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Objectives and CMS scouting data

Aim: Reduce uncertainty in e/γ energies in the 
CMS scouting data.
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Simulated data

• Uniform distribution over MC electron (𝑝𝑇, η, ϕ).

• Dips in MC η correspond to the barrel – endcap transition region.
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Uncertainty in scouting electron energy 

• Δ𝐸/𝐸𝑀𝐶 = ((𝐸𝑟𝑒𝑐𝑜−𝐸𝑀𝐶)/𝐸𝑀𝐶)

• Peak observed  0.0, 
• Shoulder  -0.2 and
• Peak at -1.0
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• 𝐸𝑟𝑒𝑐𝑜: calibrated ECAL energy 



Correlations between features and uncertainty
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• Shoulder contribution has a linear dependence on shower containment in a 5x5 crystal block



Identifying good e (Barrel)
Two known noisy effects due to:

• Super modules and
• Dead crystals

Can be identified in the (η, ϕ) map.

Super module

Super module + Dead crystalDead crystal
Final selection
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ML Models: BDT and NN

Shower 
shapes

Tracker 
data

(𝑝𝑇, η, ϕ)

NN

BDT

Energy

Correction
factor
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Use multivariate 
analysis models to 
reduce the uncertainty 
on the energy 
reconstruction for e/γ.

Trying two different 
approaches:



Input features
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Two distinct category of features;
• ECAL only for γ
• Additional track parameters for e



BDT Training
• Targets: 

• 𝑦𝑡𝑟𝑢𝑒 =  𝐸𝑀𝐶/𝐸𝑟𝑒𝑐𝑜 
• Loss: 

• = ((𝐸𝑝𝑟𝑒𝑑−𝐸𝑀𝐶)/𝐸𝑀𝐶)2

• = (
𝑦𝑝𝑟𝑒𝑑

𝑦𝑡𝑟𝑢𝑒
− 1)2

• Used Optuna for hyperparameter 
optimisation.  
• https://optuna.org/
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BDT Results

Barrel (EB) Endcaps (EE)

• Peak shifted closer to one and lower spread in both ECAL barrel and 
endcap.
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Deep Learning: CNN based architecture

CNN

MLP

MLPConcat.

(𝑝𝑇 , η, ϕ)

Shower 
variables

Energy 
pred

• 𝐿𝑜𝑠𝑠: = ((𝐸𝑝𝑟𝑒𝑑−𝐸𝑀𝐶)/𝐸𝑀𝐶)2
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NN Training

• 𝐿𝑜𝑠𝑠: = ((𝐸𝑝𝑟𝑒𝑑−𝐸𝑀𝐶)/𝐸𝑀𝐶)2

• Validation and train loss curve are very similar
• =>Train and validation come from a similar distribution (large enough datasets)
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Acceleration with GPUs for NNs
• GPU 4-6x faster than all CPU setting
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Results of NN 

Endcaps (EB)Barrel (EB)

• CNN needs to be further optimised
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Lowest uncertainty results (BDT)
5< 𝒑𝑻 <20 20< 𝒑𝑻 <50

50< 𝒑𝑻 <100 𝒑𝑻 >100
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Conclusions and outlook

• Analysed MC e/ sample and used ML to reduce the uncertainty 
on scouting data.

• Largest reduction in uncertainty observed for electrons in 5< 𝑝𝑇
<20 GeV.

•   Consistent reduction in energy uncertainty observed for 
electrons and photons through all energies.

• Electron/photons incident on super module gaps need to be 
addressed separately.

• CNN approach needs to be further optimised
• Shower shape variables, e.g. sieie, seemed to outperform the CNN.
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BACKUPS SLIDES
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Target data
• Monte Carlo simulations produce generated particles
• Each particle consists of three kinematic variables:

• ϕ : Azimuthal angle [-ϖ, ϖ]
• η : Pseudo rapidity 
• 𝑝𝑇 : Transverse momentum

• Can combine 𝑝𝑇  and η to get energy:
• 𝐸𝑀𝐶 = (𝑝𝑇 cosh η)2+𝑚2, the Monte-Carlo simulated energy
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Preliminary 
predictions
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Investigating large error regions

• Instead of decaying, the left tail of the Δ𝐸/𝐸𝑀𝐶  distribution grows 
significantly.

• Suggests 𝐸𝑟𝑒𝑐𝑜 = 0, as 0−𝐸𝑀𝐶

𝐸𝑀𝐶
= −1.

• Critical to investigate the origin of this effect, as it may introduce 
systematic biases and degrade ML model performance.
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𝑬𝒓𝒆𝒄𝒐 vs 𝑬𝑴𝑪
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Error vs shower containment

• (𝐸5𝑋5 − 𝐸𝑀𝐶)/𝐸𝑀𝐶  plots 
• 4 distinct regions

• 1. Gaussian like distribution at higher containments
• 2 . 𝑦 = 𝑥 line region, i.e. 𝐸𝑀𝐶  = 𝐸5𝑋5 

• 3. High density region near (-1,-1)
• 4. Spread of points with high error along the x-axis, 

irrespective of x values

• Region 1 is what we want the ML model to 
focus on; thus, cuts should be applied to 
eliminate regions 2-4.
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Barrel (EB)
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Endcaps 
(EE)
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Endcap cutoffs
• Cuts in EE can be applied by:

• Removing points near dead crystals and 
outer edges of the EE
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ML model – Data settings 
• Data is separated into a training, validation and testing dataset:

• Training: X samples
• Validation: X samples
• Testing: X samples

• Corrections applied:
• Near-dead crystal pixels cutoff
• Super-module transition in EB and outer EE edge cutoff
• Sharp cutoff of:  −0.4 <  Δ𝐸/𝐸𝑀𝐶

• Separate models created for EE and EB
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XGBoost (BDT) 
• List of input features: • Labels: 

• 𝑦𝑡𝑟𝑢𝑒 =  𝐸𝑀𝐶/𝐸𝑟𝑒𝑐𝑜 

• Loss: 
• = (𝐸𝑝𝑟𝑒𝑑 − 𝐸𝑀𝐶)/𝐸𝑀𝐶)2

• = (
𝑦𝑝𝑟𝑒𝑑

𝑦𝑡𝑟𝑢𝑒
− 1)2 

• No normalization (not necessary for BDT) 

• Tracker: 
• detain
• dphiin
• fbrem
• ooemoop
• trkpt
• trketa
• trkphi
• trkq

• ECAL: 
• e1x5 
• e2nd 
• e2x5B, e2x5L, e2x5M, 
• e2x5R, e2x5T 
• e5x5 
• eB, eL, eR, eT 
• eMax 
• eta ieta 
• iphi phi 
• pse 
• pt 
• r9 
• sieie 27
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BACKUPS ON BACKUPS
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Pre  vs post corrections 
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Pre  vs post corrections 
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Investigating errors
• Plot of err vs iphi:

• 18 Fringes – 18 Super modules
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Post Correction 1: • E_reco > 0.85 * E_mc
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Post Correction 2: 

• e3x3/e5x5 > 0.5,

• emax/e3x3 < 1,

• r9 < 2,

• sieie < 0.012
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Iphi and ieta
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EE
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BDT

• XGBoost
• Features: 

• e1x5 
• e2nd 
• e2x5B, e2x5L, e2x5M, e2x5R, e2x5T 
• e5x5 
• eB, eL, eR, eT 
• eMax 
• eta ieta 
• iphi phi 
• pse 
• pt 
• r9 
• sieie

• Labels: 
• y_true = E_mc / E_reco
• y_pred = prediction on y_true

• Loss: 
• ((E_pred – E_mc)/E_mc) ** 2
• = ((y_pred * E_reco - E_mc ) / E_mc) ** 2
• = ((y_pred – E_mc/E_reco) / (E_mc/E_reco)) ** 2
• = ((y_pred – y_true)/y_true) ** 2

• No normalization (not necessary for BDT) 
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BDT (XGBoost) – Best model

45



Deep Learning: CNN – MLP Hybrid

CNN

MLP

MLPConcat.

5x5
Crystal
‘image’

Eta
Phi
Pse
Pt
R9

Sieie
E5x5

Energy 
pred
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Attempted Normalizations

• Input image (X_img):
• Normalise each image by its eMax
• Log then normalise each image by its eMax
• Sieie normalization:  (max(0, 0.47 + log(E_i/E_5x5))

• Input features (X_tabular):
• Mean std normalization
• Transforming to [0,1] (dividing by scale factor)
• Taking log then applying one of the two above
• Sin-cos embedding for phi

• Output labels (y):
• Unscaled
• Transforming to [0,1] (dividing by scale factor)
• Log
• Y = E_mc / E_reco
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Loss functions
• L = ((E_mc – E_reco /  E_mc))**2
• L = (E_mc – E_reco) ** 2
• L = log(sig ** 2) + 0.5 * ((E_mc – mu) / sig )) ** 2  (predicting mu and sig)
• First loss performed best
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More on architecture

CNN

MLP

MLPConcat.

2 3x3 Conv layers
Padding = 1
Channels = 16, 16 

Dense  (d = 200)
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Train vs val for CNN
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