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Heating via sub-threshold scattering

If our DM is too light to break sufficiently many Cooper pairs, can we detect it?

Perhaps! We have access to time-series temperature data.




Heating via sub-threshold scattering

Suppose we have no dark channel for heating:

drl’

27~ Pt
= bke (1),

with Ppxe some background heating power (e.g. cosmic rays, surroundings).




Heating via sub-threshold scattering

The presence of DM scattering adds an additional heating channel:

dT
ke Pog(t) + Py (t),

where one or both of these terms may be time-dependent.




Heating via sub-threshold scattering
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Heating Sources

e Direct scattering on electrons (See Tania's talk)

e Scattering on nuclei:

o Nuclear recoil

o The Migdal effect
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Heating Sources: Nuclear Recoil
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Heating Sources: Nuclear Recoil

In the free nucleus picture:

For DM of mass M.

q = MM, UpM
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Heating Sources: Nuclear Recoil

In the free nucleus picture:

Q ~ mvaM
2mN

For a copper nucleus:

Q(m, = 10MeV) ~ 0.8 meV
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Heating Sources: Nuclear Recoil

The heating rate is found via:

ARy

E
dEx

Pnuc — /dEN

In this free nucleus picture:

ARy
dEN

N/dqugpfé(ﬁi—m—i)...
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Heating Sources: Nuclear Recoil
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Heating Sources: Nuclear Recoil

Taking into account collective effects:
0(pi —py —4) — F(|pi —pr — 4ql),

With a simple crystal form factor:

F(Q)NGXP(— 7 )

2mN(IJph

with wpp ~ O(30 meV).
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Heating Sources: Migdal Effect
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Heating Sources: Migdal Effect

In Migdal events, energy is efficiently transferred to the electrons:
We =~ Ebind ~ O(GV),
assuming this ends up as heat
Q =~ Epind-

Much larger than nuclear recoil!
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Heating Sources: Migdal Effect

But there's an issue:

d Ryfigdal

P Migdal — / dwe

()
dw,

where now:

dRMigdal / anuc
— b igdal \We E )
do dEN STon Prigdal(we | En )

and Phigdal ~ 107 — 1072,
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Heating Sources

As a rough estimate, Pyfigdal ~ Phuc around m,, = 10 MeV.

Need to consider both effects.
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Progress: Overview

e Theory: Done!
o We have the rates, Migdal probability.

e Computation: On its way.
o Nuclear recoil channel, not yet programmed.

o ...but, get it for free from Migdal.

o Migdal computation is tough.
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Progress: Migdal Effect

The Migdal probability scales like:

1 1
1 ~ —1 — ’
P~ gl =0 )

which is susceptible to divergences as w, — 0.

23



Progress: Migdal Effect

We need an ELF that properly captures the low w,. behaviour.

The Lindhard method is oversimplified, treating the electron gas as a non-
interacting system.

Fits to experimental data fail at properly capturing the low w, behaviour.
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Progress: Experimental Fits
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Progress: Experimental ELF

107

L m, = 100MeV

— my = :
— mg = 100keV :
—— My — 00




Progress: Lindhard ELF
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Progress: Solution?

dP/dw [eV ™!
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Progress: GPAW ELF
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Progress: DFT ELF
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Progress: What's next?

This took around half a day to run.

What's next? We need to:
e Pushto hlgher g, ideally up to g ~ 30keV. This is expensive, t ~ ¢+5. Push

to denser k grids too, t ~ N4 08,

e Try different xc functionals. More precision, more expensive. However, the GS
computation is cheap compared to the ELF currently (~ 10m vs 12 h).
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Thank youl!
Questions?
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