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INTRODUCTION TO MACHINE LEARNING

OVERVIEW
▸ What is machine learning? 

▸ Ethics 

▸ Data wrangling 

▸ Optimisation 

▸ Decision Trees 

▸ Neural Networks 

▸ Multilayer Perceptron (MLP) 

▸ Auto-encoders 

▸ Convolutional Neural Networks (CNN) 

▸ Generative Adversarial Networks 

▸ Support Vector Machines 

▸ KNN 

▸ Explainability and Interpretability 

▸ Appendix
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Machine Learning is a huge field, and here I 
focus on a restricted set of topics, as an 
introduction into the subject. 

Where algorithms or issues are explored in 
more depth this is generally done for 
pedagogical reasons, or the algorithm is 
widely used, or because the issue is general to 
the field.
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INTRODUCTION TO MACHINE LEARNING

OVERVIEW
▸ Examples are provided for the tutorials.  

▸ These use ROOT or Python and have been tested using the 
following versions: 

▸ ROOT: 6.06/02 

▸ Python 3.7 (via an Anaconda install) with the following modules 
▸ TensorFlow 2.2 [Note: examples are not taking advantage of 

eager execution and are using the V1 backward compatibility 
mode] 

▸ matplotlib 
▸ numpy 
▸ sklearn
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INTRODUCTION TO MACHINE LEARNING

WHAT IS MACHINE LEARNING?
▸ Oxford English Dictionary: 

▸ “a type of artificial intelligence in which computers use huge amounts of data to learn how 
to do tasks rather than being programmed to do them” 

▸ Collins Dictonary: 

▸ “a branch of artificial intelligence in which a computer generates rules underlying or based 
on raw data that has been fed into it” 

▸ Google Developers glossary: 

▸ “A program or system that builds (trains) a predictive model from input data. The system 
uses the learned model to make useful predictions from new (never-before-seen) data 
drawn from the same distribution as the one used to train the model. Machine learning also 
refers to the field of study concerned with these programs or systems.” 

▸ There is no single definition agreed of machine learning, so I will use a working definition. 

▸ “The process of using an algorithm to approximate data using some underlying 
optimisation heuristic”
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INTRODUCTION TO MACHINE LEARNING

WHAT IS MACHINE LEARNING?
▸ “The process of using an algorithm to approximate data using 

some underlying optimisation heuristic” 

▸ We are doing function approximation using some algorithm fit to 
some reference data using some heuristic.  

▸ The fitting in this context is referred to as training or learning. 

▸ There are different learning paradigms, we will focus on 
supervised and unsupervised learning. 

▸ The trained function is used as a model (i.e. for prediction). 

▸ Dimensionality and parameters are implied in these slides when 
referring to general situations, i.e. � .f(x, θ) → f(x, θ) → f(x)
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ETHICS
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INTRODUCTION TO MACHINE LEARNING

ETHICS
▸ How does ethics fit into a lecture on machine learning?

�8

Ethics plural in form but singular or plural in construction : 
the discipline dealing with what is good and bad and with 
moral duty and obligation.

Morals describes one's particular values concerning what 
is right and what is wrong.

Using definitions from the Miriam Webster Dictionary

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

ETHICS
▸ How does ethics fit into a lecture on machine learning? 

▸ Is it ethical to develop an algorithm to identify the 
political leaning of an individual with the intent of 
targeting advertising, to polarise the viewpoint of voters 
with positive reinforcement messages or fake news, to 
undermine or influence the outcome of an election?  

▸ Is it ethical to develop a pandemic model (e.g. using an 
SIR approach[1]) using an AI, that could influence 
Government policy, without fully testing the robustness 
of predictions?

�9

[1] e.g. see this article on wikipedia Compartmental models in epidemiology. A good illustration of a variant of this model can be found at https://upload.wikimedia.org/wikipedia/
commons/3/31/SIRD_model_anim.gif 
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INTRODUCTION TO MACHINE LEARNING

ETHICS
▸ But that is the “real world” why should I care about ethics? 

▸ Is it ethical to use an algorithm for science without checking 
that the result makes sense? 

▸ Is it ethical to use an energy intensive algorithm when a 
computationally cheap alternative that performs just as well 
exists? 

▸ What we think of as good scientific practice, is also ethical 
behaviour.   It leads to robust results. 

▸ Ethical behaviour in the wider world can have deeper 
ramifications than getting a robust scientific result or not.

�10
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INTRODUCTION TO MACHINE LEARNING

ETHICS
▸ But that is the “real world” why should I care about ethics? 

▸ In reality most people who do a PhD in an STFC (or 
EPSRC) area of science will not end up in academia, and 
ethics will play a role beyond scientific correctness for 
those scientists. 

▸ For those of us who do stay in academia, then we have an 
obligation to help people understand the ramifications of 
algorithms and our rationale for using them (or not). 

▸ For all of us, we have transferable skills that can be 
applied to real world problems.
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INTRODUCTION TO MACHINE LEARNING

ETHICS
▸ The UK Government developed a data ethics framework[1]: 

▸ “Public sector organisations should use the Data Ethics Framework to guide the appropriate use 
of data to inform policy and service design” 

▸ Other organisations such as the UN and IEEE (as well as the EU) are also 
concerned about ethical use of data, and ethical algorithms, from regulatory 
and the perspective of rights.

�14

[1] See https://www.gov.uk/government/publications/data-ethics-framework 
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https://ethicsinaction.ieee.org
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DATA WRANGLING
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INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING (AKA FEATURE ENGINEERING)
▸ Need to understand the data being analysed. 

▸ Domain context will provide most insight into getting information to 
highlight the solution to your problem. 

▸ Identify the features of interest in the data. 

▸ Allow you to reduce the dimensionality of the problem into as few a set of 
inputs as possible. 

▸ Most of the analysis can be done with this domain context background:   

▸ Deep Learning (DL) can replace the hard work of feature engineering 
for a resource cost and a lack of explainability and interpretability. [1] 

▸ “Smart Learning” (SL) is an alternative way of approaching the 
problem. [2]

�16

[1] e.g. See work by Pierre Baldi on Higgs analysis at the LHC: DOI: 10.1038/ncomms5308.  Also see appendix. 
[2] I attribute the term Smart Learning to the use of domain knowledge and understandable AI, such as Bayesian Networks.  A term that I first heard about 
from Norman Fenton who has a good book on the topic.
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http://bayesianrisk.blogspot.com


A. Bevan

INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING
▸ In HEP we use cut based selection to: 

▸ Remove pathological data (poorly calibrated or partially 
complete data, bad beam conditions, etc). 

▸ Remove obvious background examples from the data 
(well known SM processes that are just not interesting 
for study, or use as a calibration or control sample). 

▸ Prepare data for the “statistical analysis” that will include 
the use of multivariate analysis techniques and fitting.

�17
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INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING
▸ e.g. Higgs physics: Throw away ~109 recorded events for each interesting one.

�18
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INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING
▸ Knowing what the task is allows one to identify the 

features of interest.  This is the domain context knowledge. 

▸ If your signal is the process pp→HH+X, then: 

▸ Laws of physics provide insights for you to refine your 
list of features to train on. 

▸ e.g. the Higgs mass or pT will play a role in identifying 
the signal, along with decay product properties (e.g. 
b-tag quality), etc.

�19

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING
▸ Reduce the number of dimensions of interest: 

▸ Trial and error with different inputs to identify what improves performance 
of the algorithm and what does not. 

▸ Linearly correlated features can be combined to reduce the number of 
features providing information for the algorithm to learn from. 

▸ Principal Component Analysis (PCA) to address this problem. 

▸ Some neural network configurations do that automatically for you (e.g. 
auto-encoders). 

▸ Let the algorithm learn what is important and what is not. 

▸ Some algorithms (e.g. support vector machines) implicitly increase the 
dimensionality of the problem.

�20
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INTRODUCTION TO MACHINE LEARNING

ACTIVATION FUNCTIONS: DATA PREPARATION
▸ Input features are arbitrary; whereas (for example) activation functions in neural networks 

work best for a standardised input domain of [-1, 1] or [0, 1]. 

▸ We can map our input feature space onto a standardised domain that matches some 
range that matches that of the activation function. 

▸ Saves work for the optimiser in determining hyper-parameters. 

▸ Standardises weights to avoid numerical inaccuracies; and set common starting weights. 

▸ e.g.  

▸ having an energy or momentum measured in units of 1012 eV, would require weights 
O(10-12) to obtain an O(1) result for wixi. 

▸ Mapping eV ⟼TeV would translate 1012 eV ⟼ 1TeV, and allow for O(1) weights 
leading to an O(1) result for wixi. 

▸ Comparing weights for features that are standardised allows the user to develop an 
intuition as to what the corresponding activation function will look like.

�21
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INTRODUCTION TO MACHINE LEARNING

DATA WRANGLING
▸ Variable transformations are also useful (can be vital).

�22

1. Shift the distribution to have a zero mean 

2. De-correlate input features 

3. Scale to match covariance of features.

Y. LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3).

https://instituteofcoding.org
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DATA WRANGLING
▸ Data wrangling is an important part of ensuring you get the 

most out of applying machine learning; yet it is often not 
celebrated as the requirements can be very problem specific. 

▸ If you are interested in this topic you may wish to review the 
data wrangling presentation and tutorials given by Dr Nick 
Barlow from the Alan Turing Institute at the GradNet meeting 
on Machine Learning and AI in January 2020: 

▸ Dr Barlow’s talk and lecture can be found at: https://
indico.ph.qmul.ac.uk/indico/conferenceOtherViews.py?
view=standard&confId=543 
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OPTMISATION

TYPES OF LEARNING 
GRID SEARCH 
GRADIENT DESCENT 
ADAM OPTIMISER 
MISCELLANEOUS 
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A number of optimisation methods exist, and I selectively focus on three.  For example see C. Bishop, Neural Networks for 
Pattern Recognition or I. Goodfellow et. al, Deep Learning for more information on optimisation algorithms.
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OPTIMISATION 
TYPES OF LEARNING
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INTRODUCTION TO MACHINE LEARNING

TYPES OF LEARNING
▸ Consider a model � that depends on a parameter set �, we can select a point in 

the parameter hyperspace � that has a corresponding estimator of the function �. 

▸ The � are hyper-parameters (HPs) of the model. 

▸ Unsupervised learning: 
▸ Infer the probability distribution �  from the data without using labels. 
▸ Widely used in many fields of research. 

▸ Supervised learning: 
▸ Use training examples from labeled data sets with a known type or value, �, for 

each example. 
▸ Some loss function is used to compare � against model predictions � . 
▸ Can be thought of as computing a conditional probability � . 
▸ This is the most commonly used approach in particle physics today.

y θ
̂θ ̂y

θ

P( ̂y )

t

t ̂y
P(t | ̂y )

�26

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

TYPES OF LEARNING: SUPERVISED LEARNING
▸ Define a heuristic based on some figure of merit (FOM) designed to 

improve the value of that metric through some iterative process. 

▸ The FOM is called the objective function or loss function or cost function 
in machine learning. 

▸ e.g. the L2 norm loss function: this is like a 𝛘2, but without the error term: 

                                                        

▸ The � are called HPs as they form a hyperspace; other variables in the 
optimisation process are often included in the set of HPs (e.g. learning 
rate for a neural network, cost for a support vector machine, tree depth 
for a decision tree etc.).

θ
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L2 =
Nexamples

∑
i=1

[ti − ̂y( ̂θ)]
2
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INTRODUCTION TO MACHINE LEARNING

TYPES OF LEARNING
▸ Batch learning 

▸ Use a sample (batch) of training data to evaluate an estimate of the 
error and update weights in the optimisation. 

▸ Stochastic learning 

▸ Use individual training examples to evaluate an estimate of the error 
and update weights in the optimisation. 

�28

Y. LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3).
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OPTIMISATION 
GRID SEARCH

•THIS IS A SIMPLE OPTIMISATION ALGORITHM THAT CAN BE USED WITH NO PROGRAMMING 
EXPERIENCE.  

•ONE CAN IMPLEMENT A 1 OR 2 DIMENSIONAL GRID SEARCH USING AN EXCEL SPREADSHEET, 
AND FROM INSPECTION OF THE TABULATED RESULTS YOU CAN OPTIMISE SIMPLE PROBLEMS. 

•THIS IS A BRUTE FORCE OPTIMISATION APPROACH, AND IT IS USED WIDELY IN CERTAIN 
APPLICATIONS ACROSS A NUMBER OF RESEARCH FIELDS.

�29
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INTRODUCTION TO MACHINE LEARNING

GRID SEARCH
▸ Scanning through the hyperspace for each �  allows us to 

compute L2, and the minimum value obtained is the “best 
fit” or optimal estimate of the parameters �. 

▸ Simple heuristic to implement - you can do this in Excel 
for 1 or 2D problems.  ✓ 

▸ Easy to understand. ✓ 

▸ Expensive to compute: scanning � points in a dimension 
requires �  computations for � . ✗ 

▸ Heuristic suffers from the curse of dimensionality.

̂θi

θ

n
nM M = dim(θ)

�30

https://instituteofcoding.org


A. Bevan

m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

c

0
0.2

0.4
0.6

0.81
1.2

1.4
1.6

1.8
2

 lo
ss

2L

0
50

100
150
200
250
300
350
400
450

m
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

c

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

 lo
ss

2L

1

10

210

310

▸ e.g. Consider an L2 loss function optimisation of the HPs for � , i.e. 
optimise �  and �.  Here �  

▸ The contours of the loss function show a minimum. 

▸ The optimal value is selected from a discrete grid of points, only get an 
exact result if the grid maps onto the problem perfectly (as in this example).

y = mx + c
m c m = 1.0, c = 1.0

INTRODUCTION TO MACHINE LEARNING

GRID SEARCH
�31

macros/gridSearch.cc
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INTRODUCTION TO MACHINE LEARNING

GRID SEARCH
▸ e.g. The libsvm[1] package uses a HP grid search for 

optimisation for the Support Vector Machine algorithm; 
where the cost C and �  hyper-parameters need to be 
optimised. 

▸ The grid search is done efficiently by adapting to 
whatever step is sensible, in this case the algorithm has 
�  as the parameter of an exponential (the radial basis 
function); and so a linear search in C and a logarithmic 
search in �  is appropriate to sample the parameter 
hyperspace effectively.

Γ

Γ

Γ
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[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 
2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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OPTIMISATION 
GRADIENT DESCENT
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT
▸ Guess an initial value for the weight parameter: w0.

�34

w0
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w
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E

e.g. see Bishop, Neural Networks for Pattern Recognition (2013) Oxford University Press
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT
▸ Estimate the gradient at that point (tangent to the curve)

�35

w0
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w
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E
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT
▸ Compute Δw such that ΔE is negative (to move toward the 

minimum)

�36

w0

�  is the learning rate: a small positive number 

Choose                                   to ensure ΔE is always negative.

α

-4 -2 2 4
w

5

10

15

20

25

E
ΔE = Δw

dE
dw

= − α ( dE
dw )

2

Δw = − α
dE
dw
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GRADIENT DESCENT
▸ Compute a new weight value: w1 = w0+Δw

�37

w0

�  is the learning rate: a small positive number 

Choose                                   to ensure ΔE is always negative.

α
w1

-4 -2 2 4
w

5

10

15

20

25

E
ΔE = Δw

dE
dw

= − α ( dE
dw )

2

Δw = − α
dE
dw

= wi − α
dE
dw

wi+1 = wi + Δw
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT
▸ Repeat until some convergence criteria is satisfied.

�38

w0

�  is the learning rate: a small positive number 

Choose                                   to ensure ΔE is always negative.

α
w2 w1wn

-4 -2 2 4
w

5

10

15

20

25

E
ΔE = Δw

dE
dw

= − α ( dE
dw )

2

Δw = − α
dE
dw

= wi − α
dE
dw

wi+1 = wi + Δw
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▸ We can extend this from a one parameter optimisation to a 2 parameter 
one, and follow the same principles, now in 2D. 

▸ The successive points wi+1 can be visualised a bit like a ball rolling down 
a concave hill into the region of the minimum. 

▸ In general update weights such that 

▸ and                                  .

INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT
�39

ΔE = Δw∇E = − α∇2E

wi+1 = wi − α∇E
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A. Bevan

▸ Returning to the �  example, we can optimise this 
using the Gradient Descent algorithm.

y = mx + c

INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT: EXAMPLE
�40

Implementation: TensorFlow 2.2 (using V1 compatibility) 
Jupyter Notebook

Use N=100 and �  with the TensorFlow GradientDescent optimiser to obtain: 
  �  
   �

α = 0.005
̂m = 0.9928...
̂c = 0.0226...

c = 0.0
m = 1.0

scripts/LinearRegression.ipynb
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GRADIENT DESCENT: EXAMPLE
�41

Implementation: TensorFlow 2.2 (using V1 compatibility) 
Jupyter Notebook

Use N=100 and �  with the TensorFlow GradientDescent optimiser to obtain: 
  �  
   �  
The minimiser fails; too large a learning rate is being used.

α = 0.01
̂m = − 3.5 × 1014

̂c = − 7.08 × 1014

c = 0.0
m = 1.0

scripts/LinearRegression.ipynb

https://instituteofcoding.org
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT: REFLECTION
▸ The examples shown illustrate problems with parabolic minima. 

▸ With selection of an appropriate learning rate, � , to fix the step size, we 
can guarantee convergence to a sensible minimum in some number of 
steps. 

▸ Translating the distribution to a fixed scale, then we can predict how many 
steps it will take to converge to the minimum from some distance away 
from it for a given � . 

▸ If the problem hyperspace is not parabolic, this becomes more 
complicated, and there is no guarantee that we converge to the minimum. 

▸ Modern machine learning algorithms use more refined variants on this 
method.

α

α

�42
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OPTIMISATION 
ADAM OPTIMISER

�43
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INTRODUCTION TO MACHINE LEARNING

ADAM OPTIMISER
▸ This is a stochastic gradient descent algorithm. 

▸ Consider a model �  that is differentiable with respect to the HPs � so that: 

▸ � is the training epoch. 

▸ the gradient �  can be computed. 

▸ �  are biased values of the first (second) moment. 

▸ �  are bias corrected estimator of the moments. 

▸ Some initial guess for the HP is taken: � , and the HPs for a given epoch are 
denoted by � . 

▸ �  is the step size (i.e. learning rate). 

▸ � and �  are exponential decay rates of moments.

f(θ) θ

t

gt = ∇ft(θt−1)

mt (vt)

̂m t ( ̂v t)

θ0
θt

α

β1 β2

�44

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015

(ADAM: ADAptive Moment estimation based on gradient descent)
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INTRODUCTION TO MACHINE LEARNING

ADAM OPTIMISER
▸ ADAptive Moment estimation based on gradient descent.

�45

(ADAM: ADAptive Moment estimation based on gradient descent)

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015
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INTRODUCTION TO MACHINE LEARNING

ADAM OPTIMISER
▸ Benchmarking performance using MNIST and CFAR10 data indicates 

that Adam with dropout minimises the loss function compared with 
other optimisers tested. 

▸ Faster drop off in loss, and lower overall loss obtained vs other 
algorithms benchmarked at the time.

�46

(ADAM: ADAptive Moment estimation based on gradient descent)

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015
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ADAM OPTIMISER
▸ Benchmarking performance using MNIST and CFAR10 data indicates 
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MNIST and CFAR10 are standard 
benchmark data sets in CS (see 
appendix).  MNIST is a set of handwritten 
numbers 0 through 9; CFAR10(0) is an 
image classification data set (cars, boats 
etc).

(ADAM: ADAptive Moment estimation based on gradient descent)

Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015
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OPTIMISATION 
MISCELLANEOUS

MULTIPLE MINIMA 
MORE ON LOSS FUNCTIONS
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT:MULTIPLE MINIMA
▸ Often more complication hyperspace optimisation 

problems are encountered, where there are multiple 
minima.
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The gradient descent 
minimisation algorithm is based 
on the assumption that there is 
a single minimum to be found. 

In reality there are often 
multiple minima. 

Sometimes the minima are 
degenerate, or near 
degenerate. 

How do we know we have 
converged on the global 
minimum?

One of several minima
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INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT:MULTIPLE MINIMA
▸ Often more complication hyperspace optimisation 

problems are encountered, where there are multiple 
minima.
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The gradient descent 
minimisation algorithm is based 
on the assumption that there is 
a single minimum to be found. 

In reality there are often 
multiple minima. 

Sometimes the minima are 
degenerate, or near 
degenerate. 

How do we know we have 
converged on the global 
minimum?

global minimum

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

OPTIMISATION: LOSS FUNCTIONS
▸ There are many types of loss function other than the L2 loss 

▸ L1 norm loss: 

▸ The mean square error (MSE) loss function: 

▸ Cross entropy
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L =
1
N

L2 =
1
N

Nexamples

∑
i=1

[ti − ̂y( ̂θ)]
2

L1

Nexamples

∑
i=1

ti − ̂y( ̂θ)

L = −
Nexamples

∑
i=1

̂y (xi)ln ti
The cross entropy can be thought of as 
the negative log likelihood function for 
the data � under the model �ti ̂y
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SUPERVISED LEARNING
▸ For supervised learning the loss function depends on both model parameters 

and a known target value � for a given example. 

▸ e.g. the L2 loss: . 

▸ This requires (at a minimum) a sample of data with the input feature space of 
interest, and for each example in the data, the known target output value. 

▸ The loss function is optimised using the data, to obtain a model. 

▸ Unlike fitting however we don’t care about the uncertainty on the model 
parameter estimates, only on the nominal values obtained, � . 

▸ Due to the complexity of models, it is generally not possible to understand if the 
optimisation converged to a sensible solution by inspecting marginalised 
projections of the model on the data.

ti

L2 =
Nexamples

∑
i=1

[ti − ̂y( ̂θ)]
2

̂θ
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SUPERVISED LEARNING
▸ e.g. the Kaggle Higgs data sample: 

▸ The KaggleSet column in the CVS file for this data allows the user to 
understand if this is to be used for training or testing, or some other means 
(e.g. Kaggle Score Board evaluation). 

▸ The Label column, is the known label; this defines the � used in the loss 
function. 

▸ I use this challenge data as an assignment for undergraduate lectures (pdf, 
zip).  N.B. the zip file is 189Mb.

ti
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[1] G. Hinton et al. arXiv:1207.0580

EventId, DER_mass_MMC, DER_mass_transverse_met_lep, …, Weight, Label, KaggleSet, KaggleWeight

Features (not all to be used for training) Known example type

https://instituteofcoding.org
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https://arxiv.org/abs/1207.0580


A. Bevan

TRAINING 
OVERTRAINING

WEIGHT REGULARISATION 
CROSS VALIDATION 

�56

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

OVERTRAINING
▸ A model is over trained if the HPs that have been 

determined are tuned to the statistical fluctuations in the 
data set. 

▸ Simple illustration of the problem:
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30 training examples The decision boundary selected here 
does a good job of separating the red 
and blue dots. 

Boundaries like this can be obtained by 
training models on limited data 
samples. The accuracies can be 
impressive. 

But would the performance be as good 
with a new, or a larger data sample?
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INTRODUCTION TO MACHINE LEARNING

OVERTRAINING
▸ A model is over trained if the HPs that have been 

determined are tuned to the statistical fluctuations in the 
data set. 

▸ Simple illustration of the problem:
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Increasing to 1000 training examples we can see the boundary doesn’t do as well. 
This illustrates the kind of problem encountered when we overfit HPs of a model.

30 training examples 1000 training examples
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OVERTRAINING
▸ One way to avoid tuning to statistical fluctuations in 

the data is to impose a training convergence criteria 
based on a data sample independent from the 
training set: a test sample. 

▸ Use the loss evaluated for the training and test 
samples to check to see if the HPs are over trained. 

▸ If both samples have similar loss then the 
model response function is similar on two 
statistically independent samples. 

▸ Note: If the samples are large enough then one 
could reasonably assume that the response 
function would then be general when applied to 
an unseen data sample. 

▸ “large enough” is a model and problem 
dependent constraint.
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Training iterations (epochs)

Lo
ss

Similar test-train 
loss function

Divergence 
indicates the 
model learned 
statistical 
fluctuations in the 
train set.  This is 
overtrained.
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OVERTRAINING
▸ Training convergence criteria that could be used: 

▸ Terminate training after Nepochs 

▸ Loss comparison: 

▸ Evaluate the performance on the training and validation sets. 

▸ Compare the two and place some threshold on the difference 
�  

▸ Terminate the training when the gradient of the loss function with 
respect to the weights is below some threshold. 

▸ Terminate the training when the �  starts to increase for the 
validation sample.

ΔLOSS < δLOSS

ΔLOSS
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OVERTRAINING: WEIGHT REGULARISATION
▸ Weight regularisation involves adding a penalty term to the loss 

function used to optimise the HPs of a network.  

▸ This term is based on the sum of the weights wi in the network and 
takes the form: 

▸ The rationale is to add an additional cost term to the optimisation 
coming from the complexity of the network.  

▸ The performance of the network will vary as a function of λ. 

▸ To optimise a network using weight regularisation it will have to be 
trained a number of times in order to identify the value corresponding 
to the min(cost) from the set of trained solutions.
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See Ch. 9 of Bishop’s Neural Network for Pattern Recognition 
Loshchilov, Frank Hutter, arXiv:1711.05101
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OVERTRAINING: WEIGHT REGULARISATION
▸ For example we can consider extending an MSE loss function 

to allow for weight regularisation.  The MSE loss is given by: 

▸ To allow for regularisation we add the sum of weights term: 

▸ This is a simple modification to make to the NN training 
process.
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OVERTRAINING: CROSS VALIDATION
▸ A well trained model will provide robust predictions, irrespective of the 

examples presented to it. 

▸ The variance of model predictions will be small. 

▸ The model predictions may be systematically biased independently 
of this. 

▸ One can divide the training set up into k-folds, and then perform k 
trainings; each one leaving a single fold out. 

▸ The amount of data used in a fold will depend (generally the more data 
the better. 

▸ The ensemble of predictions indicates the variance on the model 
output.
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Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320–328. 
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).
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OVERTRAINING: CROSS VALIDATION
▸ The use of cross validation to determine the spread of model predictions, and 

any systematic bias on prediction can be useful. 

▸ e.g. in a physics context: Consider a new particle search at the Large Hadron 
Collider. 

▸ Using an overtrained model to suppress background and enhance signal will 
result in a lack of experimenter understanding as to how the expected and 
observed limits on the new particle relate to each other. 

▸ This could result in a false discovery of new physics. 

▸ It could result in missing out on a discovery of new physics. 

▸ Some people say it is not wrong to use an over trained model - I argue 
strongly that it is not scientifically correct to use an over trained model, unless 
the variance on that model, and hence the implications are well understood.
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Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320–328. 
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).

See the appendix for more on cross validation.
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DROPOUT
▸ A problem with deep networks is the number of hyper-parameters 

that need to be determined. 

▸ This leads to a requirement for very large data sets to avoid overfitting 
(or fine-tuning). 

▸ Hyperparameters can also learn to “co-adapt” in the training process. 

▸ co-adapt means that as one parameter is changed, another in the 
network can be modified in a correlated way to offset that change. 

▸ This kind of behaviour intentionally exists in some algorithms 
(Sequential Minimal Optimisation for Support Vector machines, 
where pairs of HPs are changed to conserve an overall zero sum); 
but is generally unwelcome behaviour.
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G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958
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OVER FITTING: DROPOUT
▸ A pragmatic way to mitigate these issues is to intentionally compromise the model 

randomly in different epochs of the training by removing units from the network. 

▸ That way the whole model will be effectively trained on a sub-sample of the data 
with the aim of limiting the ability to learn statistical fluctuations in the data, and 
mitigating the co-adaption issue. 

▸ This does not remove the possibility that a model is overtrained, as with the 
previous discussion HP generalisation is promoted by using this method.
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Dropout is used 
only during 
training. 

The full model is 
used for making 
predictions.

G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958
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DROPOUT
▸ Example from Hinton et al. 

for an MNIST sample. 

▸ Using 50% drop out on 
the hidden layers gives an 
improvement over the 
previous best network 
architecture. 

▸ Adding 20% drop out in 
the input layer provides 
further improvement in 
error.
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Previous best network error on the MNIST sample

G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958
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INTRODUCTION TO MACHINE LEARNING

OVER FITTING: DROPOUT
▸ A variety of architectures has been explored with different training samples for this technique, 

▸ Dropout can be detrimental for small training samples, however in general the results show that 
dropout is beneficial.  

▸ For deep networks or typical training samples O(500) examples or more this technique is expected 
to be beneficial. 

▸ For algorithms with very large training data sets, the benefits are less clear.

�69

G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958

https://instituteofcoding.org
https://arxiv.org/abs/1207.0580
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


A. Bevan

INTRODUCTION TO MACHINE LEARNING

DROPOUT
▸ Example from Hinton et al. 

for a voice recognition 
sample of data (TIMIT, 
speech recognition data). 

▸ Illustrates the classification 
error as a function of epoch 
with and without dropout. 

▸ Similar results were obtained 
by Hinton and his team with 
the Reuters newsfeed data 
set (RCV1-v2).
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TIMIT

RCV1-v2

G. Hinton et al. arXiv:1207.0580, Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958

https://instituteofcoding.org
https://arxiv.org/abs/1207.0580
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


A. Bevan

DECISION TREES

DECISION TREES 
BOOSTING 
  ADABOOST,M1 
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ The cut based and linear discriminant analysis methods are useful but 

limited [See Data Wrangling] 

▸ The underlying concepts of applying Heaviside function constraints on 
data selection and on the use of a decision boundary definition (a plane in 
hyperspace) of the form of the dot product                 can be applied in 
more complicated algorithms. 

▸ Here we consider extension to the concept of rectangular cuts to decision 
trees as a machine learning algorithm. 

▸ We will have to introduce the concepts of classification and regression; 
and methods to mitigate mis-classification of data.   

▸ The issue of overtraining is something we will come back to when 
discussing optimisation.
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Consider a data sample with an N dimensional input feature space X. 
▸ X can be populated by examples from two or more different species of 

event (also called classes, categories or types). 
▸ Consider the two types and call them signal and background, 

respectively*. 
▸ We can use a Heaviside function to divide the data into two parts: 
▸ We can use this to distinguish between regions populated signal and 

background:
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*Can generalise the problem to an arbitrary number of types.

H(x) =
1
2

(1 + sign(x − b))

x
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y(
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1
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(passes cut)

Background 

(fails cut)

For an arbitrary cut position in x we 
can modify the Heaviside function  

where b is the offset (bias) from 
zero.

x − b

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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x1

x2

Example feature space 
described by X={x1, x2}

Can describe the data 
as the root node.
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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x1

x2The data get divided 
into two partitions.

Cut on the feature 
space to separate the 
data into two different 
regions.

x1 < A

x2 < B x2 < C
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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x1

x2
Divide the data again

The feature space gets 
further sub-divided.

x1 < A

x2 < B x2 < C
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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x1

x2
Divide the data again

x1 < A

x2 < B x2 < C

-1 -1 -1 -1 +1+1+1+1

The feature space gets 
further sub-divided 
(again).
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ The set of rectangular cuts applied to the 

data allow us to build a tree from the root 
note.  

▸ We can impose limits on: 

▸ Tree depth (how many divisions are 
performed). 

▸ Node size (how many examples per 
partition). 

▸ Trees can be extended to more than 2 
categories. 

▸ They lend themselves to classifying examples 
or adapted to make a quantitative prediction 
(regression)
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de
pt

h

G(x) = + 1 or  − 1

The decision tree output for a 
classification problem is
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INTRODUCTION TO MACHINE LEARNING

DECISION TREES
▸ Decision trees are “weak learners”, as they can take input 

features that only weakly separate types of example and 
combine those features to increase the separation. 

▸ A single tree is susceptible to overtraining, and there are 
various methods of reducing this; including limiting the 
complexity of a tree, or the limiting the minimum number of 
examples in each node. 

▸ The decision tree can be extended to an oblique decision tree, 
in which a linear combination of the features (instead of a single 
feature) is used to classify examples; so the Heaviside function 
cut becomes a hyperplane cut.

�79

https://instituteofcoding.org


A. Bevan

INTRODUCTION TO MACHINE LEARNING

BOOSTING
▸ If a training example has been mis-classified in a training epoch, then 

the weight of that event can be increased for the next training epoch; 
so that the cost of mis-classification increases. 

▸ The underlying aim is to take a weak learner and try and boost this 
into becoming a strong learner. 

▸ This example re-weighting technique is called boosting. 

▸ There are several re-weighting methods commonly used; here we 
discuss: 

▸ AdaBoost.M1 (popular variant of the Adaptive boosting method) 

▸ Boosted Decision Trees are known as BDTs
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INTRODUCTION TO MACHINE LEARNING

BOOSTING: AdaBoost.M1
▸ i is the ith example out of a data set with N examples. 
▸ m is the mth training out of an ensemble of M learners to be trained. 

▸ Step 1: 
▸ Assign event weights of 𝑤i = 1/N to all of the N examples. 

▸ Step 2: for m=1 through M 
▸ Train the weak learner (in our case this is a BDT): 
▸ Compute the error rate 
▸ Calculate the boost factor                          and reweight examples  

▸ Step 3: 
▸ Return the weighted committee: a combination of the M trees that have been 

learned from the data.
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BOOSTING: AdaBoost.M1
▸ m=1 

▸ m=2 

▸ m=3 

▸ m=M
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G(x) = sign (
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INITIAL TRAINING SAMPLE

WEIGHTED SAMPLE

WEIGHTED SAMPLE

WEIGHTED SAMPLE

G1(x)

G2(x)

G3(x)

GM(x)

The Gm(x) are individual 
weak learners; each is 
derived from a training 
using the data.   

The m=1 training uses 
the original data; all 
subsequent trainings 
use reweighted data. 

The final classifier 
output is formed from a 
committee that is a 
weighted majority vote 
algorithm.
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RANDOM FORESTS
▸ Random Forests are constructed from an ensemble of individual trees. 

▸ Each tree in the ensemble uses a randomly selected subset of the feature space, and 
the minimum node size is usually set to 1, so the classifier prediction is almost always 
accurate. 

▸ The mode (classification) or mean (regression) of the ensemble is the output of the 
Random Forest. 

▸ The probability that an example �  is assigned to a given class �, is given by 

▸ and the output score �  is given by the aggregate over � trees in the forest: 

▸ The classification of �  is simply the class � that maximises � .

xi c

gc(xi) t

xi c gc(xi)
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Ho, Proceedings of the 3rd International Conference on Document Analysis and 
Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282.

P(c |xi) =
P(c |xi)

n
∑
l=1

P(cl |xi)

gc(xi) =
1
t

t

∑
j=1

Pj(c |xi)
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