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HARD MARGIN SVM

» ldentify the support vectors (SVs): these are the points nearest the
decision boundary.

» Use these to define the hyperplane that maximises the margin
(distance) between the optimal plane and the SVs.
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» If we can do this with a SVM - we would simply cut on the data to
separate classes of event.
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HARD MARGIN SVM: PRIMAL FORM

» Optimise the parameters for the maximal margin hyperplane with:
1

arg min - ||w||?
w,b

» such that ¥; (w - Lj — b) > 1  (yiis called the functional margin)

» Equivalent to solvmg the following optlmlsatlon problem:

arg min max —||w|| —Zal[y,(w X; — b)—l]

w,b a>0

» Where: w = Zazyzxz and b= —— Z w - T — Yi)

1=1
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HARD MARGIN SVM: KERNEL FUNCTIONS

» We can introduce the use of a Kernel Function (KF) to

implicitly map from our input feature space X to some
potentially higher dimensional dual feature space F.

» Define the function: K(z,y) = (¢(x) - ¢(y))

Fe{u1, uz, us}

» We don't need to know the details of the mapping; this is the

I ke rne | t ri C k". B. Scholkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
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HARD MARGIN SVM: KERNEL FUNCTIONS

» We can introduce the use of a Kernel Function (KF) to

implicitly map from our input feature space X to some
potentially higher dimensional dual feature space F.

» Define the function: K(z,y) = (¢(x) - ¢(y))

e.g.

r € R" ) I c{¢(z)|z € X}

» We don't need to know the details of the mapping; this is the

I ke rne | t ri C k". B. Scholkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
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HARD MARGIN SVM: DUAL FORM

» The problem can be solved in the dual space by minimising
the Lagrangian for the Lagrange multipliers a; :

~ 1
L(a) = Z i — Z OGO T] T
i=1

1,]
Dot product KF
- 1
— E O — 9 E ;oYY K (24, 7).
=1 1,7

» Suchthat:; >0 and ) ay; =0.
1=1
» d; are non-zero for SVs only.

» The sum provides a constraint equation for optimisation.

o
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SOFT MARGIN SVM

» Relax the hard margin constraint by introducing mis-classification:
» Describe by slack (&€i) and cost (C) parameters.
» Alternatively describe mis-classification in terms of loss functions.
» These are iust wavs to describe the error rate.

- &i = distance between the hyper-plane defined by
‘w . . . . . .

| the margin and the ith SV (i.e. now this is a mis-
| classified event).
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MVA architecture complexity is encoded by the K
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SOFT MARGIN SVM

» The Lagrangian to optimise simplifies when we introduce the slack

parameters

Z&z — _Zazajyzy] (xiaxj)

» Where O§Qi<0

» and as before we constrain:

The optlmlsatlon problem in dual space
E Q;Y; = ‘ is essentially the same for the hard and |
i—1 soft margin SVMs.

» The algorithm is designed to focus on reducing the impact of
misclassified events; again using those closest to the decision
boundary to determine that boundary.

A.Bevan \G,Qsl Queen Mary

rsity of London
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KERNEL FUNCTIONS

» The KF, K(x,y), extends the use of inner products on data in a vector
space to a transformed space where

K(z,y) = (¢(z) - 9(v))

» The book by

» Nello Cristianini and John Shawe-Taylor, called Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press, 2000 (and references therein)

» discusses a number of KFs and the conditions required for these to be
valid in the geometrical representation that SVMs are constructed from.

» Here I'll focus on the main points and give a few examples of KFs (ones
that are implemented in TMVA).

o
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KERNEL FUNCTIONS: RADIAL BASIS FUNCTION (RBF)

» Commonly used KF that maps the data from X to F.

» Distance between two support vectors is computed and used as
an input to a Gaussian KF.

» Fortwo data x and y in X space we can compute K(x, y) as

» One tuneable parameter in mapping from X to F; given by
I=1/6°
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL

» Extend the RBF function to recognise that the bandwidth of data
in problem space can differ for each input dimension; i.e. the
norm of the distance between two support vectors can result in
loss of information.

» Overcome this by introducing a Ii=1/0; for each dimension:

dim(X)
K(z,y) = H e~ lzi—vill” /o

1=1

» Down side ... we increase the number of parameters that need to
be optimally determined for the map from X to F.

L
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL

» The multi-gaussian kernel does not include off-diagonal terms that
would allow for accommodation of correlations between parameters.

» De-correlate the input feature space to overcome this deficiency,
or alternatively one could implement a variant of this kernel
function using:

K(z,y) =e @9 2 (@=y)

» Here 2 is an n x n matrix corresponding to the covariance matrix
for the problem.

» However this would be very computationally expensive to
optimise (and is not implemented in TMVA).

L
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KERNEL FUNCTIONS: POLYNOMIAL

» There are many different types of polynomial kernel
functions that one can study.

» A common variant is of the form:

p d
K(x,2)=(Kx-2)+ c)d = [Z X;Z; + c]

i=1
» cand d are tuneable parameters.

» The sum is over support vectors (i.e. events in the data set
for a soft margin SVM).

L
A.Bevan \Q“Q_sl Queen |\/|al’y
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KERNEL FUNCTIONS: PRODUCTS AND SUMS

» Valid (Mercer) kernels satisfy Mercer’s conditionst*). This
allows us to construct new kernels from known Mercer
kernels that are products and sums.

» The sum of Mercer KFs is a valid KF.

» The product of Mercer KFs is a valid KF.

* Mercer's conditions require that the Gramm matrix formed from SVs is positive semi-definite. This is a
consequence of the geometric interpretation of SVMs given x is real. Modern extensions of the SVM

construct allow for complex input spaces, and for example can be based on Clifford algebra to
accommodate this extension.

Complex input spaces are of interest for electronic engineering problems.

N.B. It is conceivable that one could be interested in using these if an amplitude analysis were to be
written using SVMs to directly extract phase and magnitudes... but that could also be incorporated by
mapping the complex feature space element into a doublet of reals.

b
J. Mercer. Phil.Trans.Roy.Soc.Lond., A209:415, 1909. A.Bevan %O Queen Mary

University of London
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EXAMPLES: CHECKER BOARD

» Generate squares of different colour.

16

» Use SVM to classify the pattern into +1 and —1 targets.
» Hard margin SVM problem; but can solved for using soft margin SVM.

» Not easy to solve in 2D (x, y) with a linear discriminant, but e.g. a 3D space of
(x, y, colour) allows us to separate the squares.
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» Want to find a KF that approximates this mapping.

L
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EXAMPLES: CHECKER BOARD

» Generate 1000 events in the blue and red squares and give
each event x and y values.

' This is the ideal feature space that we would like to

~ |}‘ implicitly map into.

Because we implicitly do the mapping via choice of
KF, in practice we don't explicitly map into this

space; but we implicitly map into another space that |
‘we hope will be approximately topologically |

l-egquivalent.

» e.g.Use a multi-Gaussian kernel function with =1, ;=2 and
cost of 104 (not optimised) to see what separation we can
obtain.

A.Bevan \Qal Queen I\/Iary

rsity of London
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EXAMPLES: CHECKER BOARD

» Correctly classified events Incorrectly classified events
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» Signal mis-classification rate ~3.3%.

» Background mis-classification rate ~3.7%.
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EXAMPLES: CHECKER BOARD

» The confusion matrix ([in-]correctly classified events) for this
example shows a high level of correct classification:

| Background rejection versus Signal efficiency |
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» This SVM does a good job of separating signal from background
» An optimised output would provide a better solution.

» BDTs and NNs work well with this kind of problem as well.

L
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EXAMPLES: CHECKER BOARD

» Optimised results for comparison: Very similar responses.

BDT

SVM
RBF (2)

TMVA overtraining check for classifier: BDT

% Sighal (tesf samplé) | « Slgnal (trdining shmple) '
16

Background (test sample)

* Background (training sample)

(1/N) dN / dx
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1", i Signal (lest sample) | |+ Sighal (training shmple) 1
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€

Kolmegorov-Smirnov test: signal (background) probability = 0.608 (0.115)
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SVM_Poly response

TMVA overtraining check for classifier: SYM_MG
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Z 7] Background (test sample)  * Background (training sample)_J
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Trained using the hold out method of cross validation (what is
normally done in TMVA), with optimised hyper-parameters.

institute of

SVM
Polynomial (1)

SVM
Multi-Gaussian

(3)

b
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

» Use the Kaggle data challenge sample of signal and
background events. LHC data (from ATLAS).

» Packaged up in a convenient format (CSV file).

» Sufficient description of variables provided for non-HEP
users to apply machine learning (ML) techniques to HEP
data.

» Real application to compare performance for different KFs
and different MVAs.

https://www.kaggle.com/c/higgs-boson
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EXAMPLES: H— 7+7- (HIG6S KAGGLE DATA CHALLENGE)

3 Use 10 varlables as mputs 20K events.

.23

1) MMC

2) transverse mass between MET and lep
3) Visible invariant mass of H

4)p T(H)

5) R between Thad and lepton

6) pr(tot)

7) 2pT1

8) pr(lepton)/pt(had T)

9) MET & centrality

|0) ET ol

(1/N) dN/ 13.6
(1IN) dN/ 7
(1/N) dN/ 9.2

9

(1IN)dN/ 12 =
(1N)dN/ 3.76 1=

(1/N) N/ 0.12

(1/N)dN/ 20.3
(1N)dN/ 0.19 5
(1/N) dN/ 0.0725 |

, This selection of variables is not _
| optimised, and is selected in order to |
show a physics example for
illustrative purposes.

e = = el

(1N)dN/ 24.9 1

b
A.Bevan WO Queen Mary

University of London
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EXAMPLES: H— 7+7- (HIGGS KAGGLE DATA CHALLENGE)

» NOTE: this is an illustrative example - not a fully optimised
analysis of the sample; hyper-parameters are optimised.
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z Background (lest sample)  * Background (training sample) {  Z 7] Background (test sample) = * Background (training sample)
% g [ Koimogora-Smirnov test: signal (background) probabitity = 0 (0206 % g |LK0imogorov-Smirnov test: signai (background) probabity = _F( 0 ]
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s 112ined using the hold out method of cross validation (what is v
41L€1 normally done in TMVA), with optimised hyper-parameters. A Bevan W Eﬁjﬁﬁﬂn’d\o’n’aw
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EXAMPLES: H— 7+7- (HIG6S KAGGLE DATA CHALLENGE)

» SVM provides comparable performance to BDT (and

neural networks)*.

Background rejection versus Signal efficiency

c 1
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Bevan et al., proc CHEP 2016
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institute of

o1 02 03 04 05 06 07 08 0.9

1

Signal efficiency

*This general conclusion has been reached in one form or another by people studying BDTs vs SVMs and NNs vs SVMs for
= HEP problems. The take home message is that SVMs require less data to train in order to obtain a generalised result (follows
1 from the fact there are fewer hyper-parameters to determine for SVMs vs other algorithms).

A.Bevan \Qal Queen I\/Iary
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EXAMPLES: HH— BBz +7- (ATLAS - OFFICIAL RESULT)

» ATLAS recently reported limits on resonant and non-
resonant production of HH via bbt+*t-.

) [pb]

1

— HH — bbrtt
S

o (X

1072

— HH — bbrr) [pb]
S

kk

9@
<

- hMSSM Scalar (tanp = 2) ATLAS

13 TeV, 36.1 fb™

PR I R L | Il Il 1 1 | T L | PR T S S | |

—— Bulk RS Graviton (kM =1.0) ~ —* Obs 95% CL limit
------ Exp 95% CL limit

-:10

+ 20

I T TTTTm

Resonance Mass [GeV]

https://arxiv.org/abs/1808.00336

PR T [N T TN T SN T T TN TN T AN T ST ST N [T SN TN T AT ST Y T TN (NS SN SN S N SO O A |
300 400 500 600 700 800 900 1000

» The standard analysis shown here uses a BDT for
both channels that contribute to the final state:

> Two hadronically decaying 7 leptons.

> One hadronically and one leptonically
decaying .

» Results for the SM search are 12.7 times the
Standard Model expected sensitivity.

b
A.Bevan WO Queen Mary

University of London
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EXAMPLES: HH— BBz+7- (ATLAS THESIS)

» A student working on this mode also looked at using SVMs
(instead of BDTs) for the analysis.

» Similar performance obtained to the official result when using an
SVM for both ROC curves and limit plots.

ROC curves for different mass points in the 2HDM search, using one of the trigger lines for the bbt+7- channel.
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» SVMs less susceptible (than BDT) to overtraining for small samples.

University of London

b
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https://instituteofcoding.org
https://cds.cern.ch/record/2634914

INTRODUCTION TO MACHINE LEARNING

95% CL Limit on o, X BRy_p_-opee [PD]

—
<

EXAMPLES: HH— BB+t (ATLAS THESIS)

» A student working on this mode also looked at using SVMs

(instead of BDTs) for the analysis.

Similar performance obtained to the official result when using an
SVM for both ROC curves and limit plots.

-BDT

[

[ IIIIIIII

- - - exp (H,LTT BDT (2HDM), syst, 36.1 fb-1)

- -=-=- exp(H,LTT SVM (2HDM), syst, 36.1 fo-1)
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branching ratio of the 2HDM heavy scalar Higgs, H — hh — bbrT, process in the LTT channel.

T. Stevenson, CERN-THESIS-2018-119
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Figure 11.5: Expected limits for the BDT (black) and SVM (blue) at 95% C.L. on the cross-section times Figure 11.6: Expected (dashed black) and observed (solid black) limits using SVMs at 95% C.L. on the
cross-section times branching ratio of the 2HDM heavy scalar Higgs, H — hh — bbTT, process in the LTT

b
A.Bevan WO Queen Mary

University of London
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Uses libsvm with an RBF kernel function to optimise two parameters: C
and I.

» Benchmark example of searching for top squark pair production with
stops decaying into the lightest supersymmetric particle (LSP) and a

top quark.

» Could use the ROC area under the curve (AOC) to optimise on, but
this is not directly related to the result being produced.

» Instead use the Azimov estimate of the significance of the result as
the figure of merit to compare and optimise performance on:

Zy = [2 ((s +b)n (52 1 b()s(ljr Z)Cfg)] b [1 . b(bg_ésgg)]) 1/2

This is the median discovery significance from the Poisson form of the signal (s) and background (b), with an

uncertainty on the background of o.

L
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
» The variable sets used for the SVM-HINT paper are

Variable Set 1 | Set 2 | Set 3 | Set 4 As with other work on using ML methods the
P, . . expected result that the combination of high
n level and low level (derived and primitive)
PT,jet(1,2,34) features provides better performance than

Mjet(1,2,3,4) using just one of those sets.
PT,b jet1

b jet1
Njet

low-level

Results on the next two pages illustrate this.

Ny jet
Bt
Ht

mt

7%
My

Ap(W, 1)

m(l, b)
Centrality

Y

Hrp-ratio
Arpmin (1, 0)
A¢min(J1,2: #1)

high-level
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Results are turned into a probabilistic score using a

sig

Number of events
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N

10

moid function:
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M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.
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EXAMPLES: SVM HINT APPLIED TO CMS DATA

» Results are turned into a probabilistic score using a

sigmoid function:
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M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.
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SVMS: SUMMARY AND MISCELLANEQUS NOTES

» Use SVMs when:

» You have small or very small training examples.

» and you care about obtaining a generalised result (reproducibility

of the output matters even if the data fed to the algorithm
changes).

» Computing time/resource (incl. memory) is not a problem.

» Do notuse an SVM when:

» You have a lot of training examples and/or very little computing
resource.

L
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SVMS: SUMMARY AND MISCELLANEQUS NOTES

» We've looked at the hard and soft margin SVMs.

» The algorithm stems from the same linear separation problem that is addressed by
Rosenblatt’s perceptron paper.

» However this focusses on how far an example is from the margin defining the
separating hyperplane.

» Can't understand the mapping from the input feature space to the dual space (but we
don’t have to).

» SVMs are widely used outside of HEP.

» They have been used for a broad range of physics studies in HEP, but the algorithm has
not been widely adopted.

» There are specific reasons why you would or would not want to use the algorithm.

» Searches where you have limited training examples available (e.g. SUSY or Higgs BSM)
are cases where you might want to look at the algorithm.
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KNN: K-NEAREST NEIGHBOURS
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K-NEAREST NEIGHBOURS (AKA K-MEANS)

» This is a clustering algorithm, and an example of
unsupervised learning.

» Aim: determine the centroid positions C of K clusters in
the data containing N examples using a Euclidean
distance from the cluster mean to some data example.

» Optimisation: The variance of the clusters is minimised in
order to determine the corresponding means of the
cluster.

L
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K-NEAREST NEIGHBOURS (AKA K-MEANS)

» Step 1:

» Given C compute the total cluster variance and minimise this with respect to
the means of the clusters. xi ith example

K
. 2 Ni: Number of examples in Kth cluster
min, E N, E || x;, —my || k P

c,{m,) my: Centroid of Kth cluster
T k=l )=k . Cluster index

» This gives the current mean positions of the clusters.

» Step 2:

» Given a set of means m, minimise these by assigning elements to the closest
current cluster mean. i.e.

. . 2
C@) = argminy x| | x; — my ||
» Step 3:

» Iterate until the assignments stabilise.

L
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K-NEAREST NEIGHBOURS (AKA K-MEANS)

» This example shows successive iterations of the K-means
algorithm to a set of data with K=3.

Initial Centroids Initial Partition
. This algorithm has
2L the number of
< . ;-a‘.
K clusters, K, as a
: e parameter.
o @= :._. 5 Q2. .
o ST foTe Clustering results
, will depend on
4 2 0 2 4 6 .
the choice of K.
Iteration Number 2 Iteration Number 20

Colour indicates
example
assignment to a

/// given cluster.

‘s
g .

Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 14 N
A.Bevan WO Queen Mary
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EXPLAINABILITY AND INTERPRETABILITY

» The issue of how to explain the model, and how to interpret it
is challenging.

» e.g.why was a given prediction made?
» Event classification / decision making
» Real value prediction (e.g. signal strength in a score)

» There is no consensus on how to approach this problem; it is
an active research area.

» Highlight just a few ways we can help to elucidate our
models.

o
A.Bevan WO Queen Mary
Univi

ersity of London



https://instituteofcoding.org

INTRODUCTION TO MACHINE LEARNING 40

EXPLAINABILITY AND INTERPRETABILITY

» CNN filter maps provide information about shapes and colour
that can be used to interpret how features are identified.

Label assighments

» Requires effort to “see what is happening in may cases”

L
EI@] Krizhevsky et al., Neural Information Processing Systems conference proceedings. A. Bevan \a,Qal Queeﬂ Mary
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EXPLAINABILITY AND INTERPRETABILITY

» Some problems have simpler filter interpretations.

Input images

7he
gy o i, 1st Conv layer
MO€D4 g@ssbo
(i s/’%"'
Q ‘n
"ore? 2nd Conv layer
3rd Conv layer
\\‘ i A. Bevan, https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0392 A. Bevan ‘«Q@l Queeﬂ Mary

rsity of London
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EXPLAINABILITY AND INTERPRETABILITY

» Some problems have simpler filter interpretations.

T N v =T % MoEDAL
. ’ 'ic‘o ¢ ‘V‘T‘X Candidate —ﬂ/
yy 4 "?“0 % @e- L Top surface Qy,
, ¥l ,
4

D o - § j/ Bottom Surface *

Input images
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EXPLAINABILITY AND INTERPRETABILITY

» There are methods that use gradients and back-propagation to
indicate which local regions of an image lead to a particular decision
for CNNs: e.g. GradCam, Guided Back Propagation and variants
thereof.

Original Image Grad-CAM Grad-CAM+ + Original Image Grad-CAM Grad-CAM+ +

Two girls focussed on their faces on a sunny day A motocross bike race four little kids are riding a bike race

» There are also generalisations for DNNSs.

&
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EXPLAINABILITY AND INTERPRETABILITY

» There are methods that use gradients and back-propagation to
indicate which local regions of an image lead to a particular decision
for CNNs: e.g. GradCam, Guided Back Propagation and variants
thereof.

Original Image Grad-CAM Grad-CAM+ + Original Image Grad-CAM Grad-CAM+ +

Two girls focussed on their faces on a sunny day A motocross bike race four little kids are riding a bike race

» There are also generalisations for DNNSs.

&
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EXPLAINABILITY AND INTERPRETABILITY

» Complicated models that rely on function approximation
through deep abstractions, or implicit mappings into high
dimensional feature spaces can be challenging to understand.

» Interpretation of their results can be straightforward or
challenging.

» These however are one class of models; other machine learning
algorithms can be more transparent (e.g. Decision Trees).

» Bayesian networks (not discussed here), require causal input in
order to construct models, and are by construction easier to
interpret than the methods discussed here.

A.Bevan Qal Queen |\/|al’y
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DATA:

MNIST

CFAR-10

CFAR-100

KAGGLE

UCI ML DATA REPOSITORY

TIMIT

RCV1-V2
DEEP LEARNING USING LOW LEVEL FEATURES
CROSS VALIDATION

APPENDIX
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APPENDIX: DATA — MNIST

» MNIST is a standard data set for hand writing pattern recognition. e.g. the

Example: 4 Label: 1
Example: 1 Label: 3

Example: 2 Label: 4

Example: 3 Label: 6 0
0
o
5 5 >
5
10
10 10 10
15 15 15 15
20 20 20 20
2 2 2 2
0 5 10 15 20 25 0 5 10 15 20 3 0 5 10 15 20 25 0 5 10 15 20 25

» 60000 training examples

» 10000 test examples

» These are 8 bit greyscale images (one number required to represent
each pixel)

» Renormalise [0, 255] on to [0, 1] for processing.
» Each image corresponds to a 28x28 pixel array of data.

» For an MLP this translates to 784 features.
AT http://yann.lecun.com/exdb/mnist/ A.Bevan \c\‘é_al Queen Mary

University of London
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APPENDIX: DATA — CFAR-10

» 60k 32x32 colour images (so each image is a tensor of

dimension 32x32x3).

» This is a labelled subset of an 80 million image dataset.

airplane k[N 0N 0 - [ O
» 10 classes: automobile AR ESeE=S
e S mall NS ¥ EEE
cat Rt Tl LA R &
wr GRS
w e mBraE
v  EEEWEDANE
o IR PR
N =T
wock o ) e e 5 S (] A

TN https://www.cs.toronto.edu/~kriz/cifar.html

nnnnnnnnnnnnnnnnnn
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APPENDIX: DATA — CFAR-100

» 100 class variant on the CFAR10 sample:

» 32x32 colour images (so each image is a tensor of

dimension 32x32x3).

Superclass

aquatic mammals
» 100 classes: =

flowers

food containers

fruit and vegetables

household electrical devices

household furniture

insects

large carnivores

large man-made outdoor things

large natural outdoor scenes

large omnivores and herbivores

medium-sized mammals

non-insect invertebrates

people

reptiles

small mammals

trees

vehicles 1

vehicles 2

https://www.cs.toronto.edu/~kriz/cifar.html

Classes

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout

orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle
hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor

49
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APPENDIX: DATA — KAGGLE

» Well known website for machine learning competitions; lots of problems and
lots of different types of data.

» Also includes training material at:

» https://www.kaggle.com/learn/overview

» e.g. Intro to machine learning includes a data science problem on
predicting titanic survivors from a limited feature space.

» Since the outcome is known, this is a good sample of real world data to
try out your data science skills.

@ Getting Started Prediction Competition

Titanic: Machine Learningfrom.Disaster"

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle - 11,175 teams - Ongoing

Overview Data Notebooks Discussion Leaderboard Rules Join Competition

L
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APPENDIX: DATA — UCI ML DATA REPOSITORY

UCIH cirx>

Machine Learning Repository

» Hundreds of data sets covering life sciences, physical
sciences, CS / Engineering, Social Sciences, Business, Game

and other categories of data.

» Different types of problem: including Classification,
regression and clustering samples.

» Different types of data: e.g. Multivariate, univariate, time-
series etc.

» https://archive.ics.uci.edu/ml/datasets.php

B
A.Bevan u Queen Mary
Uniwv:

ersity of London



https://instituteofcoding.org
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/index.html

PN .,

INTRODUCTION TO MACHINE LEARNING

APPENDIX: DATA — TIMIT

» A corpus of acoustic-phonetic continuous speech data,
provided with extensive documentation.

» Includes audio files and transcripts

» 630 speakers, each with 10 sentences, corresponding to
a corpus of 25200 files (4 files per speaker).

» Total size is approximately 600Mb.

https://catalog.ldc.upenn.edu/LDC923S1
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APPENDIX: DATA — RCV1-V2

» RCV1: A New Benchmark Collection for Text
Categorization Research

» A detailed description of this text categorisation data set

can be found in: http://www.jmlr.org/papers/volume5/
lewisO4a/lewisO4a.pdf

http://www.ai.mit.edu/projects/imlr/papers/volume5/lewis04a/lyrl2004_rcviv2_ README.htm

b
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APPENDIX: DEEP LEARNING USING LOW LEVEL FEATURES

I I I

» Baldi et al. have reported the ability for a deep network to learn additional
information from low level features over and above the high level features;
doing function approximation from energy and momenta.

» 2.6 million (100k) training (validation) examples.

» 5 layer network with 300 hidden units in each layer.

» learning rate 0.05 and weight decay coef. of 10-5.

» Improves discovery significance over and above a NN.
» Good illustration, is not a realistic scenario as:

» No systematics included.

» Relies on very large training samples (unrealistic for many LHC
scenarios).

» FOM optimised is the AUC - we measure limits, cross sections and

parameters relating to decay properties or fundamental quantities of the
(SM) model.

» Anecdotally I've found smart learning (SL) and deep learning (DL)
perform equally well in many scenarios with realistic HEP Monte Carlo/
data control sample constraints. SL algs. are less resource hungry than
DL ones.

Baldi, Sadowski, Whiteson: DOI: 10.1038/ncomms5308.
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APPENDIX: CROSS VALIDATION

» In statistics cross validation is used to understand the mean and variance
of estimations of model predictions from data.

» The bias will be irreducible and mean that the predictions made will
have some systematic effect related to the average output value.

» The variance will depend on the size of the training sample.

» The central limit theorem tells us that:

If one takes N random samples of a

distribution of data that describes N
some variable x, where each M = Z Mo
sample is independent and has a i=1

mean value y; and variance o;2, N
then the sum of the samples will V = Z 0-2,2
have a mean value M and variance 1

V where:

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. YaY,
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A.Bevan cg g‘ggﬁfﬂnMary
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APPENDIX: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

Divide the data sample for training and
validation into k equal sub-samples.

validation

From these one can prepare k sets of validation
. .. - validation
samples and residual training samples.

Each set uses all examples; but the training and [ iisaton
validation sub-sets are distinct. I validation [
One can then train the data on each of the k I vatidation

training sets, validating the performance of the
network on the corresponding validation set.

— I —_— . e — e — —_—

— — ——

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of
a‘ examples and p examples for testing, and the remainder of data for training, respectively.

JL = e — =

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. wWOJ
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A.Bevan c’Q° g‘ggﬁﬂnMary
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APPENDIX: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

. . ROC-Curve
» The ensemble of response function outputs will
vary in analogy with the spread of a Gaussian SVM_Best
distribution > e L _ | SYM_ Average
. 0.8 = SVM_Holdout_RBF

» This results in family of ROC curves; with a
representative performance that is neither the
best or worst ROC.

o
\l

o
)

o
3

o
o

» The example shown is for a Support Vector
Machine, but the principle is the same.

o
w

N IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I T

(False negative rate) Backgr rejection (1-eff)
o
N

» It is counter-intuitive, but the robust response
comes from the average, not the best
performance using the ROC FOM.

0.5 0.6 07 0.8 0.9 1
(True positive rate) Signal eff

o

—— — — — —_— == _ — _—e ===

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50%

' examples and p examples for testing, and the remainder of data for training, respectively.

L — . . — I

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328.
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London



https://instituteofcoding.org

