:

$$rac{dR_{
m nuc}}{dE_N} \sim \int d^3q\, d^3p_f\, \delta(ec p_i - ec p_f^{\prime} - ec q) \ldots$$





Taking into account collective effects:

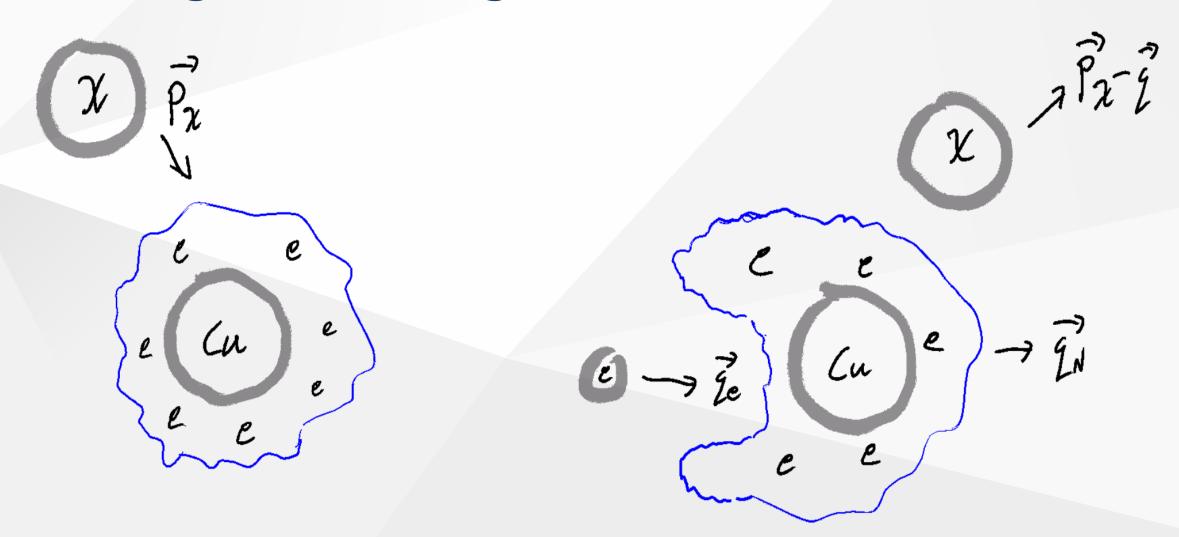
$$\delta(ec{p}_i-ec{p}_f-ec{q}) o F(|ec{p}_i-ec{p}_f-ec{q}|),$$

With a simple crystal form factor:

$$F(q) \sim \exp\left(-rac{q^2}{2m_Nar{\omega}_{
m ph}}
ight),$$

with $ar{\omega}_{
m ph} \sim {\cal O}(30\,{
m meV}).$

Heating Sources: Migdal Effect



Heating Sources: Migdal Effect

In Migdal events, energy is efficiently transferred to the electrons:

$$\omega_e \simeq E_{
m bind} \sim {\cal O}({
m eV}),$$

assuming this ends up as heat

$$Q \simeq E_{\rm bind}$$
.

Much larger than nuclear recoil!

Heating Sources: Migdal Effect

But there's an issue:

$$P_{
m Migdal} = \int d\omega_e \, rac{dR_{
m Migdal}}{d\omega_e} \, \omega_e,$$

where now:

$$rac{dR_{
m Migdal}}{d\omega_e} = \int dE_N rac{dR_{
m nuc}}{dE_N} \mathcal{P}_{
m Migdal}(\omega_e|E_N),$$

and
$$\mathcal{P}_{\mathrm{Migdal}} \sim 10^{-4} - 10^{-2}.$$

Heating Sources

As a rough estimate, $P_{
m Migdal} \simeq P_{
m nuc}$ around $m_\chi = 10\,{
m MeV}.$

Need to consider both effects.

Contents

- Sub-threshold scattering
- Heating channels
- Progress: Where are we now? ←

Progress: Overview

- Theory: Done!
 - We have the rates, Migdal probability.

- Computation: On its way.
 - Nuclear recoil channel, not yet programmed.
 - ...but, get it for free from Migdal.
 - Migdal computation is tough.

Progress: Migdal Effect

The Migdal probability scales like:

$$\mathcal{P}_{ ext{Migdal}} \sim rac{1}{\omega_e^4} ext{Im} \left[-rac{1}{\epsilon(q,\omega_e)}
ight],$$

which is susceptible to divergences as $\omega_e o 0$.

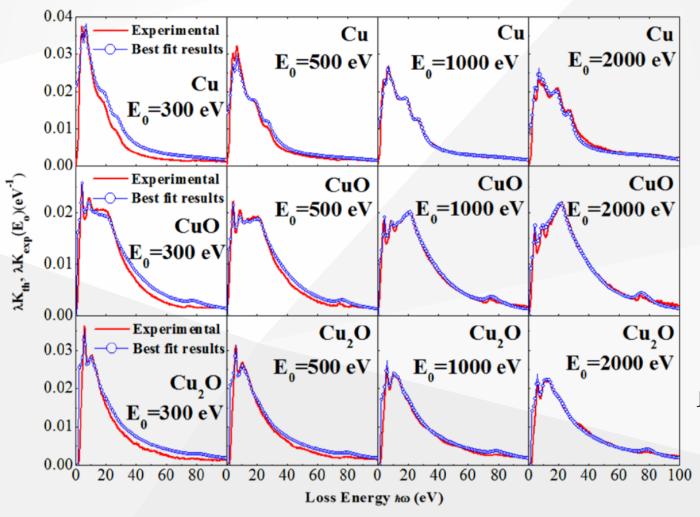
Progress: Migdal Effect

We need an ELF that properly captures the low ω_e behaviour.

The Lindhard method is oversimplified, treating the electron gas as a non-interacting system.

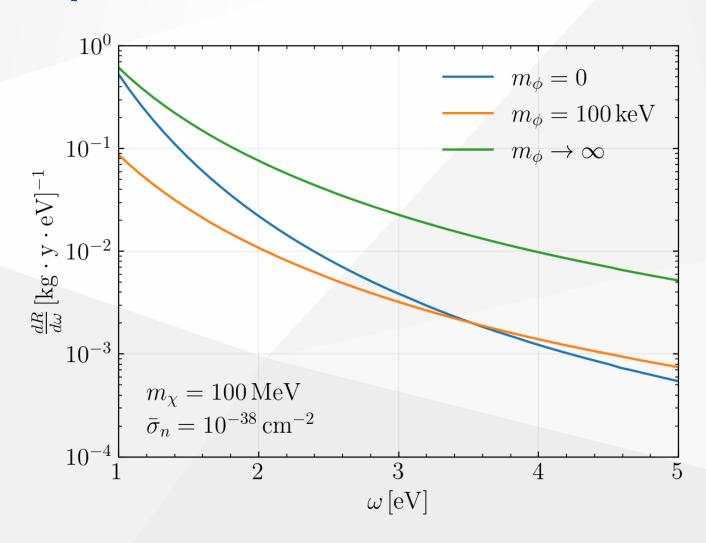
Fits to experimental data fail at properly capturing the low ω_e behaviour.

Progress: Experimental Fits

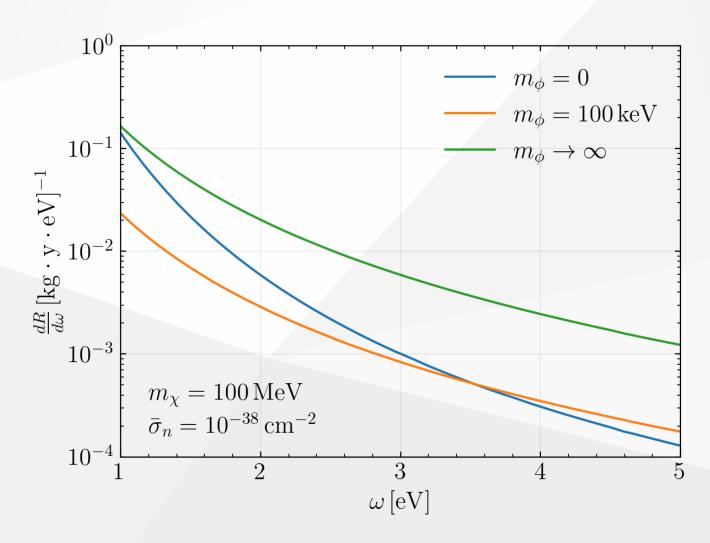


J. Phys.: Condens. Matter 24 (2012) 175002 (8pp).

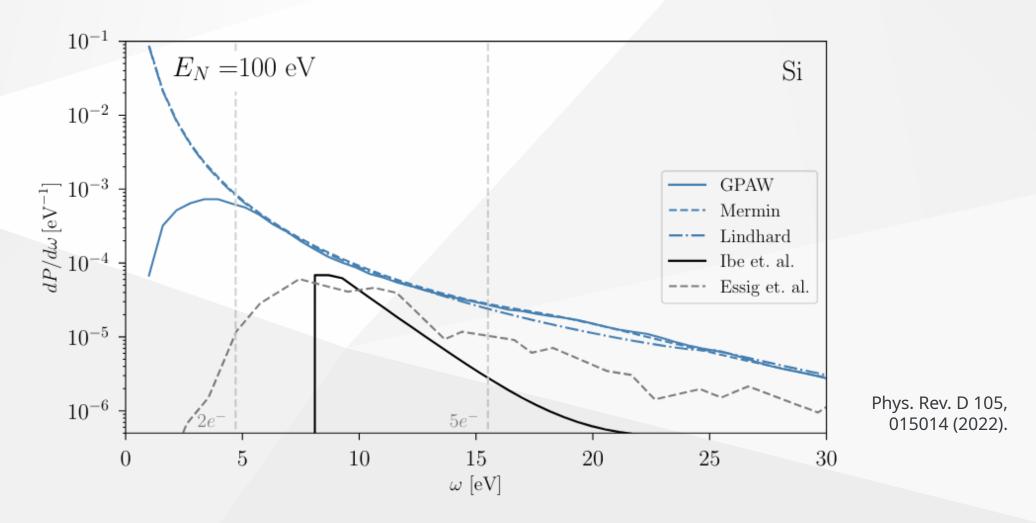
Progress: Experimental ELF



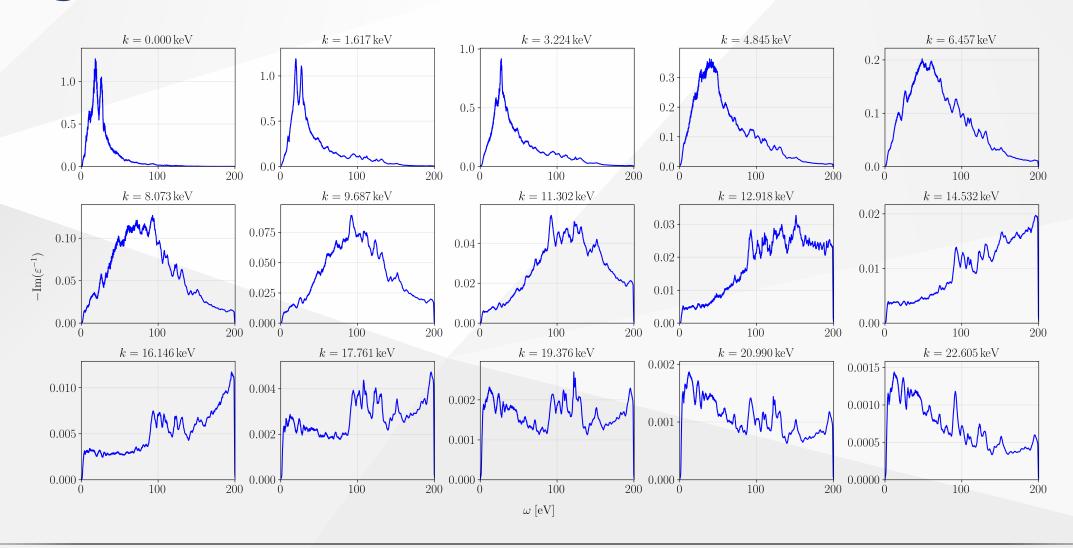
Progress: Lindhard ELF



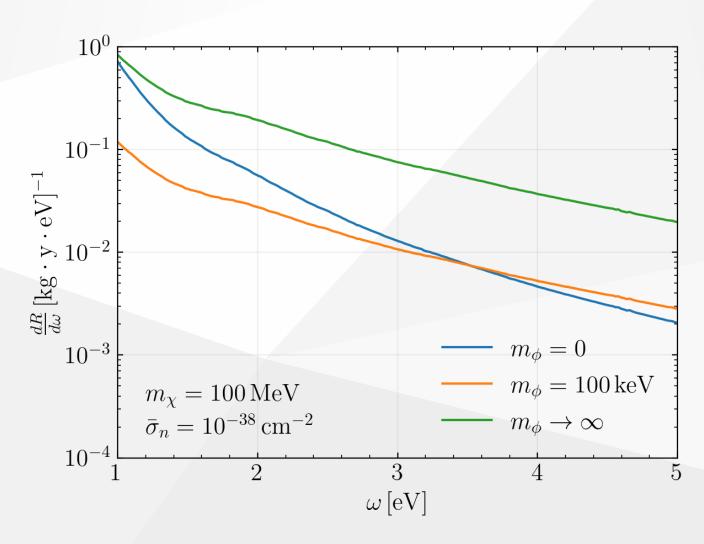
Progress: Solution?



Progress: GPAW ELF



Progress: DFT ELF



Progress: What's next?

This took around half a day to run.

What's next? We need to:

- Push to higher q, ideally up to $q\sim 30\,{
 m keV}$. This is expensive, $t\sim q_{
 m max}^{4.76}$. Push to denser $\vec k$ grids too, $t\sim N_k^{4.08}$.
- Try different xc functionals. More precision, more expensive. However, the GS computation is cheap compared to the ELF currently ($\sim 10\,m$ vs $12\,h$).

Thank you! Questions?