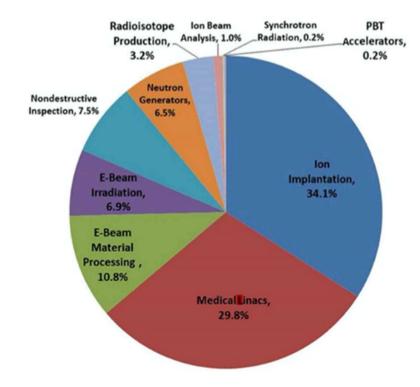
Cockcroft Institute Lectures – Register Attendance

QR code will take you to a Google form.

Record attendance for each day of lectures.



Types of Accelerator

- DC simple vacuum tubes, VdGs
- Linacs Wideroe, Alvarez, etc. etc.
- Cyclotrons, Synchrocyclotrons, Isochronous cyclotrons
- Betatrons, Induction Linacs, Induction Rings
- Synchrotrons, Storage Rings
- Microtrons, Rhodotrons
- FFAGs
- RFQs
- Novel Types

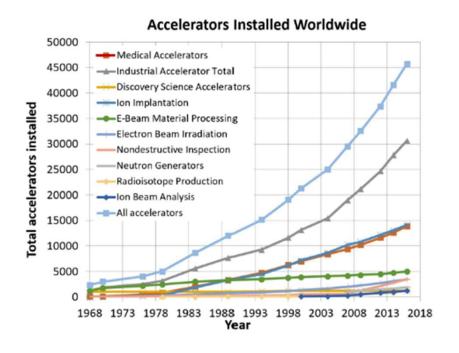
 Plasma, Dielectric
- Particle Sources Thermionic Guns, Photoguns, Ion Sources
- Secondary Sources Neutrons (spallation, nuclear reactions), 'exotics' (pions, muons, antiprotons)

Doyle, McDaniel and Hamm 'The Future of Industrial Accelerators and Applications'

https://www.worldscientific.com/doi/abs/10.1142/S1793626819300068

Nobel Prizes involving accelerator science

Haussecker, E.F., Chao, A.W. The Influence of Accelerator Science on Physics Research. *Phys. Perspect.* **13,** 146 (2011). https://doi.org/10.1007/s00016-010-0049-y


We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.

1939	Ernest O. Lawrence
1951	John D. Cockcroft and Ernest T.S. Walton
1952	Felix Bloch
1957	Tsung-Dao Lee and Chen Ning Yang
1959	Emilio G. Segrè and Owen Chamberlain
1960	Donald A. Glaser
1961	Robert Hofstadter
1963	Maria Goeppert Mayer
1967	Hans A. Bethe
1968	Luis W. Alvarez
1976	Burton Richter and Samuel C.C. Ting
1979	Sheldon L. Glashow, Abdus Salam, and Steven Weinberg
1980	James W. Cronin and Val L. Fitch
1981	Kai M. Siegbahn
1983	William A. Fowler
1984	Carlo Rubbia and Simon van der Meer
1986	Ernst Ruska
1988	Leon M. Lederman, Melvin Schwartz, and Jack Steinberger
1989	Wolfgang Paul
1990	Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor
1992	Georges Charpak
1995	Martin L. Perl
2004	David J. Gross, Frank Wilczek, and H. David Politzer
2008	Makoto Kobayashi and Toshihide Maskawa
2013	Francois Englert and Peter Higgs

https://www.nobelprize.org/prizes/themes/accelerators-and-nobel-laureates/

The growth in accelerator applications

Doyle, McDaniel and Hamm 'The Future of Industrial Accelerators and Applications' (2019) https://doi.org/10.1142/S1793626819300068

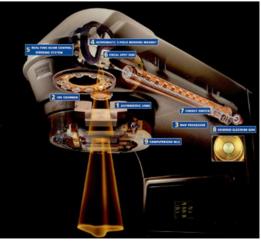
"Particle accelerators around the world" https://www-elsa.physik.uni-bonn.de/accelerator_list.html

Reviews of accelerator science and technology: https://www.worldscientific.com/worldscinet/rast

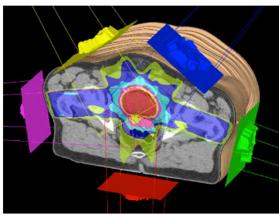
Applications of particle accelerators in Europe: http://apae.ific.uv.es/apae/
http://apae.ific.uv.es/apae/wp-content/uploads/2015/04/EuCARD_Applications-of-Accelerators-2017.pdf

Accelerator Science and Technology Industry Permanent Forum: https://aipf.web.cern.ch/

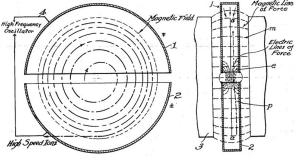
Accelerator Methods and Technologies

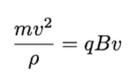

- Principles electrodynamics, scattering, …
- Single-particle dynamics
- Multi-particle dynamics
- Lifecycle production, injection, acceleration, transport, manipulation, extraction, delivery
- Methods analytic, simulation, MC

- Technology sources, magnets, RF, plasma, laser, vacuum, diagnostics, radiation, geodesics, engineering, controls
- Discipline electrodynamics, magnetism, surface science, radiofrequency engineering, FEA, nuclear physics, particle physics, software
- This is a multi-disciplinary institute



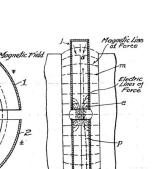
Radiotherapy Linacs





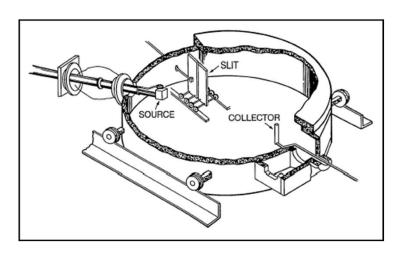
https://www.iaea.org/newscenter/news/safely-embracing-the-growing-power-of-radiotherapy https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-b/b01/

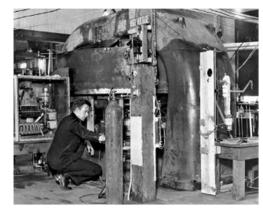
Cyclotrons



$$\omega = \frac{qB}{m} = \frac{qB}{\gamma m_0}$$

Constant as long as γ is small





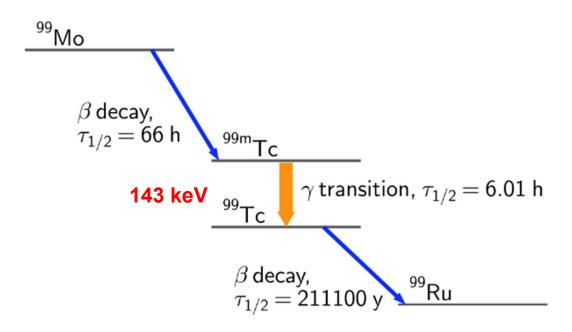
Emilio Segrè and the 37-inch cyclotron deflector foil

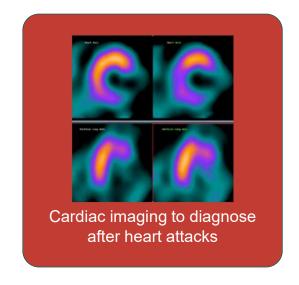
'In February 1937 I received a letter from Lawrence containing more radioactive stuff. In particular, it contained a molybdenum foil that had been part of the cyclotron's deflector. I suspected at once that it might contain element 43. The simple reason was that deuteron bombardment of molybdenum should give isotopes of element 43 through well-established nuclear reactions. My sample, the molybdenum deflector lip, had certainly been intensely bombarded with deuterons, and I noted that one of its faces was much more radioactive than the other. I then dissolved only the material of the active face, in this way achieving a first important concentration of the activity.

A modern isotope cyclotron

Nuclide	F-18	C-11	N-13	O-15	Ge-68
Half-Life	110min	20.5m	10m	2m	275d
Positron (keV)	630	960	1200	1730	1900
Gammas (keV)	511(2)	511	511	511	511

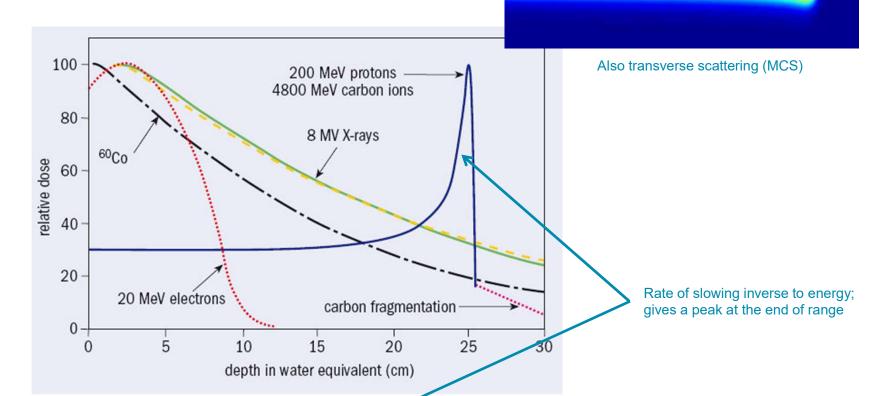
https://www.isotopes.gov/production-methods https://www-pub.iaea.org/MTCD/Publications/PDF/trs465_web.pdf

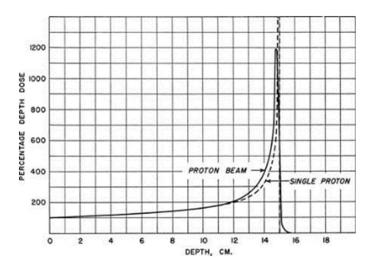


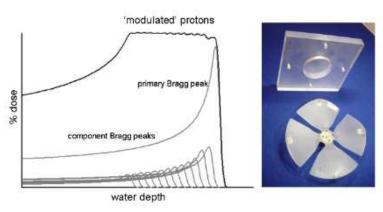

Mo-99/Tc-99m/Tc-99

30 Million procedures a year (2013):

https://www.sciencedirect.com/science/article/abs/pii/S1359644613001712 2023 to 2027 projections:


https://www.oecd-nea.org/upload/docs/application/pdf/2023-10/nea_ndc_r_2023_1.pdf


The wonderful Bragg peak



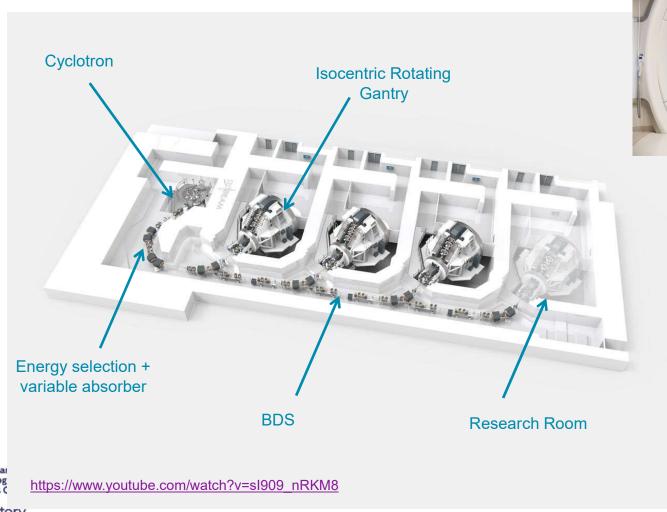
$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2\right]$$

Spreading out the peak

The original picture from R. R. Wilson's paper on proton therapy. (*Radiology* **47**, 487–491, 1946)

Intrinsic - straggling

Deliberate – range modulating

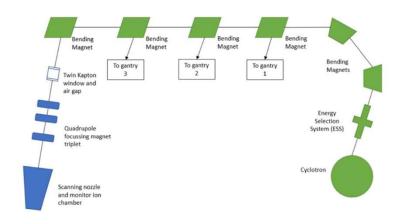


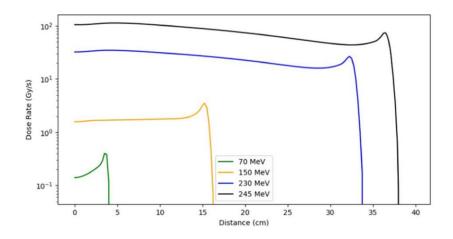
See e.g

H. Owen et al., "Hadron accelerators for radiotherapy" https://doi.org/10.1080/00107514.2014.891313

H. Owen et al., "Technologies for delivery of proton and ion beams for radiotherapy" https://doi.org/10.1142/S0217751X14410024

From source to patient (Christie PBT)

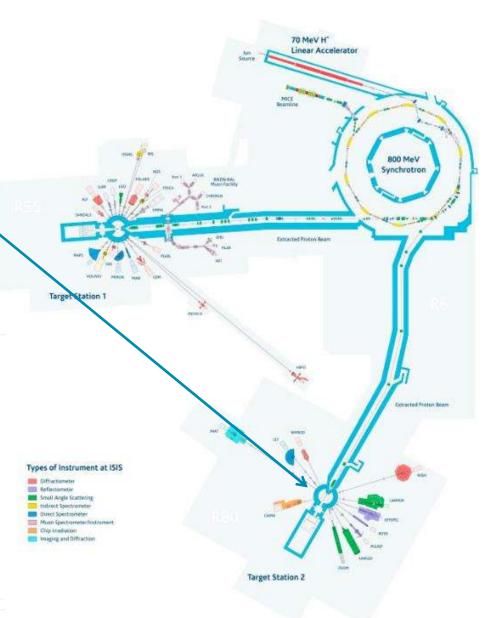

Christie Research Room



Nicholas T Henthorn*, John-William Warmenhoven, Samuel P Ingram, Samuel P Manger, Michael J Merchant, Hywel Owen, Ranald I Mackay, Karen J Kirkby and Michael J Taylor

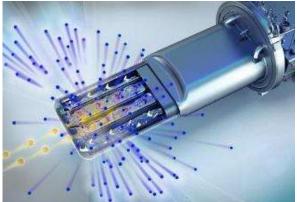
https://doi.org/10.1088/2057-1976/addbe8

J D Aylward et al., https://iopscience.iop.org/article/10.1088/2057-1976/acef25/meta


ISIS Spallation Neutron Source

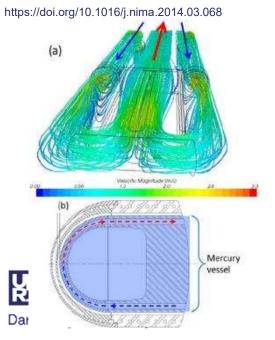
https://www.sciencedirect.com/science/article/pii/S0168900218317820

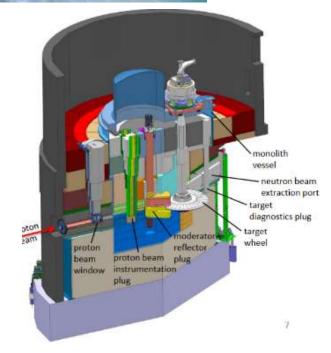
		Target Station 1	Target Station 2
Synchrotron injection energy	70 MeV		
Synchrotron extraction energy	800 MeV		
Proton beam current	${\sim}225~\mu\mathrm{A}$	${\sim}180~\mu\mathrm{A}$	\sim 45 μ A
Beam pulse repetition rate	50 pps	40 pps	10 pps
Proton beam power	${\sim}180~\rm{kW}$		
Operational days per year	~200		
Tungsten target configuration		Multi-plate	'Solid' cylinder
No. of neutron instruments		17	10
No. of muon instruments		5	
No. of user visits	2278 (in 2017)		
No. of journal publications	486 (in 2017)		



Spallation Targets

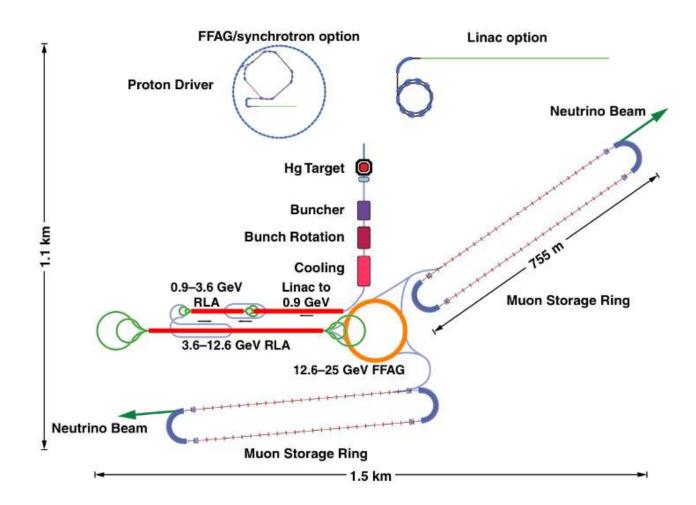
SNS (Oak Ridge) 1 MW liquid mercury target

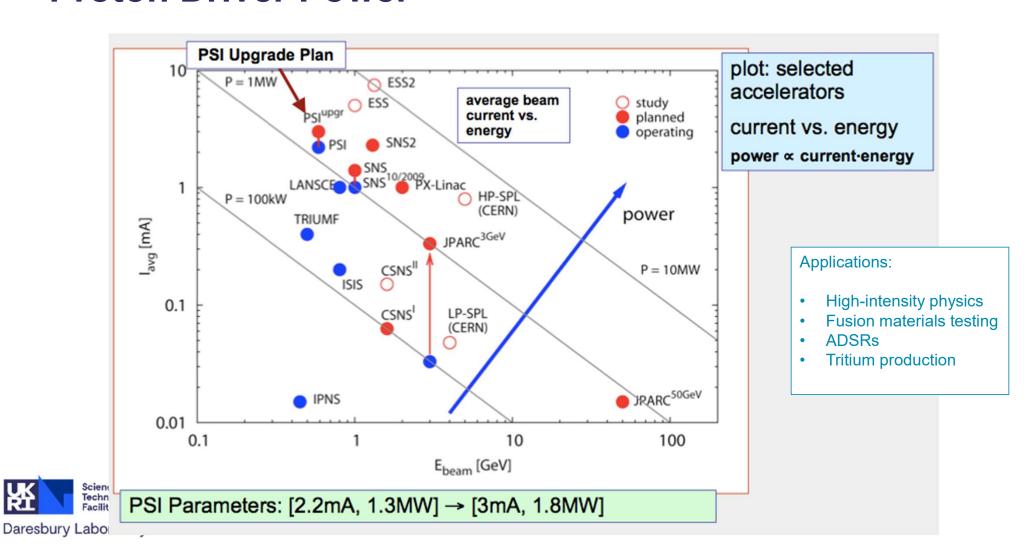




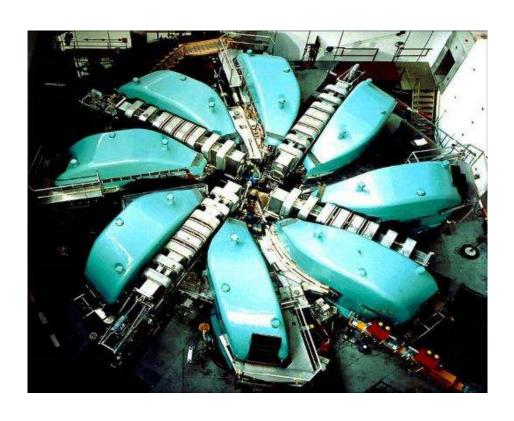
https://www.youtube.com/watch?v=Vopxry2Jq8c

ISIS 160 kW solid W target




ESS 5 MW solid rotating W target

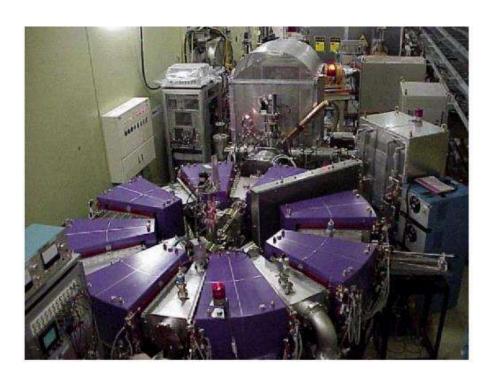
Neutrino Factory



Proton Driver Power

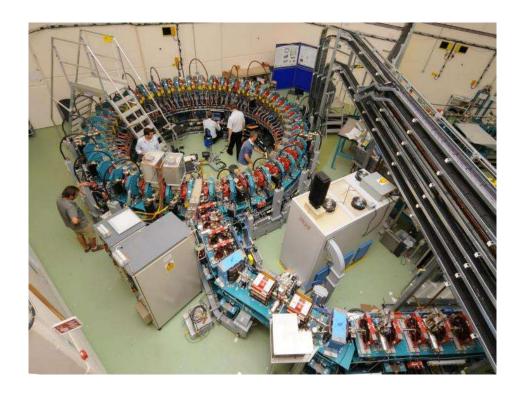
The PSI Cyclotron – (still) the world's highest power accelerator (1.4 MW)

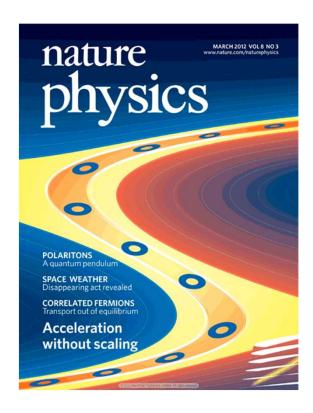
- p+ 590 MeV
- 2.4 mA
- (Zurich, Switzerland)


https://www.psi.ch/en/cas/hipa

FFAGs – Fixed Field, Alternating Gradient

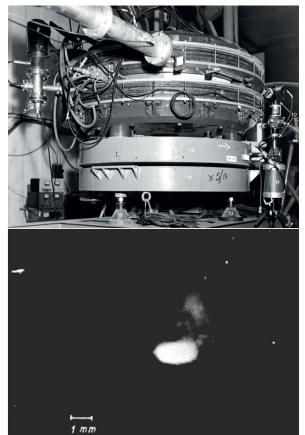
MURA, 1956 – a variant of the betatron

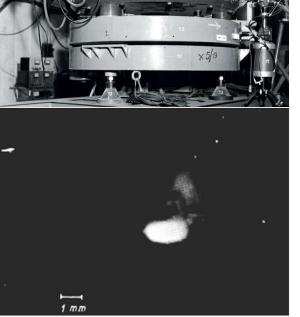


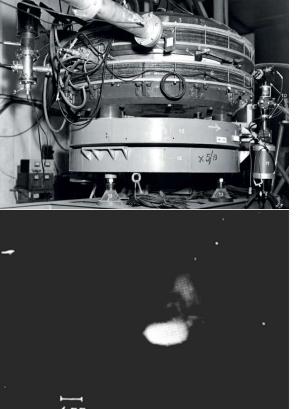

KEK, 2000. First proton FFAG

Unique Selling Point: Rapid acceleration without rapidly varying the dipole fields, but to a higher energy than possible with a cyclotron Useful for accelerating unstable particles (e.g. muons)

EMMA – the first NS-FFAG




- Gives a larger energy range
- First one built by Daresbury/CI
- CBETA recently demonstrated at Cornell Uni
- Can be used as an alternative to synchrotron radiation storage rings (see later)




ADA – the first electron storage ring

 $\gamma = 4$

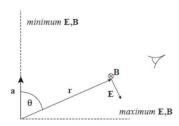


FIGURE 6.5 Illustration of how the magnitude of the emitted electric and magnetic fields vary with observation angle θ .

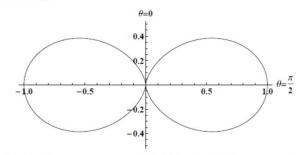
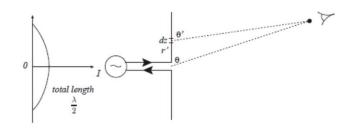
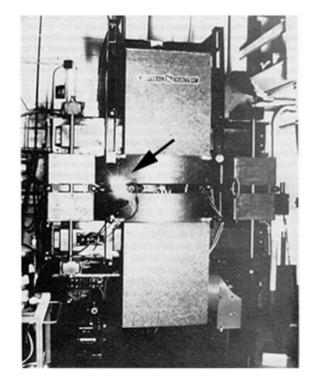




FIGURE 6.6 $\,$ 2D illustration of how the magnitude of the Poynting vector ${\bf S}$ (here shown as the distance of the solid from the origin, for any given angle θ) varies with observation angle θ .

'If the accelerator tube of the 100-MeV betatron at Schenectady had not been opaque, the visual observation would probably have been made three years earlier by Westendorp or Blewett soon after the publication of your letter to the Physical Review (Phys. Rev. 65:343, 1944). Unfortunately they were not able to see through the silvered wall of the betatron donut.

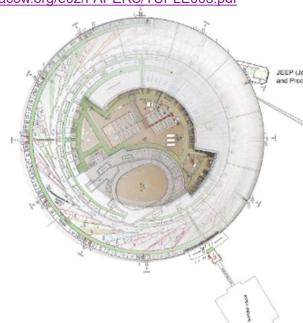
The General Electric Synchrotron

$$\begin{split} P &= \frac{e^2 c \gamma^4}{6\pi \epsilon_0 \rho^2}, \langle \epsilon \rangle = \frac{8\sqrt{3}}{45} \frac{\hbar c \gamma^3}{\rho}, U_0 = \frac{e^2 \gamma^4}{3\epsilon_0 \rho}. \\ N_\gamma &= \frac{U_0}{\langle \epsilon \rangle} = \frac{45}{8\sqrt{3}} \frac{2}{3} \frac{\rho}{\hbar c \gamma^3} \frac{e^2 \gamma^4}{3\epsilon_0 \rho}. \qquad N_\gamma = \frac{5\pi}{\sqrt{3}} \alpha \gamma \simeq 0.0662 \gamma. \end{split}$$

$$P_{\mathrm{total}} \ [\mathrm{kW}] = 88.4 \frac{E \ [\mathrm{GeV}]^4 I_b \ [\mathrm{A}]}{\rho \ [\mathrm{m}]}.$$
 for electrons

Beam Equilibrium

https://www.amazon.co.uk/Science-Technology-Particle-Accelerators-ebook/dp/B08R29243Y, Section 6.4


H. Owen, J.Jones and S.Smith, https://proceedings.jacow.org/e02/PAPERS/TUPLE003.pdf

$$\epsilon_x = C_q rac{\gamma^2}{J_x} rac{I_5}{I_2} \;\; \epsilon_y \simeq \kappa \epsilon_x$$

$$I_5 = \oint \frac{H(s)}{|\rho(s)^3|} ds \quad I_2 = \oint \frac{1}{\rho(s)^2} ds$$

$$H = \gamma \eta^2 + 2\alpha \eta \eta' + \beta \eta'^2$$

$$C_q = 55\hbar c/32\sqrt{3}m_e c^2$$

Typical storage ring emittance

Typical diffraction-limited emittance (depends on λ)

PHYS30141 – on YouTube and notes available on request https://www.youtube.com/playlist?list=PLAOZch2HHHpXcBFAIZyHtPcefGpdqv1BJ

Example 6.10

Average photon energy emitted from an electron storage ring

The DIAMOND Light Source in Oxfordshire is the UK's national synchrotron radiation production facility, and one of the brightest such sources on the planet; it is used by thousands of researchers each year. Like all such sources the magnetic field is more complex than being just a single, uniform field B, but there are dipole magnets in which the electrons are bent so that they can be stored; DIAMOND is therefore a storage ring

The electrons in DIAMOND are maintained at a kinetic energy K=3 GeV, and pass through dipole magnets that give a field of 1.4 T, which corresponds to a bending radius r=7.1 m; note that the circumference L of the storage ring is not $L=2\pi\tau$, since not all of the path taken by the electrons has a bending field B applied. In fact, in most storage rings only a small fraction of the particle path has dipole field. The word 'circumference' when used for storage rings is therefore a bit of a misnomer; by 'circumference' we mean the total distance travelled by the particle in one orbital period. In DIAMOND, the circumference L=561.6 m, so that the revolution period is $\tau_r=L/c\simeq 1.87~\mu s$.

Hence the critical energy of the photons (emitted by the electrons within the dipoles) is $E_{\sigma it} = 8.3 \text{ keV}$. The average photon energy is $\langle E_{\gamma} \rangle = 2.8 \text{ keV}$.

Example 6.11

Synchrotron radiation power and number of photons from an electron storage ring

Of course, there isn't just one electron orbiting in DIAMOND. Knowing that an ammeter placed at any point in the storage ring measures a typical passing current of 300 mA and that obviously $I \equiv \Delta Q/\Delta t$, the total charge in the storage ring ΔQ is

$$\Delta Q = I\Delta t = \frac{IL}{c}$$
(6.54)

where the circumference is L = 561.6 m, and $\Delta t = \tau_r$. The number of electrons is then just

$$N_e = \frac{\Delta Q}{e} \simeq 3.5 \times 10^{12}$$
(6.55)

for a current of 300 mA.

By comparing the synchrotron radiation power to the revolution period, we can straightforwardly obtain that the energy loss per orbit revolution is

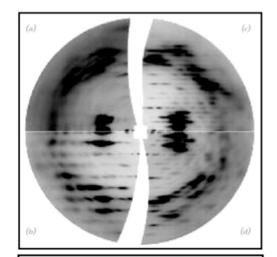
$$U_0 = \frac{e^2 \gamma^4}{3\epsilon_0 r} \simeq 1.0 \text{ MeV}.$$
 (6.56)

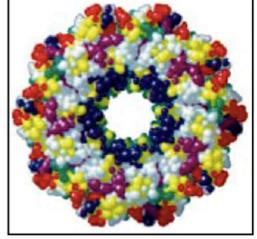
The total power radiated by each electron is $P_e = 86$ nW, but since there are $\sim 10^{12}$ electrons the total power emitted is $P_{total} = N_e P_e \simeq 300$ kW. This is a simply enormous power. Synchrotron radiation facilities such as DIAMOND are the only known method of producing such a large quantity of X-ray photons; they are one of the brightest artificial sources of photons.

Knowing the energy lost per turn and the average photon energy, we can easily calculate the number of photons emitted by each electron as it executes a single orbit. This is

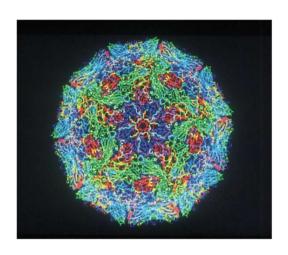

$$N_{\gamma} = \frac{U_0}{\langle E_{\gamma} \rangle} \simeq \frac{2}{3} \frac{e^2}{\epsilon_0 \hbar c} \gamma = \frac{2}{3} 4 \pi \alpha \gamma = \frac{8\pi}{3} \alpha \gamma,$$
 (6.57)

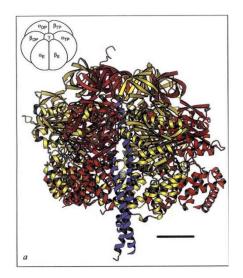
Insertion Devices



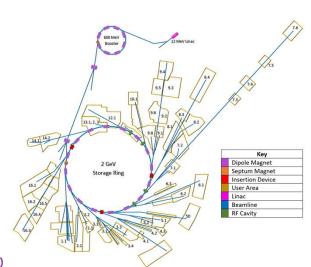


X-ray diffraction

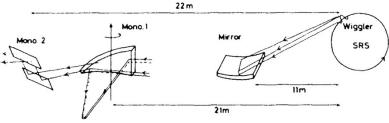




https://www.youtube.com/watch?v=xBA09PXPPR4 https://www.youtube.com/watch?v=gLsC4wlrR2A https://www.youtube.com/watch?v=YK3VkqD2o2s


Major advances in protein crystallography

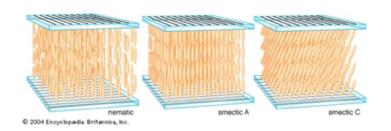
FMDV Structure, 1989 https://www.nature.com/articles/337709a0



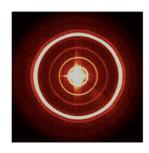
F1-ATPase, 1994 https://www.nature.com/articles/370621a0

https://doi.org/10.1016/0168-9002(86)90162-2

https://en.wikipedia.org/wiki/Synchrotron Radiation Source

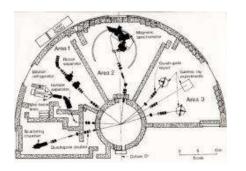


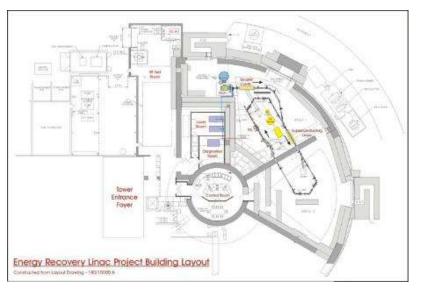
https://en.wikipedia.org/wiki/John E. Walker Nobel Prize in Chemistry, 1997



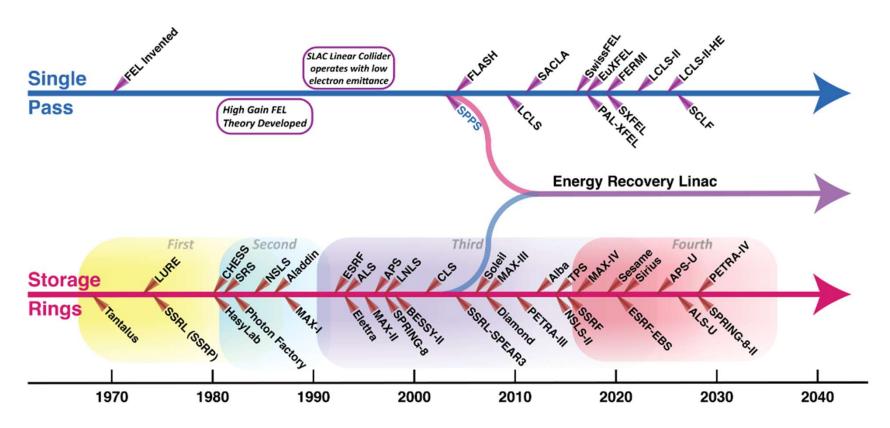
Non-crystalline diffraction – liquid crystals

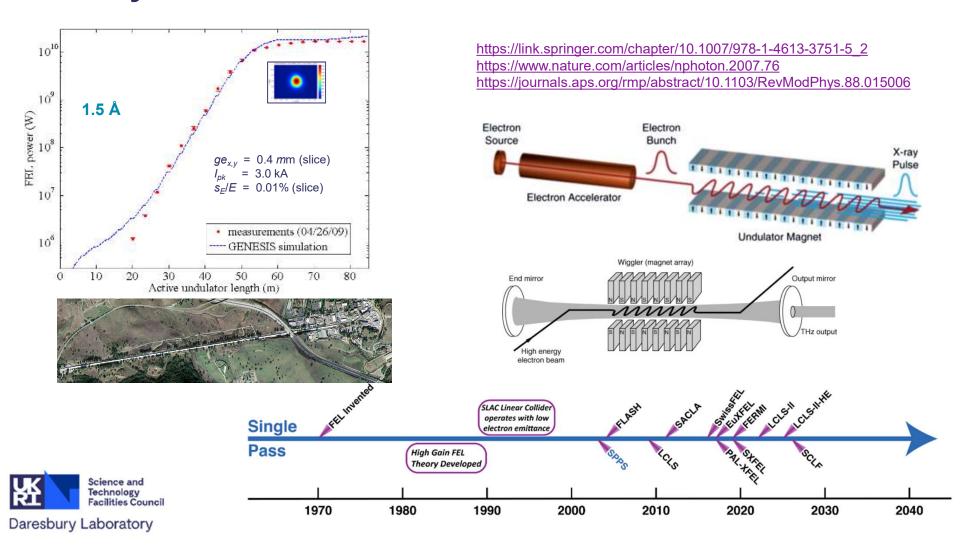
Helen Gleeson et al., https://doi.org/10.1063/1.1145470



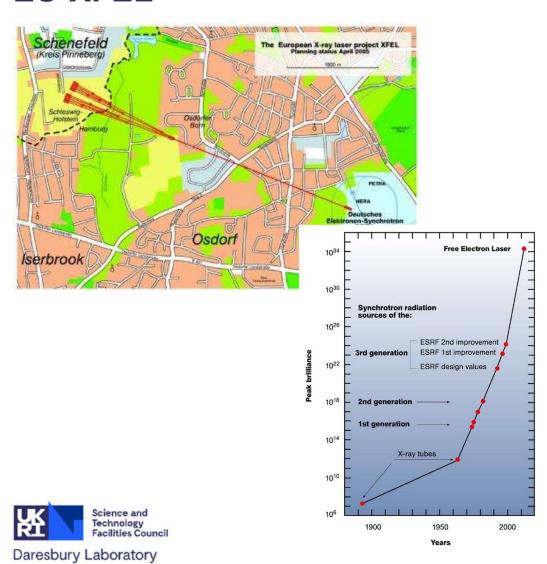


ALICE in Daresbury Tower

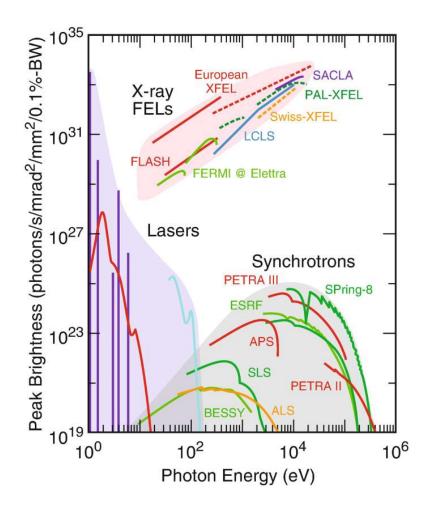


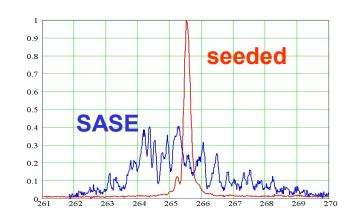

C. Gerth, M. Bowler, B. Muratori, H. Owen and N. Thompson, https://accelconf.web.cern.ch/f04/papers/THPOS47/THPOS47.PDF
N. Thompson et al., https://doi.org/10.1016/j.nima.2012.02.049

Evolution of light sources



X-Ray Free-Electron Lasers

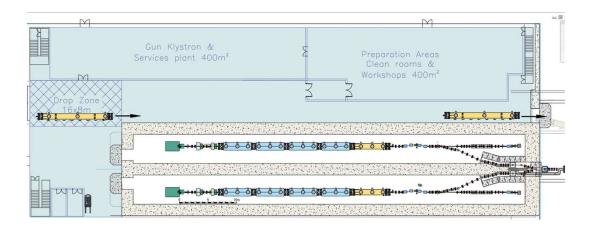

EU-XFEL

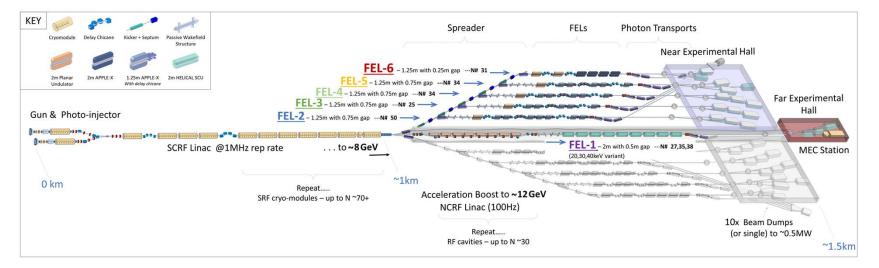


Performance Goals for the Electron Beam				
Beam Energy Range	10 - 20 GeV			
Emittance (norm.)	1.4 mrad⋅mm			
Bunch Charge	1 nC			
Bunch Length (1σ)	80 fs			
Energy-Spread (uncorrelated) <2.5 MeV rms				
Main Linac				
Acc. Gradient @ 20 GeV	23 MV/m			
Linac Length	approx. 1.5 km			
Beam Current (max)	5 mA			
Beam Pulse Length	0.65 ms			
# Bunches p. Pulse (max)	3250			
Bunch Spacing (min)	200 ns			
Repetition Rate	10 Hz			
Avg. Beam Power (max)	650 kW			

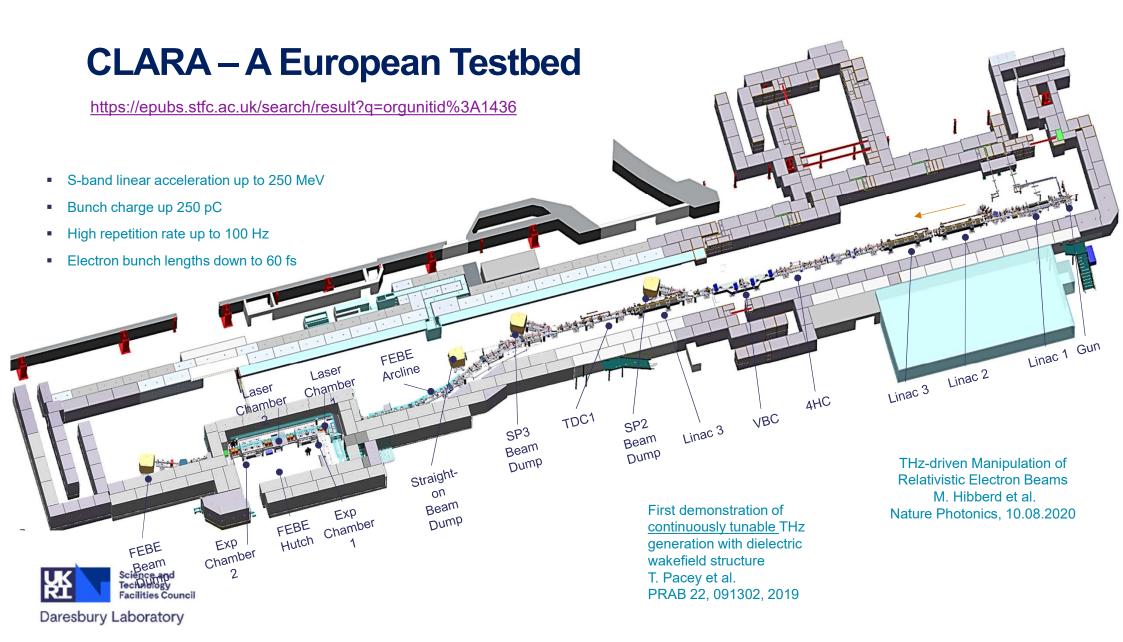
Performance Goals for SASE FEL Radiation				
photon energy	15 – 0.2 keV			
Wavelength	0.08 – 6.4 nm			
peak power	10 – 20 GW			
average power	40 – 80 W			
number photon per pulse	$0.5 - 4 \times 10^{12}$			
peak brilliance	$2.5 - 0.08 \times 10^{33}$ *			
average brilliance	$1 - 0.03 \times 10^{25} *$			
* in units of photons / (s mrad² mm² 0.1% bw)				

Comparison of 3rd and 4th Generation Sources





Seeding is very important for FEL beam quality


UK-XFEL

https://www.xfel.ac.uk/

Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak), Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

FERMIONS matter constituents spin = 1/2, 3/2, 5/2, ...

Quarks spin = 1/2 Leptons spin = 1/2 Mass Electric GeV/c² charge charge electron <1×10-8 0 U up 0.003 2/3 0.000511 d down 0.006 -1/3 < 0.0002 0 C charm 1.3 2/3 μ neutrino II muon 0.106 -1 5 strange 0.1 -1/3tau < 0.02 0 175 2/3 top neutrino 1.7771 -1/3

Spin is the intrinsic angular momentum of particles. Spin is given in units of R, which is the quantum unit of angular momentum, where $R=\hbar/2\pi=6.58\times10^{-25}$ GeV s = 1.05×10^{-36} J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10⁻¹⁹ coulombs.

The energy unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. Masses are given in GeVit? [remember $\ell=mc^2$], where 1 GeV = 10^9 eV = 1.60×10^{-10} joule. The mass of the proton is 0.938 GeVit? = 1.67×10^{-27} kg.

Structure within the Atom e" Quark Size < 10-19 m Electron **Nucleus** Size < 10-18 m Neutron and Proton Size - 10-15 m Atom Size = 10-10 m

BOSONS

force carriers spin = 0, 1, 2, ...

Unified Electroweak spin = 1				
Mass GeV/c ²	Electric charge			
0	0			
80.4	-1			
80.4	+1			
91.187	0			
	Mass GeV/c ² 0 80.4 80.4			

Strong (color) spin = 1				
Name	Mass GeV/c ²	Electric charge		
g gluon	0	0		

Color Charge Each quark carries one of three types of "strong charge," also called "color charge." These charges have nothing to do with the colors of visible light. There are eight possible

types of color charge for gluons. Just as electri otons, in strong interactions color-charged particles interact by exchanging gluons. Leptons, photons, and W and Z bosons have no strong interactions and hence no color change.

Quarks Confined in Mesons and Baryons

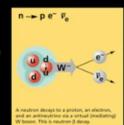
Quarks Comment in mresons and baryons. One cannot isolate quarks and gluons, they are confined in color-neutral particles called hadrows. This confinement (binding) results from multiple eachunges of gluons among the color-sharped constituents. As color-sharped particles (quarks and gluons) more spart, the ener-gy in the color-force field between them increases. This energy eventually is converted into addi-tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadroms; these are the particles seen to emerge. Two types of hadrons have been observed in

Residual Strong Interaction

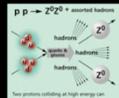
The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual elec-trical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of missons between the hadrons.

PROPERTIES OF THE INTERACTIONS

	Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.						
Symbol	Name	Quark content	Electric charge	Mass GeVic ²			
р	proton	uud	1	0.938	1/2		
p	anti- proton	ūūā	-1	0.938	1/2		
n	neutron	udd	0	0.940	1/2		
Λ	lambda	uds	0	1.116	1/2		
Ω^-	omega	SSS	~1	1.672	3/2		


Property	Gravitational	Weak	Electromagnetic	Str	ong	
		(Electr	oweak)	Fundamental	Residual	
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note	
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons	
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons	
Strength relative to electromag 10 ⁻¹⁸ m		0.8	1	25	Not applicable	
for two u quarks at: 3×10 ⁻¹⁷ n	10-41	10-4	1	60	to quarks	
for two protons in nucleus	10-36	10-7	1	Not applicable to hadrons	20	

Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.						
Symbol Name Quark Electric Mass Spin						
π*	pion	ud	-1	0.140	0	
K-	kaon	sū	-1	0.494	0	
ρ^+	rho	ud	+1	0.770	1	
B ⁰	B-zero	db	0	5.279	0	
$\eta_{\rm c}$	eta-c	cč	0	2.980	0	


Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\bar{c}$, but not $K^0 = d\bar{b}$) are their own antiparticles.

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

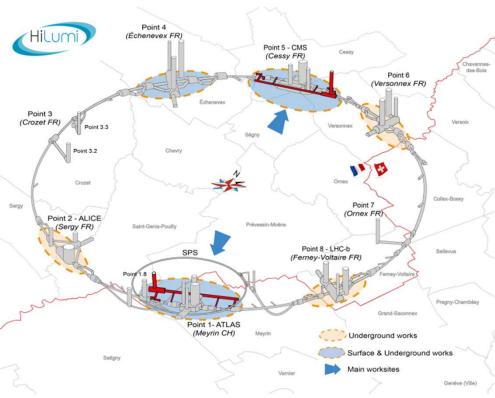
The Particle Adventure

Visit the award-vinning web feature The Particle Adventure at http://ParticleAdventure.org

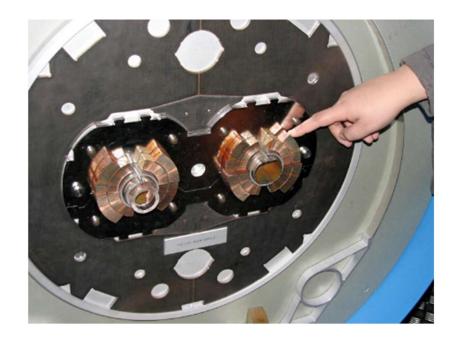
This chart has been made possible by the generous support of:

U.S. Department of Energy

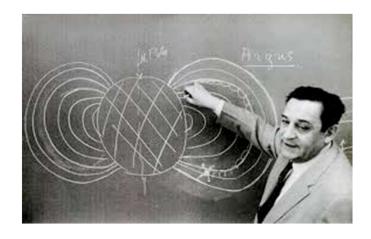
U.S. National Science Foundation
Lawrence Berkeley National Laboratory
Stanford Linear Accelerator Center
American Physical Society, Division of Particles and Fields
BURLE INDUSTRIES, INC.

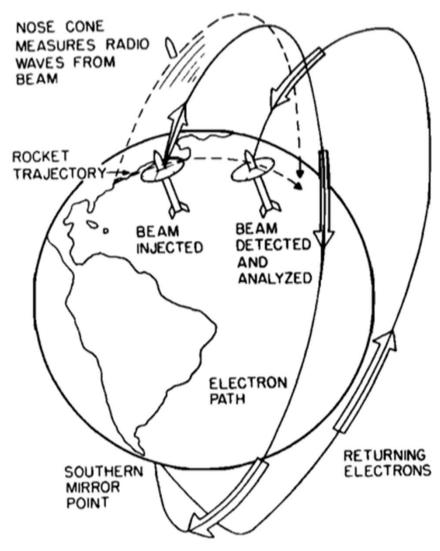

02000 Contemporary Physics Education Project, CPEP is a non-profit organiza-tion of teachers, physicists, and educators. Send mail to: CPEP, M5 50-308, Laverence Berkely Mational Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hands on classroom activities, and workshops, see:

http://CPEPweb.org


LHC – An Example of HEP Use

https://home.cern/science/accelerators/large-hadron-collider https://home.cern/science/accelerators/high-luminosity-lhc https://europeanstrategy.cern/





Circumference	26659 m
Dipole temperature	1.9 K
Lattice	FODO
Number of arcs/straights	8
Cells per arc	23
Number of magnets	9300
Nominal collision energy	7 TeV/c
Peak dipole field/current	8.33 T/11800 A
Stored energy in beam	360 MJ
Number of bunches per beam	2808
Number of protons per bunch	1.15 x 10^11
Number of turns per sceond	11245
Collisions per second	600 million

Science and Technology Facilities Co

Think Big!

