

Injection into, and Extraction from FETS FFA

C. Rogers

21/07/2025

Charge Exchange Injection & Painting

- Ion source generates Hydrogen atoms with an extra electron
 - "H-" ions
- Accelerate and inject H- on top of circulating proton beam
 - H- and protons pass through a dipole at different angles → merge
 - Pass H- through a thin Carbon foil
 - H- are ionised leaving protons
- Painting the beam enables build up of different beam shapes
 - Inject H- at distance from the circulating proton beam core
 - Develop different beams e.g. "correlated" and "anti-correlated"
- Goal: minimise protons passing through foil hence losses
- Eventually move beam off foil for acceleration

Reminder: hFFA injection system

FETS Hall

- Transport from FETS requires only modest transfer line
- Final region including matching to ring not yet designed

Cylindrical coordinates

Horizontal Bump Length	0.1 m
Horizontal Bump Angle	30°
Horizontal Bump Width	0.1 m
Fringe Field Length	0.020 m
HB1 Azimuthal Position	-26.325°
HB2 Azimuthal Position	-4.725°
HB3 Azimuthal Position	2.700°
HB4 Azimuthal Position	5.400°
HB5 Azimuthal Position	26.550°
Septum Magnet End Azimuthal Position	-4.1°
Septum Magnet Width	0.020 m
Septum Magnet Length	0.200 m
Septum Magnet Field	0.505 T
Septum Magnet Bend Angle	30°
Beam Separation at Septum Entrance	0.040 m

- Sufficient space for injection hardware
- Septum design is not too aggressive

Zoom of injection area

4 cm between edge of proton beam and H- injected beam

Horizontal tune distortion

Trajectory from (-0.031 m, -0.05) to (-0.020 m, -0.05)

Stripping efficiency

Table 3.3: Foil parameters.

Foil azimuthal position	4°	
Material	Carbon	
Density [g cm ⁻³]	2.0	
Radiation length [cm]	42.70	
Mean excitation energy [eV]	78.0	
Molecular mass [u]	12.0107	
Z	6	
Specific heat [J g ⁻¹ K ⁻¹]	0.71	
Column density [g cm ⁻²]	5×10^{-6}	20×10^{-6}
Thickness [cm]	2.5×10^{-6}	10×10^{-6}
dE/E at 3 MeV (Geant4)	0.000174	0.000696
dE/E at 3 MeV (Bethe Bloch)	0.000178	0.000711
θ_x at 3 MeV (Geant4) [mrad]	0.587	1.26
θ_x at 3 MeV (PDG) [mrad]	0.779	1.56

- 20e-6 g/cm² is known to be possible for manual handling
 - Baseline
- 5e-6 g/cm² is minimum thickness for 99.9 % stripping
 - R&D/Upgrade

Scattering and Energy Loss

- 20e-6 g/cm² amorphous carbon
- Geant4 scattering is slightly optimistic compared to my model

Correlated painting - transverse

Correlated painting - longitudinal

Correlated painting - summary

2023-03-01 baseline correlated painting 50

Anticorrelated painting - transverse

Anticorrelated painting - longitudinal

Anticorrelated painting - summary

2023-03-01 baseline anticorrelated painting 50

Loss

- Loss vs A_{nom}
- At low A_{nom}, beam returns through foil many times
 - Significant energy loss
 - Mostly longitudinal losses
- At high A_{nom}, beam passes close to collimator
 - Mostly transverse losses
 - Scattering and injected beam emittance → losses

Dipole pulse shape

- Dipole pulse shape
 - Initially rapidly changing as position changes quickly
 - A ~ X²
 - Slows down at higher amplitudes
 - Finally collapse the bump over a few turns

Trajectory of unstripped species

- Trajectory of H⁻ and H₀ beam
- Relatively low heat load involved
 - Unless incident with full FETS beam

Extraction

- Dual kicker extraction
- For different k-values
 - Moving orbits
 - Wide enough kickers
 - Movable septum

Multiple orbits

Studied three different closed orbits

 Corresponding to maximum radial displacements

Phase space

- Three different orbits incident on the septum
- Returns undistorted phase space in all three cases

Parameter	Kicker	Septum
Direction	horizontal	horizontal
Maximum magnetic field [T]	0.05	0.58
Length [m]	0.39	0.85
Rise time [ns]	122.4	2
Flat top duration [ns]	422.4	DC or pulsed
Thickness [cm]	-	~1
Number of magnets	2	1
Relative longitudinal translation (high k/low k) [cm]	-	-2.91/+3.71
Relative horizontal translation (high k/low k) [cm]		-4.87/+6.70

Reasonable hardware requirements

Summary

- We have designed an injection system for the FFA
- Anticorrelated and correlated painting looks possible
- Non-linearities seem under control
- Tight injection space is manageable
- Would be first ever phase space painting into an FFA