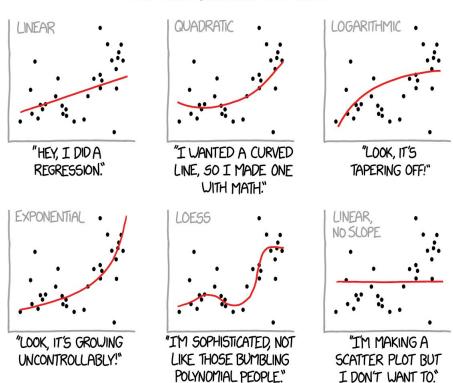
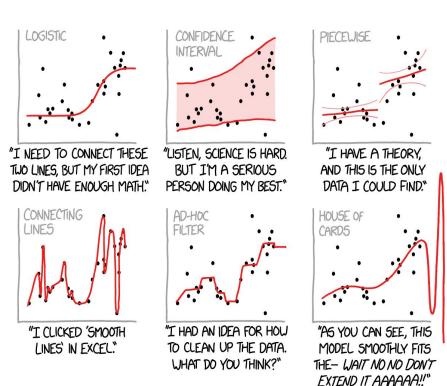
Validation & Evaluation in Physics: How we do statistics in HEP, how we need to change it for ML purposes What we don't know and what we do wrong

Lydia Brenner

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND



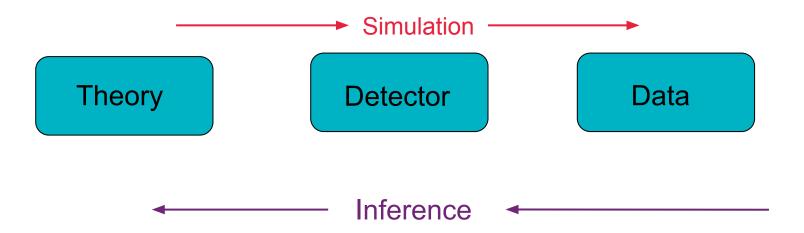
Badness of fit?



October 1st 2025

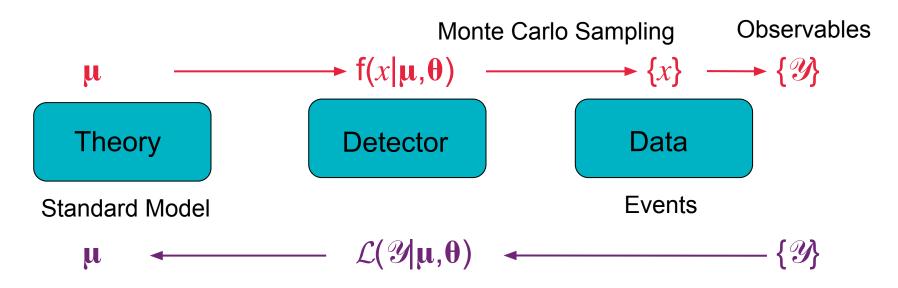
Physics analysis in a nutshell

Simulation based inference: the classical way



Physics analysis in a nutshell

Simulation based inference: the classical way



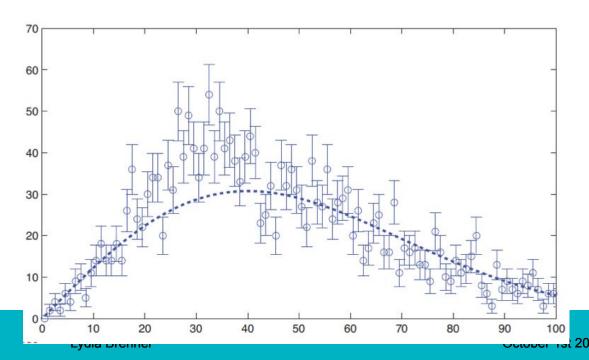
The question: Does my hypothesis describe the data

Basic question: what doe we want from the answer?

- → Would like a clearly understandable number
- → Would like it to match with visual input
- → Would like it to have a meaningful interpretation in terms of the likelihood

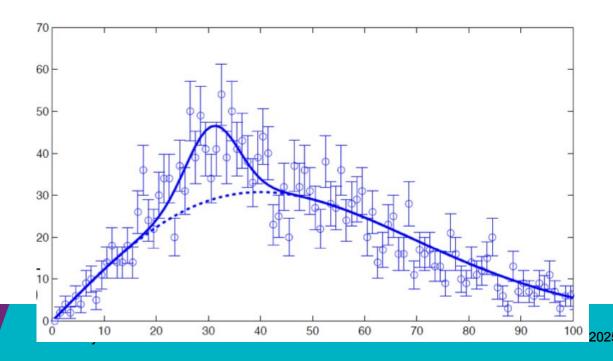
Is there a signal?

Try to distinguish background fluctuations from signals.



Is there a signal?

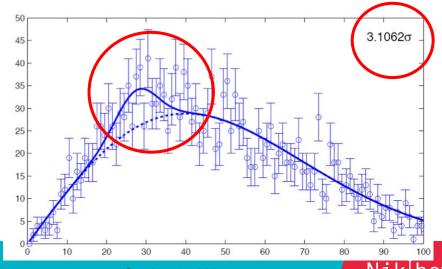
Looks like a signal around m=30 maybe



So is there a signal?

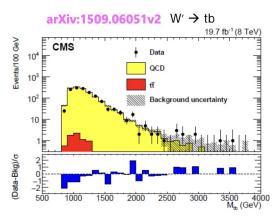
By eye; does not *really* look like a signal but: >3 sigma!

$$q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$$

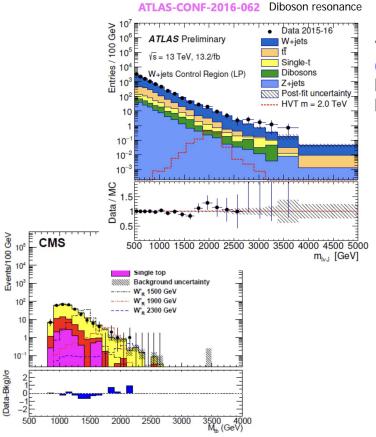


Do we use by eye?

Yes!



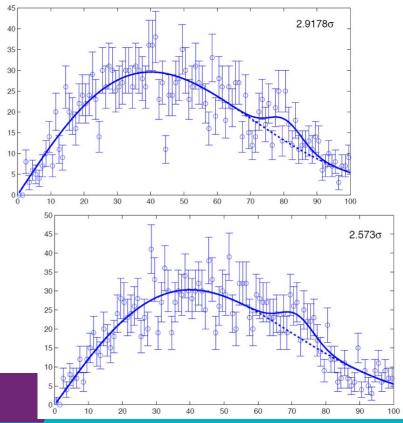
"This test (optical inspection) shows good agreement "

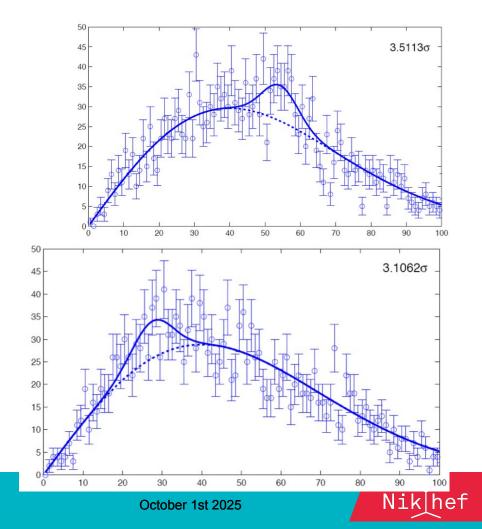


"Good agreement is observed (optical inspection of pulls) between the data and the background prediction"

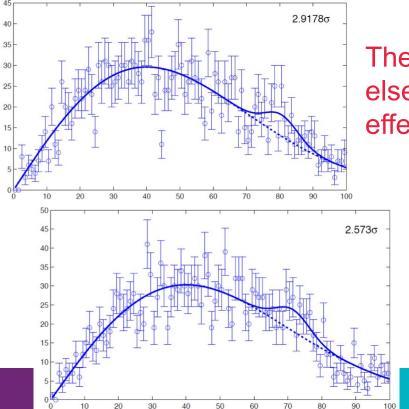
"Good agreement (optical inspection) between data and expectation from SM"

What about these signals?

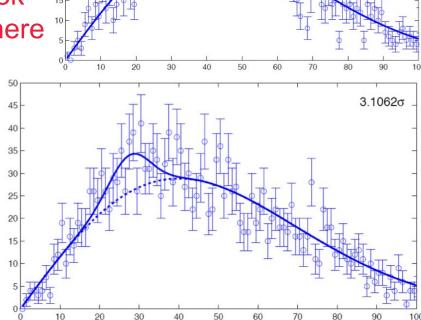




Answer: All background fluctuation: **



The look elsewhere effect

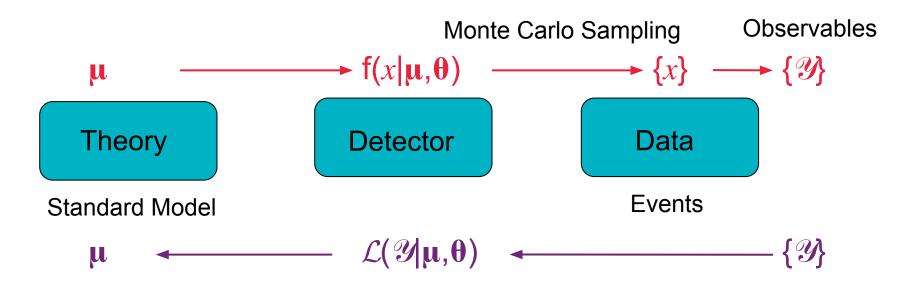


October 1st 2025

 3.5113σ

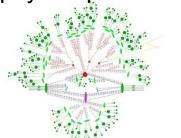
Physics analysis in a nutshell

Simulation based inference

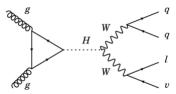


Sources of systematic uncertainties

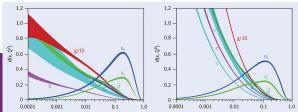
Soft physics process simulation



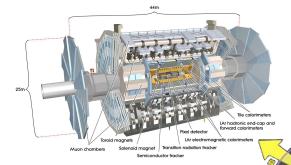
Physics process simulation



Proton structure functions



Detector simulation



Detector reconstruction

Theory

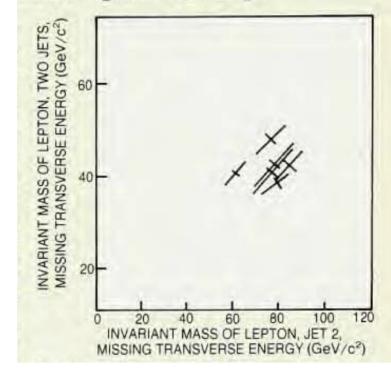
The top quark 'discovery' at UA1

 $W \rightarrow tb$ and $t \rightarrow bl\pm v$

→ 2 b jets, charged lepton missing energy

Find 6 events.

- → Plot total mass against bl±v mass (v from missing energy/momentum)
- → W mass in right place
- → t mass around 40 GeV (correct mass approximately 173 GeV)
 Turned out to be background and very creative selection cuts



Wilks theorem

- H0: Additional parameters (as predicted by H1) not needed
- If H0 correct then according to Wilks' theorem: $-\Delta \chi^2 = -2\ln[L(H1)/L(H0)]$ should follow for $n \rightarrow \infty \chi^2$ function with ndf = #added parameters

Wilks' theorem only applies for nested hypotheses:

H0: 1st order polynomial H1: 2nd order polynomial ✓

H0: 1st order polynomial H1: a·exp(bx+cx2) X

Profiling over Nuisance Parameters (θ)

So if we are interested in the μ that maximises $\mathcal{L}(\mathcal{Y}|\mu,\theta)$ we can use Wilk's theorem and instead consider

$$\operatorname{Max} \mathcal{L}(\mu, \theta | \mathcal{Y}) = -2\operatorname{ln}(\mathcal{L}(\mu, \theta | \mathcal{Y}) / \mathcal{L}(\widehat{\mu}, \widehat{\theta} | \mathcal{Y})) = \operatorname{NLL}(\mu, \theta | \mathcal{Y})$$

In the large N limit this is a chi-squared distribution with k degrees of freedom.

Max
$$\mathcal{L}(\mu, \theta | \mathcal{Y}) = NLL(\mu, \theta | \mathcal{Y}) = \chi_k^2$$

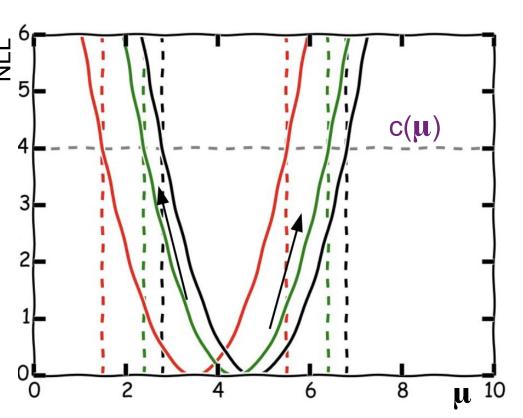
Confidence intervals

Wilks' theorem (if it applies)

makes it relatively simple to
construct confidence intervals in
a multi-dimensional
model-parameter space.

Confidence interval is defined as

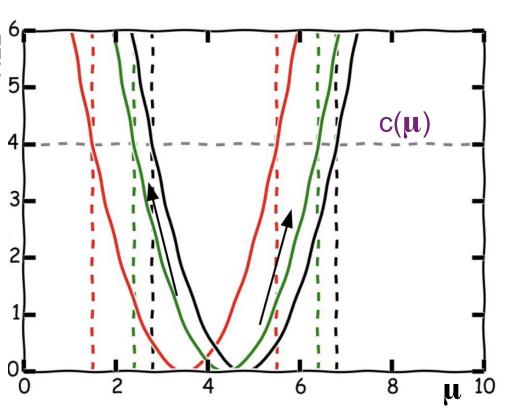
$$I(\mathcal{Y}) = \{ \mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu) \}$$



Multidimensional likelihoods

$$I(\mathcal{Y}) = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal{Y}) < \mathsf{c}(\mu)\} = \{\mu \mid \mathsf{NLL}(\mu, \theta | \mathcal$$

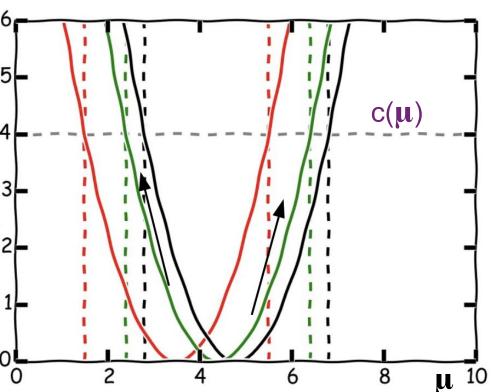
The threshold values c for different confidence level depend on the dimensionality of the confidence interval!



Multidimensional likelihoods

 $I(\mathcal{Y}) = \{\mu \mid \text{NLL}(\mu, \theta | \mathcal{Y}) < c(\mu)\}^{\frac{1}{2}} = 0$ One dimension NLL = $\chi^2_{k=1}$

68,3% CL	c=1
95,4%CL	c=4
99,7% CL	c=9



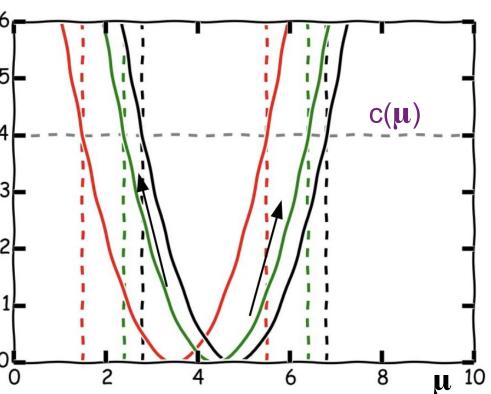
Multidimensional likelihoods

 $I(\mathcal{Y}) = \{\mu \mid \text{NLL}(\mu, \theta | \mathcal{Y}) < c(\mu)\}^{\frac{1}{2}} = 0$ One dimension NLL = $\chi^2_{k=1}$

68,3% CL	c=1
95,4%CL	c=4
99,7% CL	c=9

Two dimensions NLL = $\chi^2_{k=2}$

68,3% CL	c=2,3
95,4%CL	c=6,2
99,7% CL	c=11,8



Setting limits

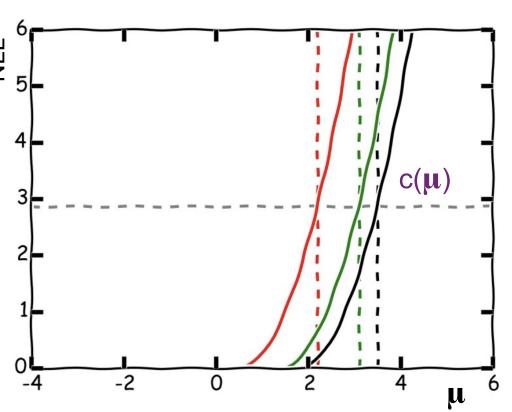
 $I(\mathcal{Y}) = \{\mu \mid \text{NLL}(\mu, \theta \mid \mathcal{Y}) < c(\mu)\}$ 5

Upper limits on a parameter (in contrast to two-sided intervals) can be 4

obtained by setting the NLL to zero below the best-fit value.

The threshold c is a bit more tricky in this case, since the NLL follows a χ^2 distribution only half of the distribution In this case you can show that

95,4%CL c=2,86

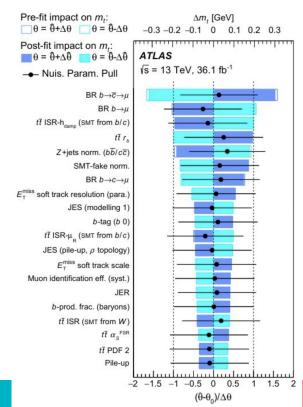


Pulls and rankings: A closer look at Nuisance Parameters

A way to look at the contribution to NLL from Nuisance Parameters (NPs) θ

Shows pre-fit and post-fit *impact* of individual NP on the determination of μ :

- \rightarrow Each NP fixed to ± 1 pre-fit and post-fit sigmas (Δθ and $\Delta \hat{\theta}$ = uncertainty on $\hat{\theta}$)
- → Fit re-done with N-1 parameters
- Impact extracted as difference in central value of μ



Post-fit not smaller than pre-fit = no constraint

$0 \pm 1 = No pull$

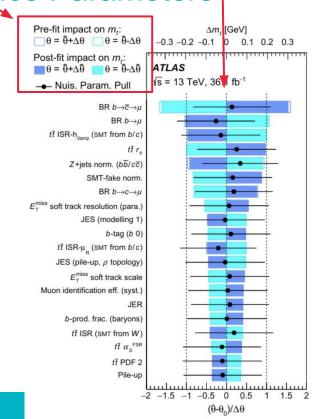
Pulls and rankings: A closer look at Nuisance Parameters

A way to look at the contribution to NLL from Nuisance Parameters (NPs)

Shows pre-fit and post-fit *impact* of individual NP on the determination of μ :

- ⇒ Each NP fixed to ± 1 pre-fit and post-fit sigmas (Δθ and $\Delta \hat{\theta}$ = uncertainty on $\hat{\theta}$)
- → Fit re-done with N-1 parameters
- Impact extracted as difference in central value of μ

Nomenclature: fitting and parameter estimation



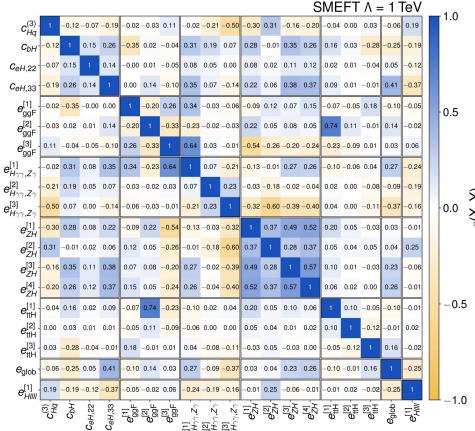
ATLAS

\sqrt{s} = 13 TeV, 139 fb⁻¹ m_H = 125.09 GeV, $|y_H|$ < 2.5 SMEET Λ = 1 TeV

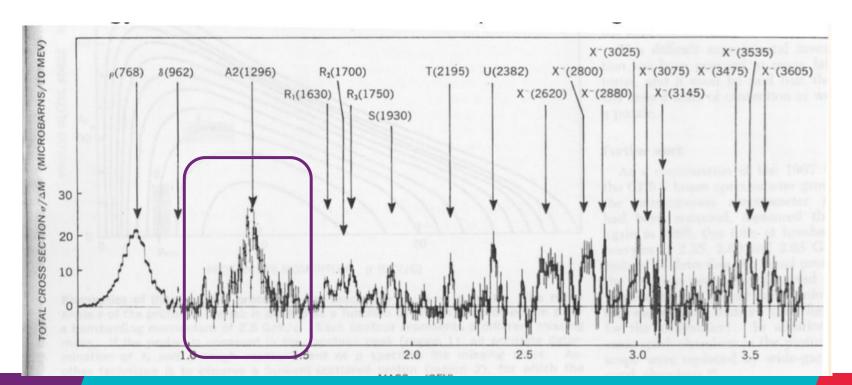
The correlation matrix

Large correlations can make the fit unstable

- → Not necessarily a problem but worth investigating
- → Change of basis can make constraints explicit
- → Consider carefully when reparametrizing

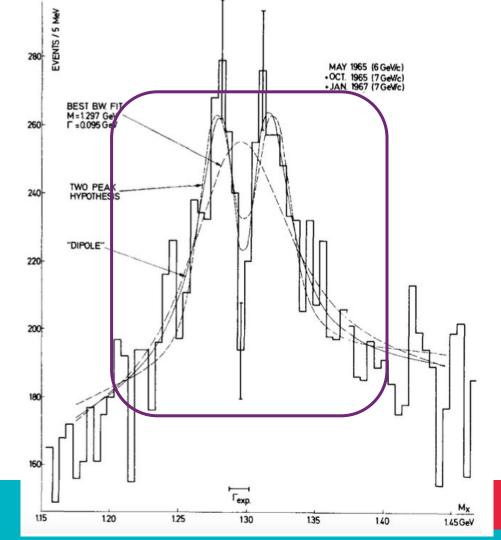


Splitting the A2 meson



Splitting the A2 meson

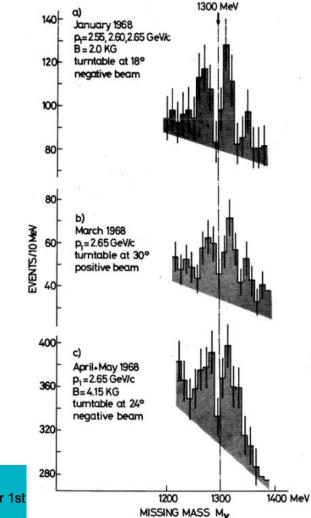
First reported 1967 More than 6σ effect!



Splitting the A2 meson

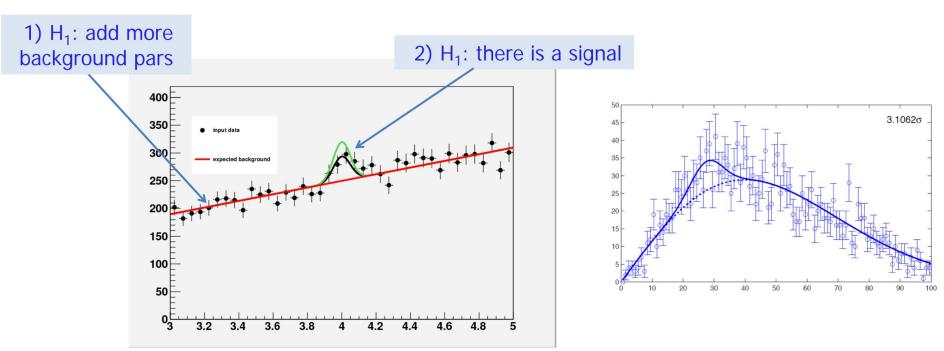
First reported 1967 More than 6σ effect!

- → Confirmed in 1969
- → Went away 1971
- 1. "Creative" analysis cuts
- 2. Wanting to see it
 - a. And not publishing when you don't see it

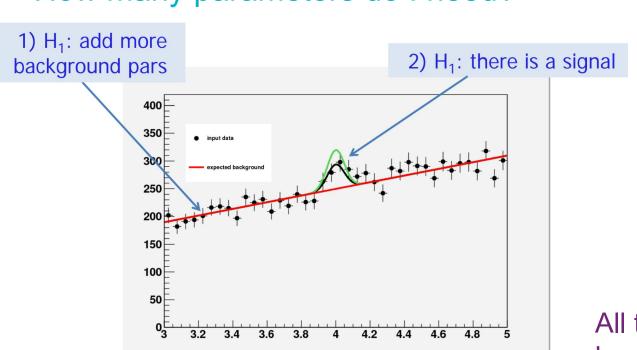


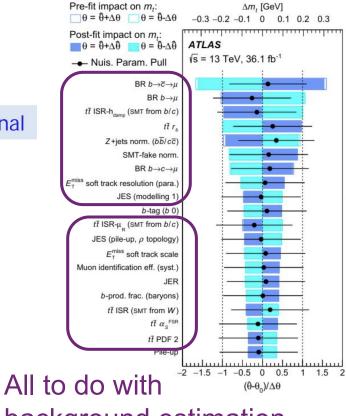
How many parameters do I need?

$$q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$$



How many parameters do I need?





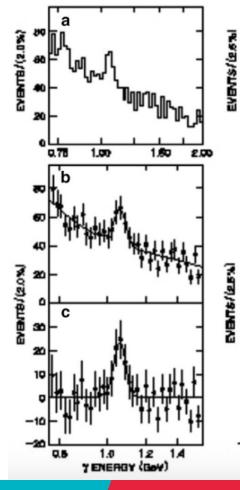
background estimation

The $\zeta(8.3)$

"Discovered" in 1984 by the Crystal Ball experiment at DESY.

- → Measure energy of photons
- → Single energy peak seen!!
- → Signals e+e- \rightarrow Y \rightarrow ζγ
- → 4.2 sigma effect
- → Plots show (a) raw data , (b) fit, and (c) background-subtracted fit

When more data was taken (in 1985) the peak went away.



Nikhef

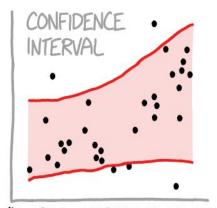
When things go wrong...

"It was easy - I just got a block of marble and chipped away anything that didn't look like David." - Michaelangelo Buonarotti(attrib.)

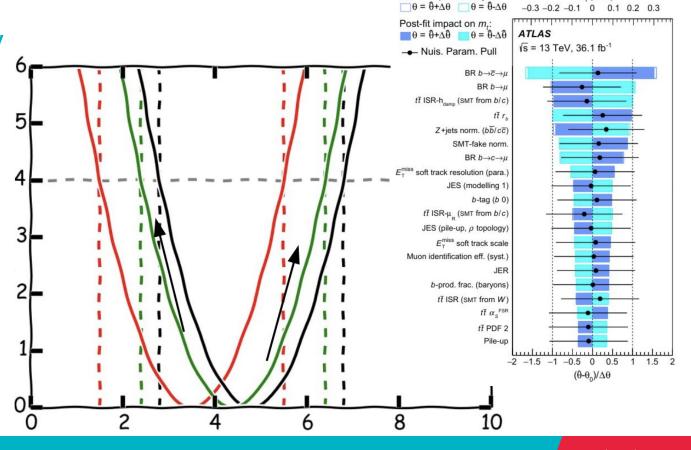
- → Maybe good way of creating sculpture but very bad way of doing physics
- → To resist temptation: For searches, devise cuts before looking at the data. Use Monte Carlo simulations, and/or data in 'sidebands'. Only when cuts are optimised do you 'open the box'.
- → For measurements, apply secret offset until selection frozen.

Partial summary

Not too bad...



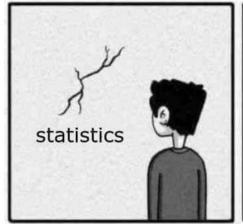
"LISTEN, SCIENCE IS HARD.
BUT I'M A SERIOUS
PERSON DOING MY BEST."

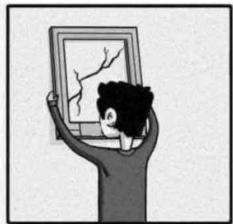


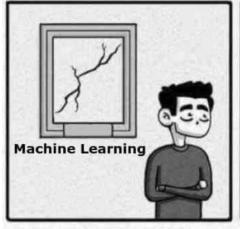
Pre-fit impact on m_t :

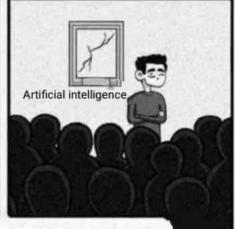
 Δm , [GeV]

Stats Meets ML?









What changes for ML?

Ask yourself: Why is my ML doing better?

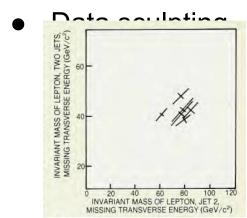
- Multidimensional
 - Does it have to do with correlated parameters?
 - Event-by-event
- Faster
 - Does it parallelise?
 - Simplify
- Wrong assumptions
 - Is there something we assume to be true that it doesn't learn?

General types of ML used in physics

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
 - Dimensionality reduction and compression
 - Outlier detection
- Weak and Semi-supervised Learning
 - Weak: Label smoothing or correction, Loss reweighting or Multiple-instance learning (MIL)
 - Semi: e.g. Pseudo-labeling with confidence thresholds

What could go wrong?

- Learning MC issues
- Finding the right answer, but no uncertainties



General types of ML used in physics: special cases

- Physics-informed ML
 - Grounding data-driven models in domain knowledge
 - Goal: accurate, robust, and interpretable outcomes
- Uncertainty aware ML
 - Helps look at intervals rather than best fit values

"LISTEN, SCIENCE IS HARD.
BUT I'M A SERIOUS
PERSON DOING MY BEST."

CONFIDENCE

Interpretability: A warm fuzzy feeling.... Or more than that

When things go wrong... ML edition

"It was easy - I just got a block of marble and chipped away anything that didn't look like David." - Michaelangelo Buonarotti(attrib.)

- → Often the way ML works! You just want to make sure you find a David not Goliath
- → To resist temptation: For searches, devise cuts before looking at the data. Use Monte Carlo simulations, and/or data in 'sidebands'. Only when cuts are optimised do you 'open the box'.
 - Much harder to do for ML!!
- → For measurements, apply secret offset until selection frozen.

Overfitting and techniques to prevent it

- Regularization: Adds a penalty term to the loss function to discourage large parameter values.
- Dropout: During training, randomly sets a fraction of neurons to zero at each iteration, which prevents co-adaptation of neurons and acts as an ensemble method.
- Early Stopping: Monitors performance on a validation set and halts training when the validation loss stops improving, reducing the risk of overfitting to training data.
- Data Augmentation: Increases the effective size of the training set by applying physically valid transformations

39

The difficult part

→ To resist temptation: For searches, devise cuts before looking at the data. Use Monte Carlo simulations, and/or data in 'sidebands'. Only when cuts are optimised do you 'open the box'.

Possible checks:

- Injection test
- Smeared or adjusted input data
- Testing on MC from a different generator
- Stay blind

Summary

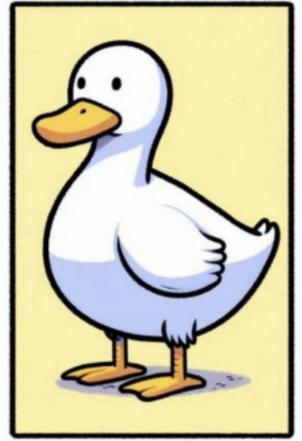
"LISTEN, SCIENCE IS HARD.
BUT I'M A SERIOUS
PERSON DOING MY BEST."

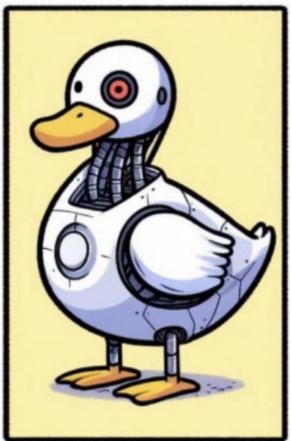
- \rightarrow Using a high level of significance (5 σ)
 - History tells us this is necessary
 - High output of results
- → Us "blind" analysis
- → Focus in intervals
 - Rather than best estimated (fitted) values
- → Independent validations
 - Rumours are hard to get rid off...
- → Use common sense and healthy scepticism
- → To learn more: https://indico.cern.ch/event/1407421

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

[If it looks like data, it's a sufficiently good simulator?]

Thanks!

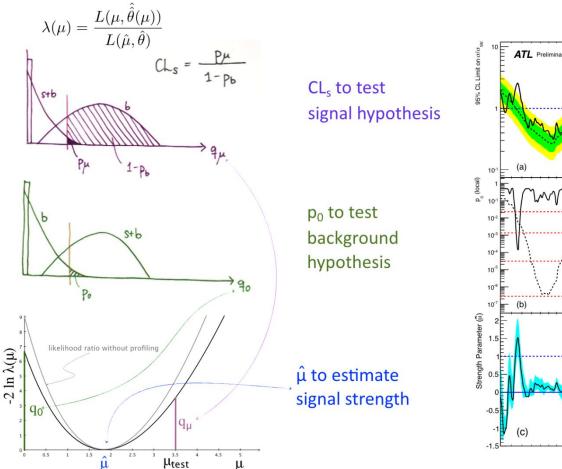


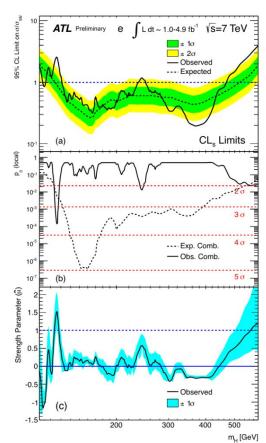


[DALL·E 3 take on the topic]

Back up

Thumbnail of the LHC statistical procedures



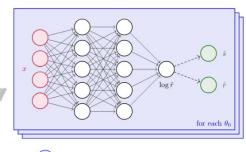


Parameter dependence

Say we want to model either
$$p(x \mid \theta)$$
 or $r(x \mid \theta) = \frac{p(x \mid \theta)}{p_{ref}(x)}$.

A few approaches that change structure of the model

- **Point-by-Point**: model $p(x | \theta_i)$ for a set of points $\{\theta_i\}$
 - Not explicitly parametrized in θ , no structure
- Parametrized Network: NN models both x-dependence and θ -dependence
 - Most flexible, but doesn't exploit any physics knowledge
- Fixed Interpolation: multiple NNs model x-dependence, but form of θ -dependence is fixed & defined by physicist
 - e.g. this is possible for EFT coefficients (exact)
 - This is what HistFactory etc. do for nuisance parameters but this makes assumptions



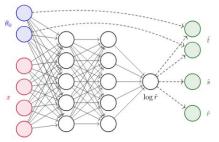
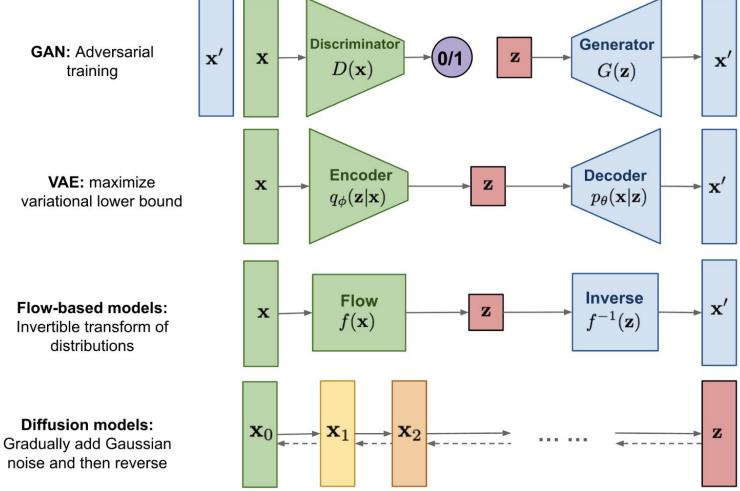




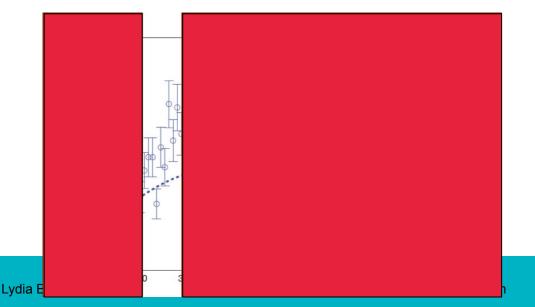
Figure 8: Schematic neural network architectures for point-by-point (top), agnostic parameterized (middle), and morphing-aware parameterized (bottom) estimators. Solid lines denote dependencies with learnable weights, dashed lines show fixed functional dependencies.



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/Nik hef

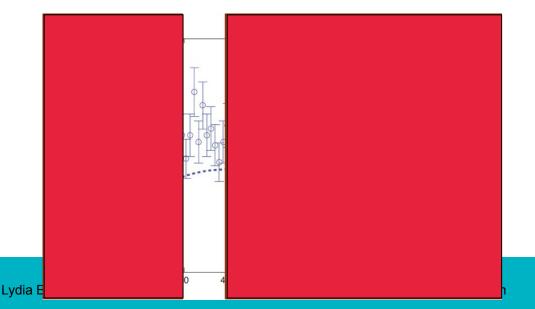
Look elsewhere effect: Option 1 Fixed Mass

Scan mass range in predefined steps. Perform a fixed mass analysis at each point $q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$



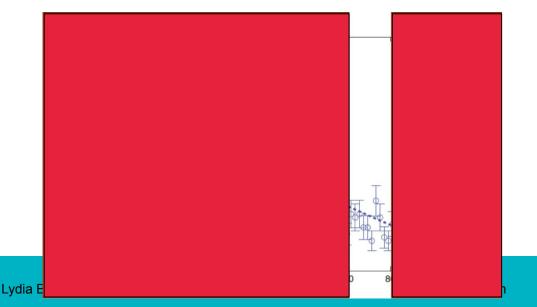
Look elsewhere effect: Option 1 Fixed Mass

Scan mass range in predefined steps. Perform a fixed mass analysis at each point $q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$

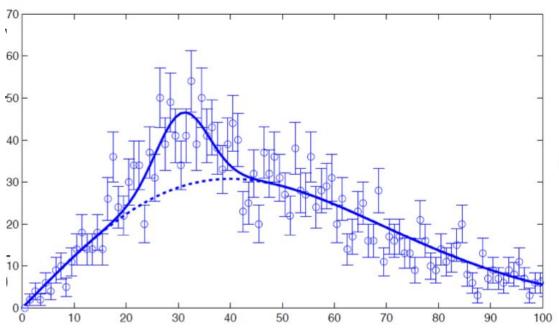


Look elsewhere effect: Option 1 Fixed Mass

Scan mass range in predefined steps. Perform a fixed mass analysis at each point $q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$



Is there a signal?



$$q_{fix,obs} = -2 \ln \frac{L(b)}{L(\hat{\mu}s(m=30)+b)}$$

Is there a signal?

For GOF tests with binned data:

→ compare observed event numbers n_i with expectation values f_i

Since no H1 specified there are many different GOF tests possible

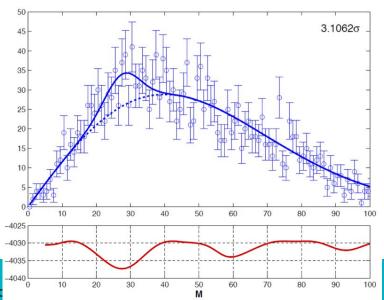
$$\chi^2 = \Sigma_i (f_i - n_i)^2 / \sigma^2$$

→ Basically does what you do by eye; Minimise distance from hypothesis to the data points

Look elsewhere effect: Option 2 Floating mass

Leave the mass floating

Use a modified test statistic
$$q_{float,obs}(\hat{\mu},\hat{m}) = -2 \ln \frac{L(b)}{L(\hat{\mu}s(\hat{m}) + b)}$$

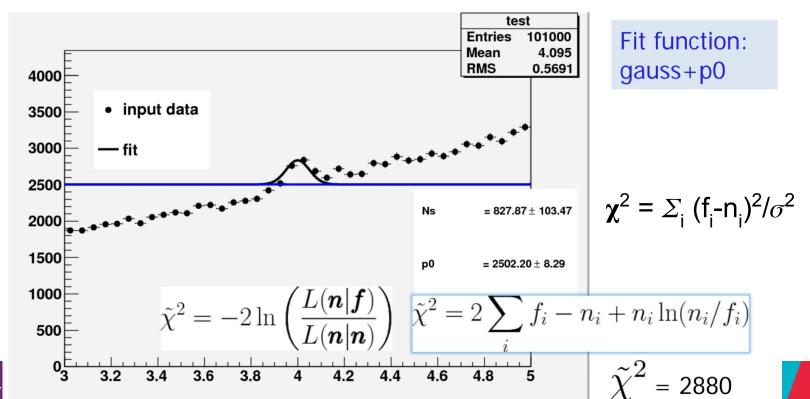


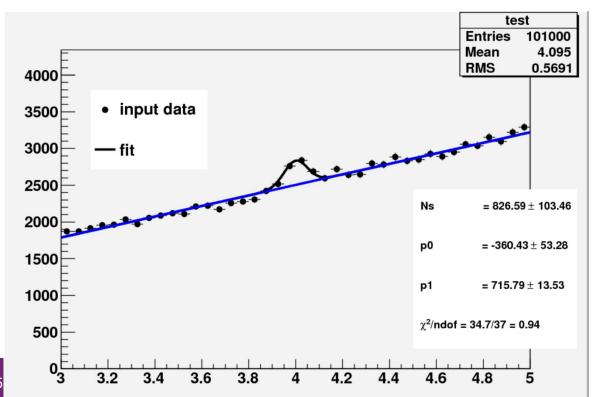
Look elsewhere effect: Option 3 Trials factor

Define your significance of a local excess of events by taking into account the probability of observing an excess anywhere in the range. Quantify in terms of a trial factor

- Ratio between the probability of observing the excess at some fixed mass point to the probability of observing it anywhere in the range.
- The trial factor grows linearly with the (fixed mass) significance

$$trial # = \frac{\int_{q_{obs}} f(q_{float} | H_0) dt_{float}}{\int_{q_{obs}} f(q_{fix} | H_0) dt_{fix}} = \frac{p_{float}}{p_{fix}} > 1$$

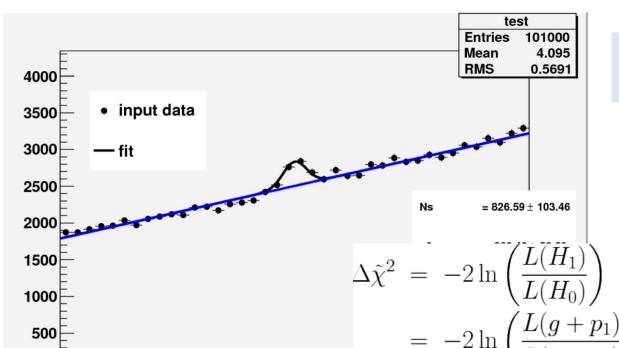




Fit function: gauss+p1

$$\tilde{\chi}^2$$
 = 34.7

Should we stop here?

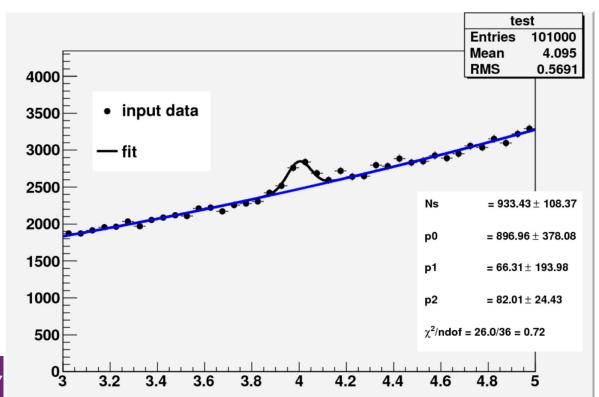


Fit function: gauss+p1

$$\tilde{\chi}^2$$
 = 34.7

Should we stop here?

$$= -2 \ln \left(\frac{L(g+p_1)}{L(g+p_0)} \right) = -2845.3$$

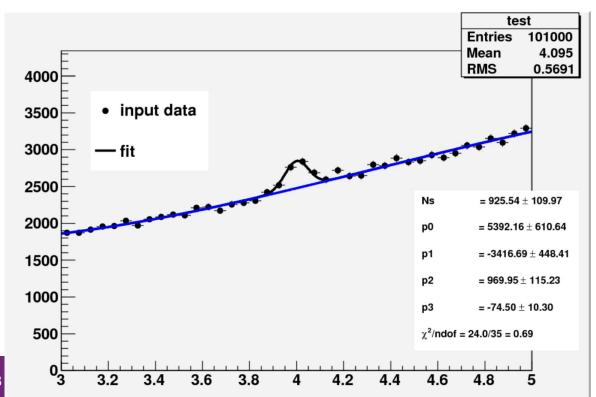


Fit function: gauss+p2

$$\tilde{\chi}^2$$
 = 26.0

$$\Delta \tilde{\chi}^2 = -8.7$$

Should we stop here?



Fit function: gauss+p3

$$\tilde{\chi}^2$$
 = 24.0

$$\Delta \tilde{\chi}^2$$
 = -2.0

Please stop!

If H0 correct then according to Wilks' theorem: $-\Delta \chi^2$ should follow a χ^2 function with ndf=1 (in asymptotic regime of large n)

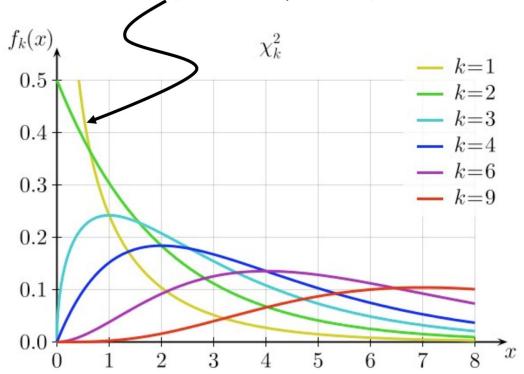
g+p0
$$\widetilde{\chi}^2=2880$$
 Note: p-values for χ^2 : TMath::Prob(χ^2 obs,ndf) g+p1 $\widetilde{\chi}^2=34.7$ $\Delta\widetilde{\chi}^2=-2845.3$ g+p2 $\widetilde{\chi}^2=26.0$ $\Delta\widetilde{\chi}^2=-8.7$ Favoured over g+p1 $\widetilde{\chi}^2=24.0$ $\Delta\widetilde{\chi}^2=-2.0$ Not favoured over g+p2

What does a χ^2 distribution look like for n=1?

 χ^2

Remember:

• Note that it for n=1, it does not peak at 1, but rather at 0...



Improving on χ^2

Likelihood ratio is an improved χ^2 – S. Baker & R.D. Cousins, NIM 221 (1984) 437

- → Still a single number
- → "Optimal estimator" e.g. parameter estimation
- → Requires a second hypothesis
- → Allows taking uncertainties into account systematically!!
 - What if there's a correlation?
 - What if there's a systematic uncertainty

Alternatives to Likelihoods and χ^2

Kolgomorov-Smirnov test

F.: Cumulative distribution function

 F_e : Empirical distribution function

$$q_{GOF,KS} = \sup |F_c(x) - F_e(x)|$$

Anderson-Darling test

$$q_{GOF,AD} = n \cdot \int dF_e(x) \frac{(F_c(x) - F_e(x))^2}{F_e(x) \cdot (1 - F_e(x))}$$