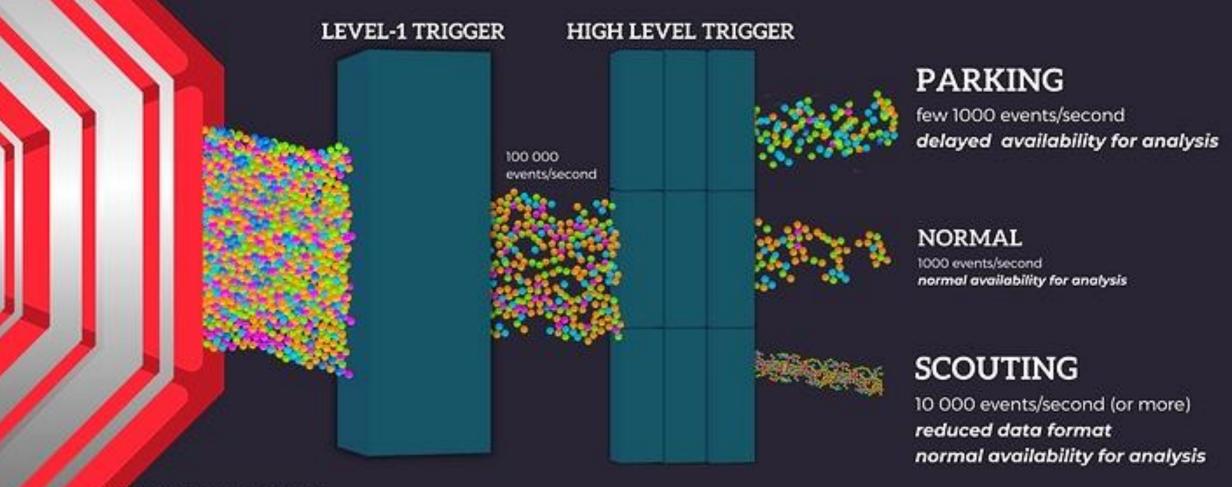
Exploring machine learning to reconstruct electron and photon energies in the CMS scouting data

Bartosz Dlubak

Supervisor: A.R.Sahasransu

Objectives and CMS scouting data



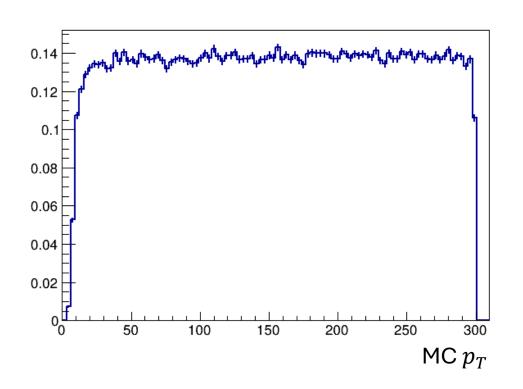
CMS DETECTOR

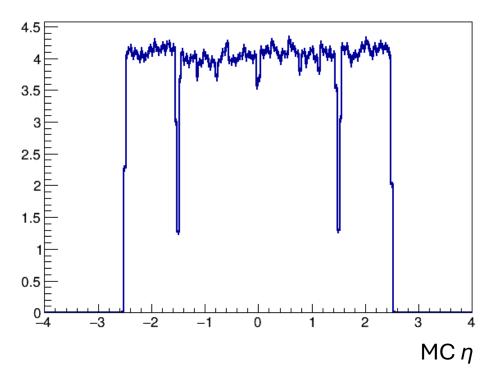
records 40 000 000 times/second

Aim: Reduce uncertainty in e/γ energies in the CMS scouting data.

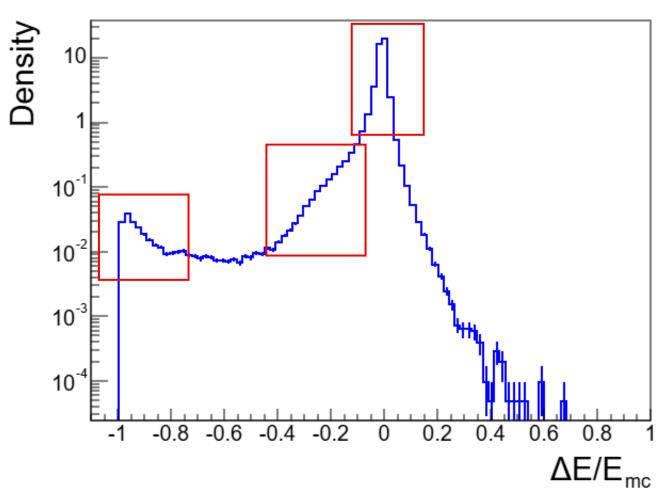
Simulated data

- Uniform distribution over MC electron (p_T, η, ϕ) .
- Dips in MC η correspond to the barrel endcap transition region.





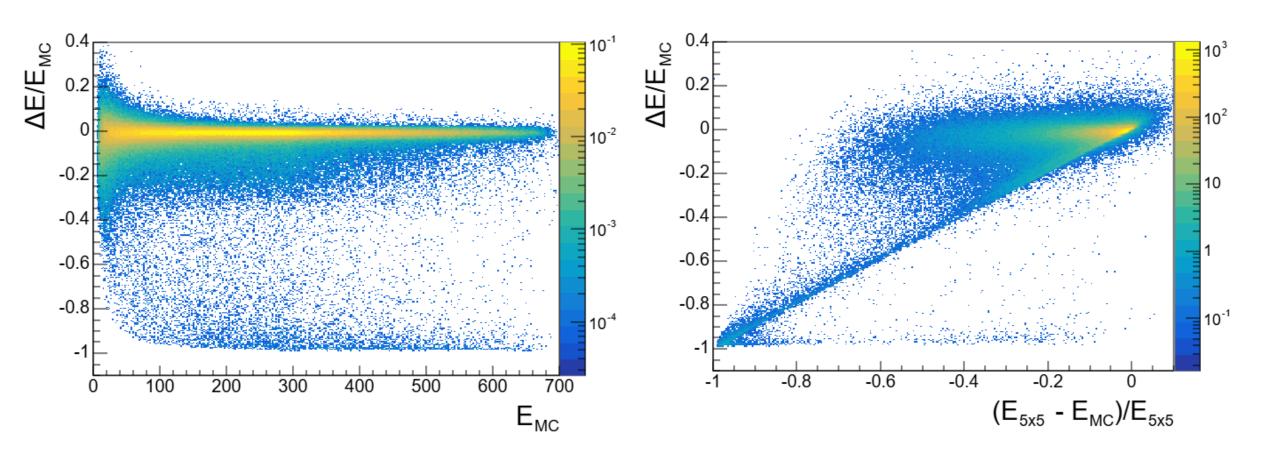
Uncertainty in scouting electron energy



- E_{reco} : calibrated ECAL energy
- $\Delta E/E_{MC} = ((E_{reco} E_{MC})/E_{MC})$
- Peak observed ~ 0.0,
- Shoulder \sim -0.2 and
- Peak at -1.0

Correlations between features and uncertainty

• Shoulder contribution has a linear dependence on shower containment in a 5x5 crystal block



Super module

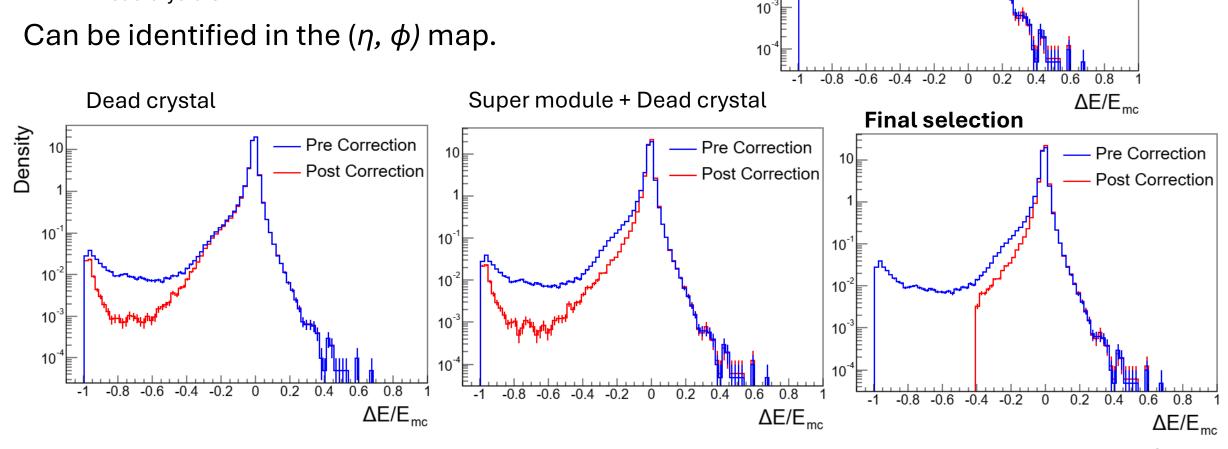
Pre Correction

Post Correction

Identifying good e (Barrel)

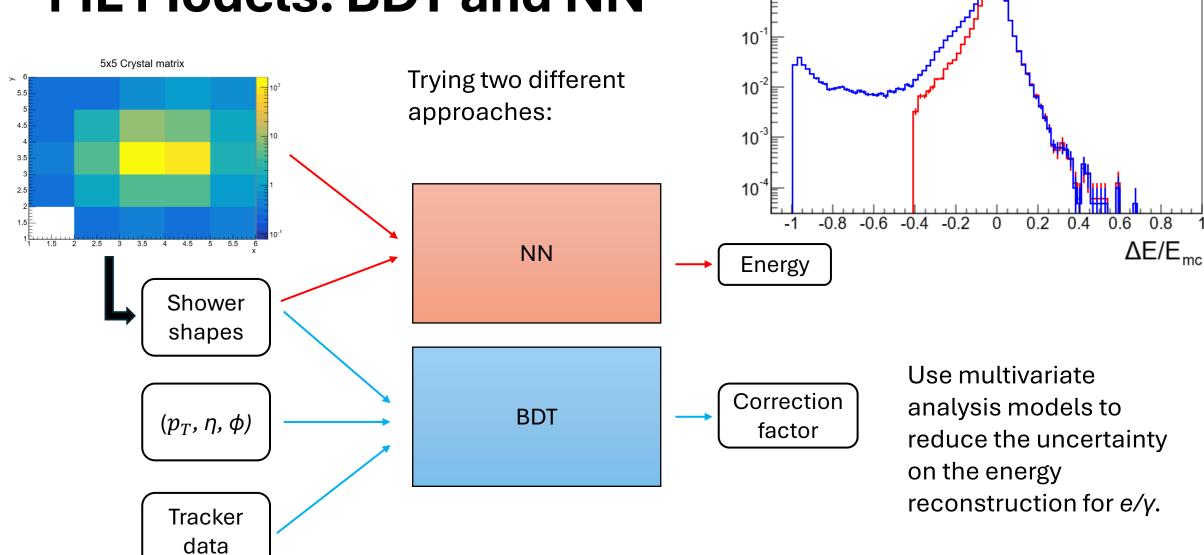
Two known noisy effects due to:

- Super modules and
- Dead crystals



10

ML Models: BDT and NN

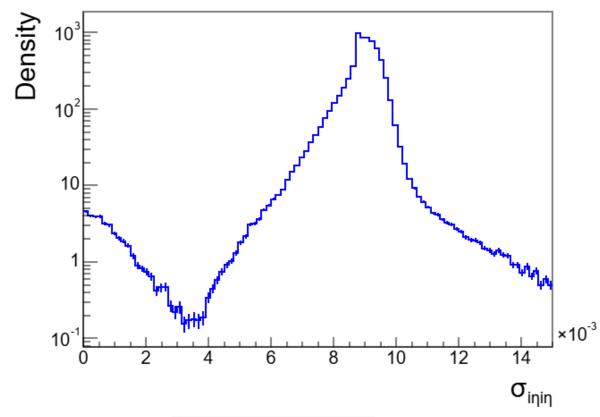


Density

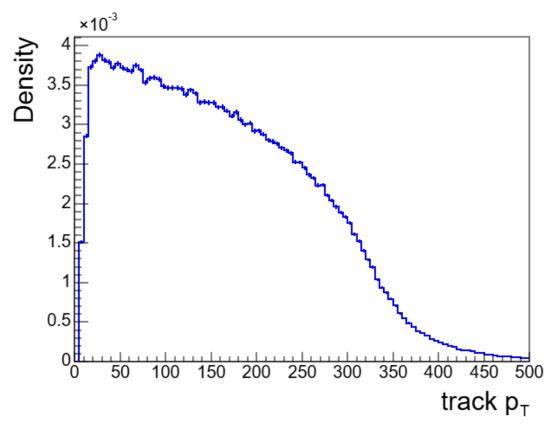
Pre Correction

Post Correction

Input features



$$\begin{split} \sigma_{i\eta i\eta} &= \sqrt{\frac{\sum_{i}^{5\times5} w_{i} (\eta_{i} - \overline{\eta}_{5\times5})^{2}}{\sum_{i}^{5\times5} w_{i}}} \\ w_{i} &= \max(0, 4.7 + \ln(E_{i}/E_{5\times5})) \end{split}$$

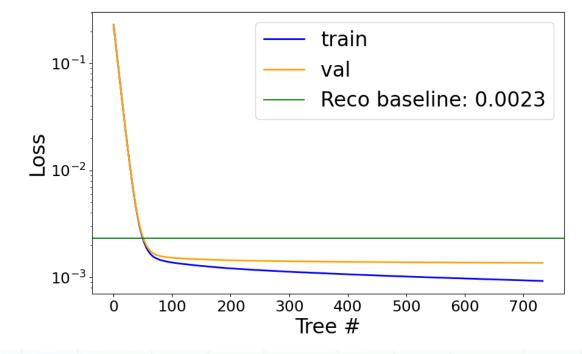


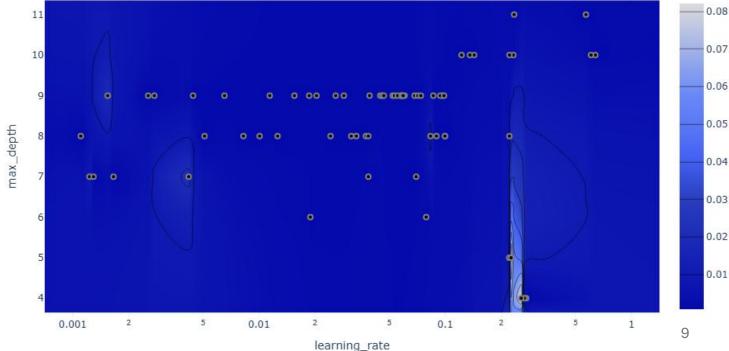
Two distinct category of features;

- ECAL only for y
- Additional track parameters for e

BDT Training

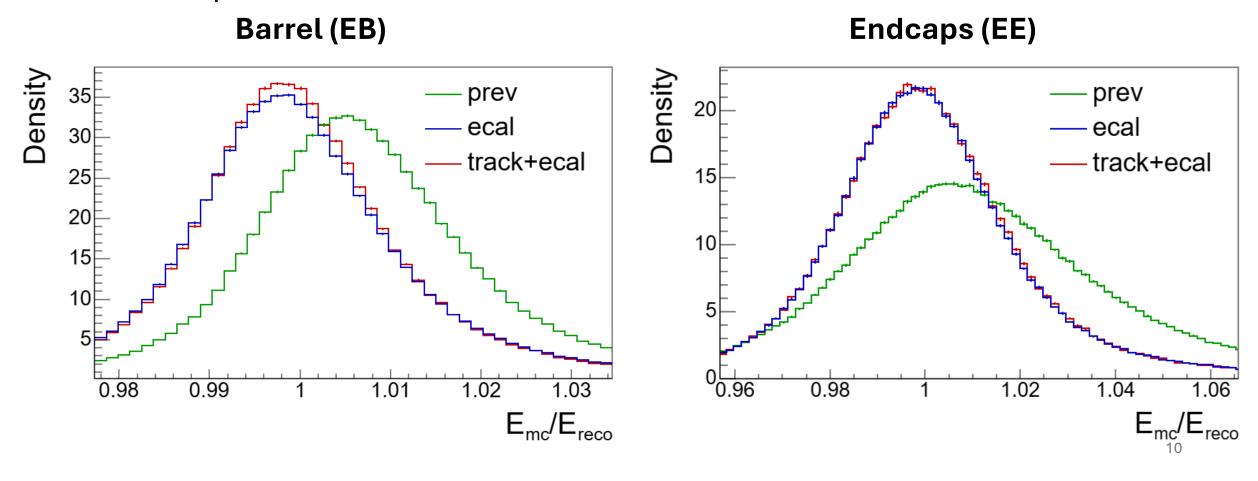
- Targets:
 - $y_{true} = E_{MC}/E_{reco}$
- Loss:
 - $\bullet = ((E_{pred} E_{MC})/E_{MC})^2$
 - = $(\frac{y_{pred}}{y_{true}} 1)^2$
- Used Optuna for hyperparameter optimisation.
 - https://optuna.org/





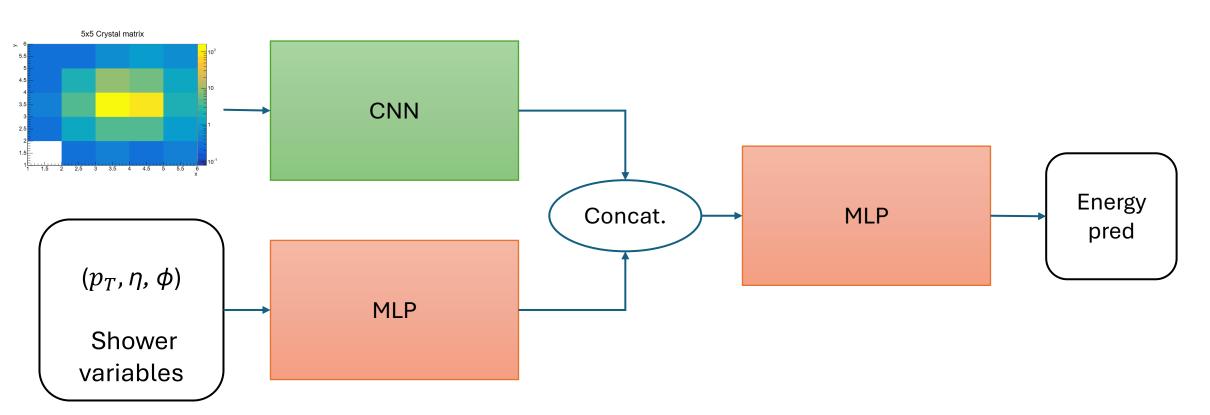
BDT Results

 Peak shifted closer to one and lower spread in both ECAL barrel and endcap.



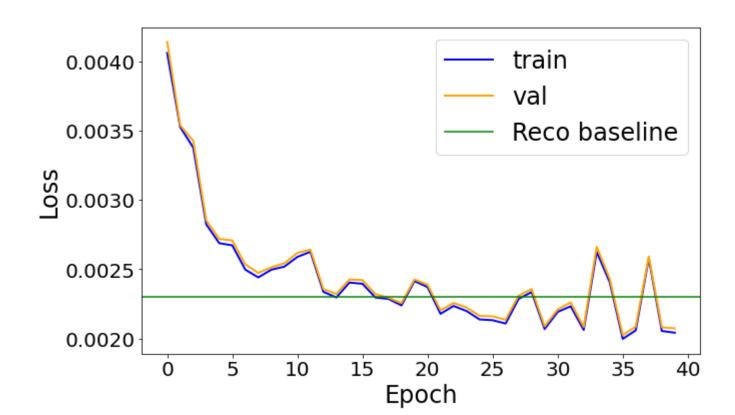
Deep Learning: CNN based architecture

• Loss: = $((E_{pred} - E_{MC})/E_{MC})^2$



NN Training

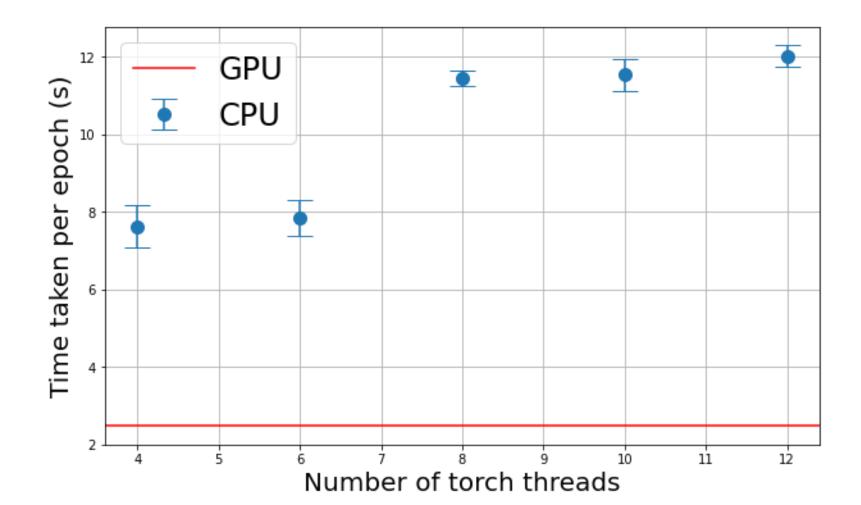
- Validation and train loss curve are very similar
 - =>Train and validation come from a similar distribution (large enough datasets)



• Loss: = $((E_{pred} - E_{MC})/E_{MC})^2$

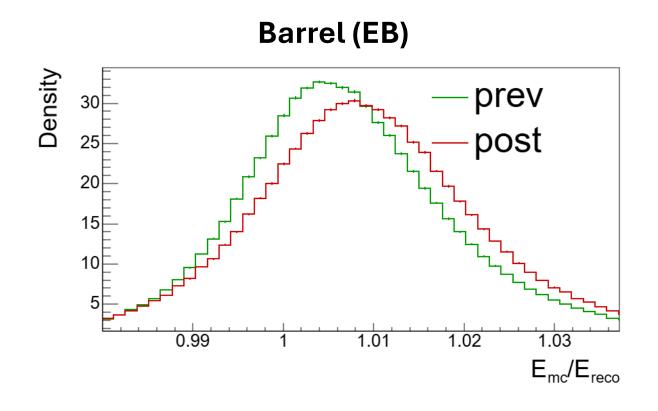
Acceleration with GPUs for NNs

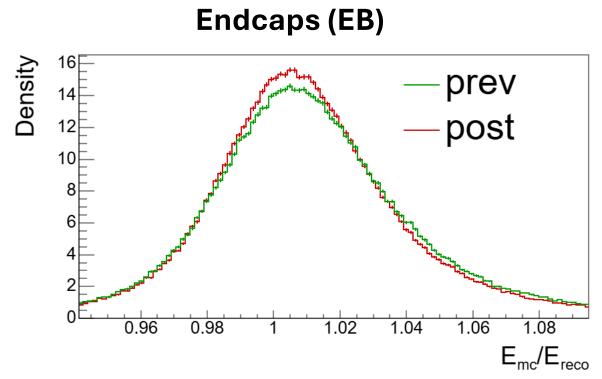
GPU 4-6x faster than all CPU setting



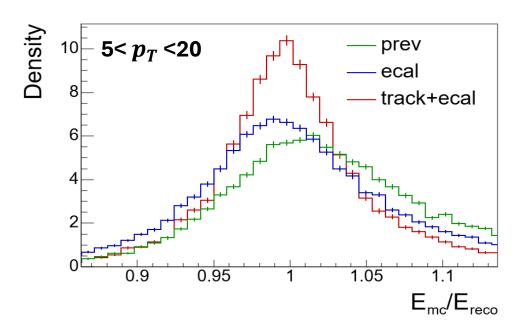
Results of NN

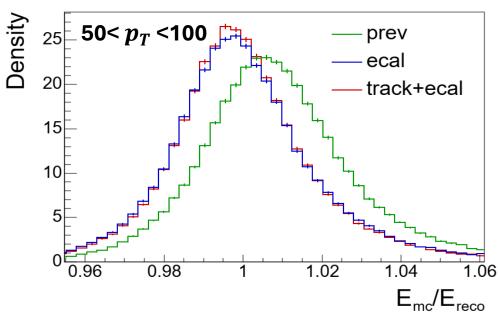
• CNN needs to be further optimised

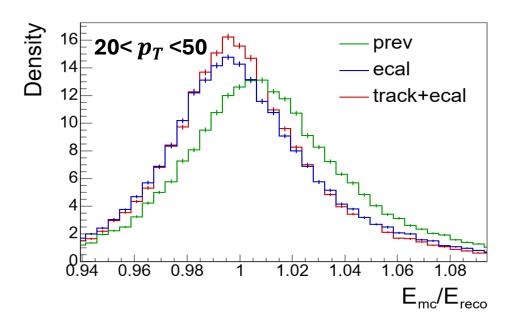


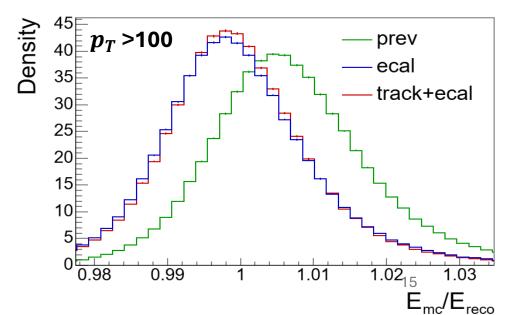


Lowest uncertainty results (BDT)









Conclusions and outlook

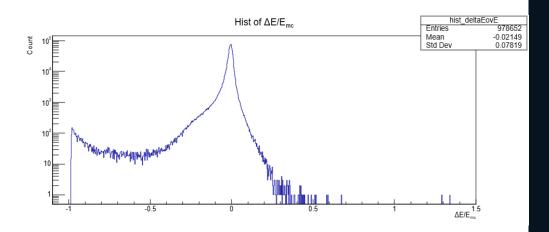
- Analysed MC e/γ sample and used ML to reduce the uncertainty on scouting data.
- Largest reduction in uncertainty observed for electrons in 5< p_T <20 GeV.
- Consistent reduction in energy uncertainty observed for electrons and photons through all energies.
- Electron/photons incident on super module gaps need to be addressed separately.
- CNN approach needs to be further optimised
 - Shower shape variables, e.g. sieie, seemed to outperform the CNN.

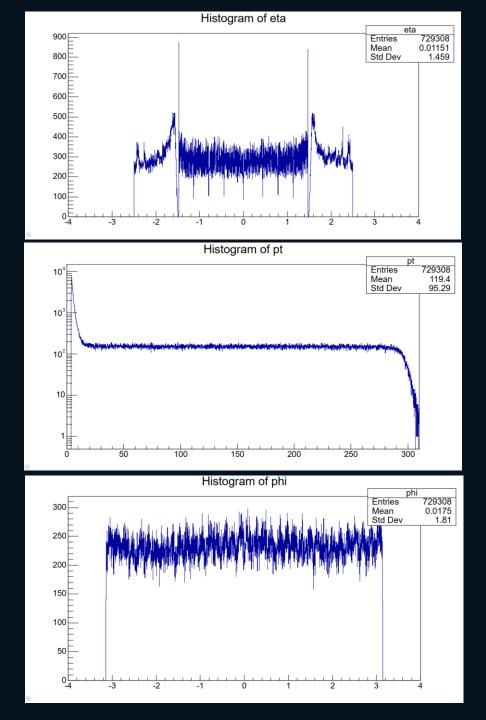
BACKUPS SLIDES

Target data

- Monte Carlo simulations produce generated particles
- Each particle consists of three kinematic variables:
 - ϕ : Azimuthal angle $[-\pi, \pi]$
 - η: Pseudo rapidity
 - p_T : Transverse momentum
- Can combine p_T and η to get energy:
 - $E_{MC} = \sqrt{(p_T \cosh \eta)^2 + m^2}$, the Monte-Carlo simulated energy

Preliminary predictions

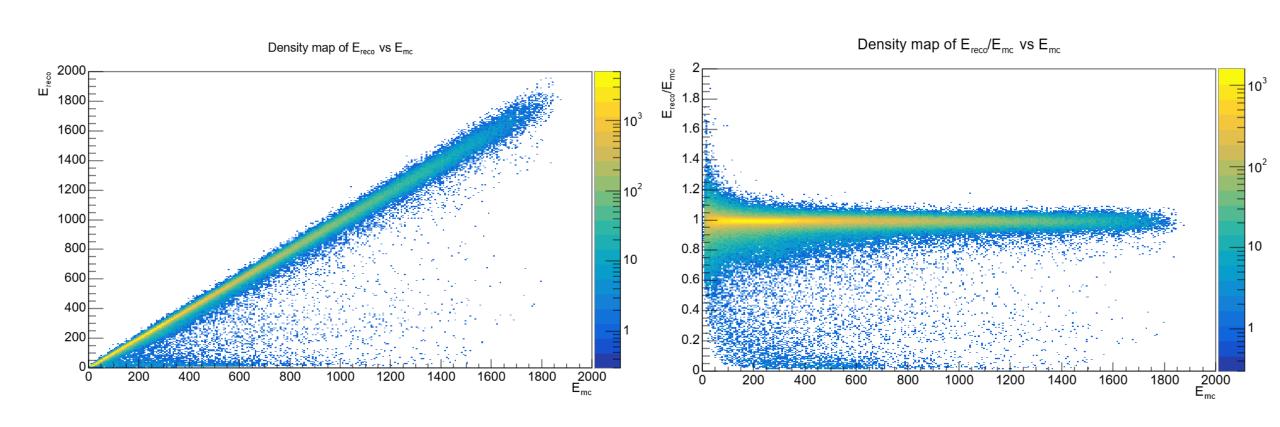




Investigating large error regions

- Instead of decaying, the left tail of the $\Delta E/E_{MC}$ distribution grows significantly.
- Suggests $E_{reco} = 0$, as $\frac{0 E_{MC}}{E_{MC}} = -1$.
- Critical to investigate the origin of this effect, as it may introduce systematic biases and degrade ML model performance.

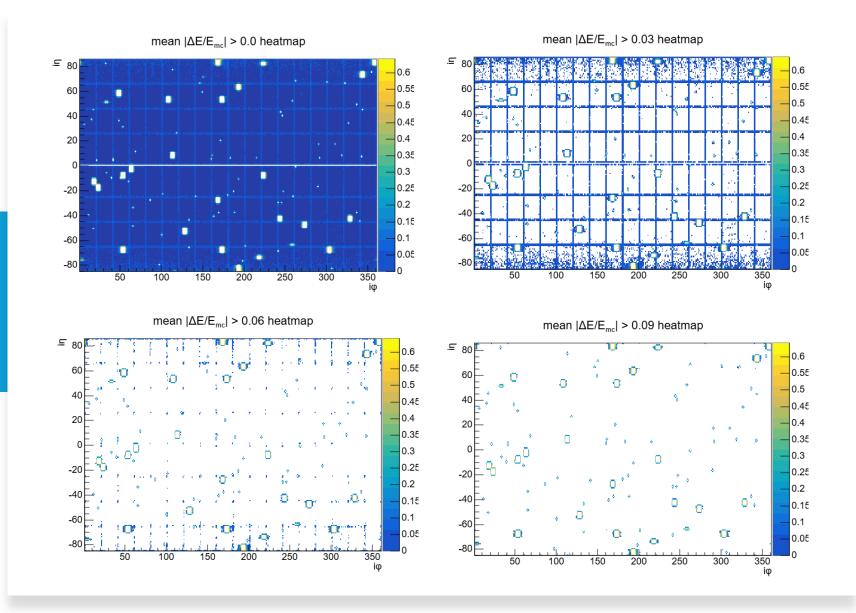
E_{reco} vs E_{MC}



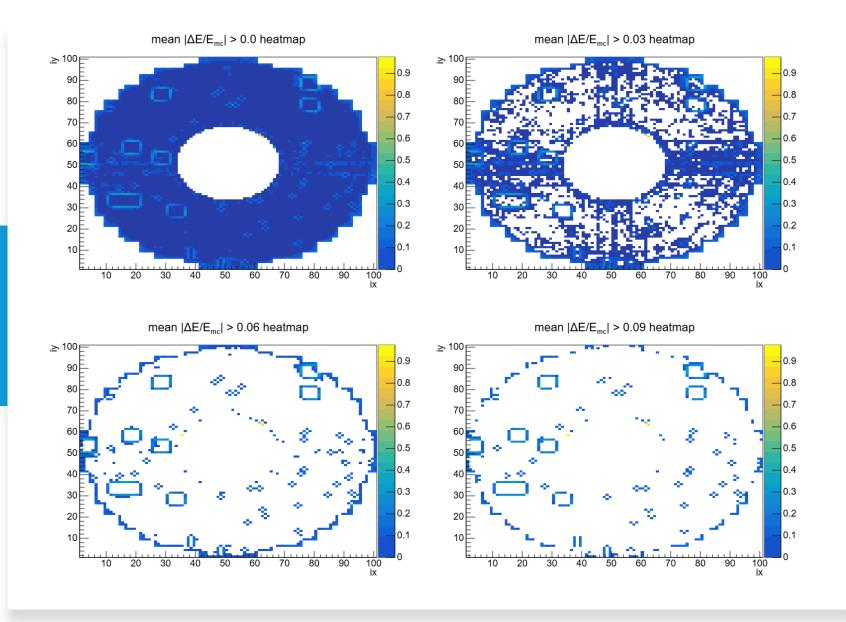
Error vs shower containment

- $(E_{5X5}-E_{MC})/E_{MC}$ plots
- 4 distinct regions
 - 1. Gaussian like distribution at higher containments
 - 2. y = x line region, i.e. $E_{MC} = E_{5X5}$
 - 3. High density region near (-1,-1)
 - 4. Spread of points with high error along the x-axis, irrespective of x values
- Region 1 is what we want the ML model to focus on; thus, cuts should be applied to eliminate regions 2-4.

Barrel (EB)

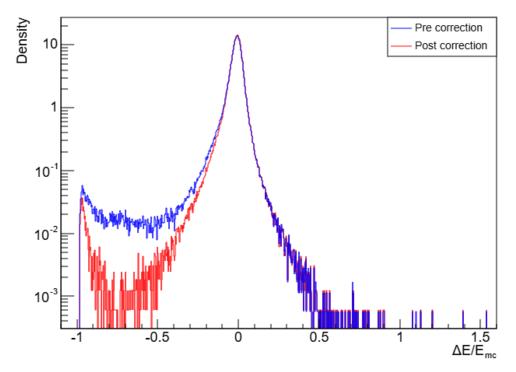


Endcaps (EE)



Endcap cutoffs

- Cuts in EE can be applied by:
 - Removing points near dead crystals and outer edges of the EE



 $\Delta E/E_{mc}$ with and without DC and $\Delta E/E_{mc}$ >-0.4 cut offs | 8.0% removed



ML model – Data settings

- Data is separated into a training, validation and testing dataset:
 - Training: X samples
 - Validation: X samples
 - Testing: X samples
- Corrections applied:
 - Near-dead crystal pixels cutoff
 - Super-module transition in EB and outer EE edge cutoff
 - Sharp cutoff of: $-0.4 < \Delta E/E_{MC}$
- Separate models created for EE and EB

XGBoost (BDT)

- List of input features:
 - Tracker:
 - detain
 - dphiin
 - fbrem
 - ooemoop
 - trkpt
 - trketa
 - trkphi
 - trkq

- ECAL:
 - e1x5
 - e2nd
 - e2x5B, e2x5L, e2x5M,
 - e2x5R, e2x5T
 - e5x5
 - eB, eL, eR, eT
 - eMax
 - eta ieta
 - iphi phi
 - pse
 - pt
 - r9
 - sieie

- Labels:
 - $y_{true} = E_{MC}/E_{reco}$
- Loss:

$$\bullet = (E_{pred} - E_{MC})/E_{MC})^2$$

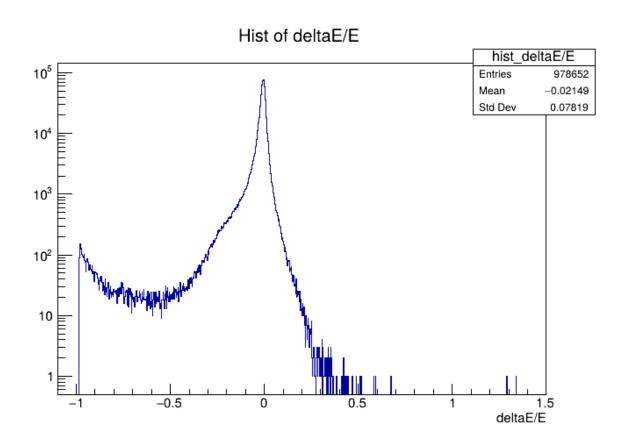
• =
$$(\frac{y_{pred}}{y_{true}} - 1)^2$$

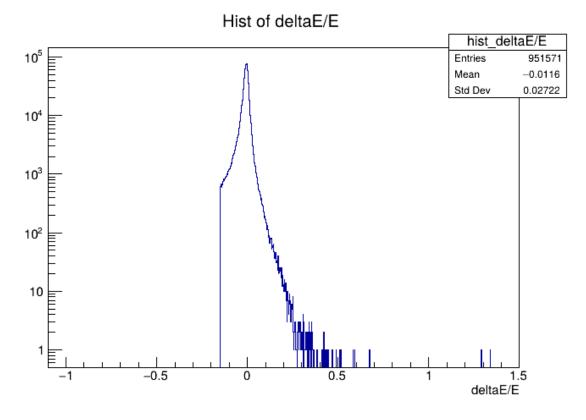
No normalization (not necessary for BDT)

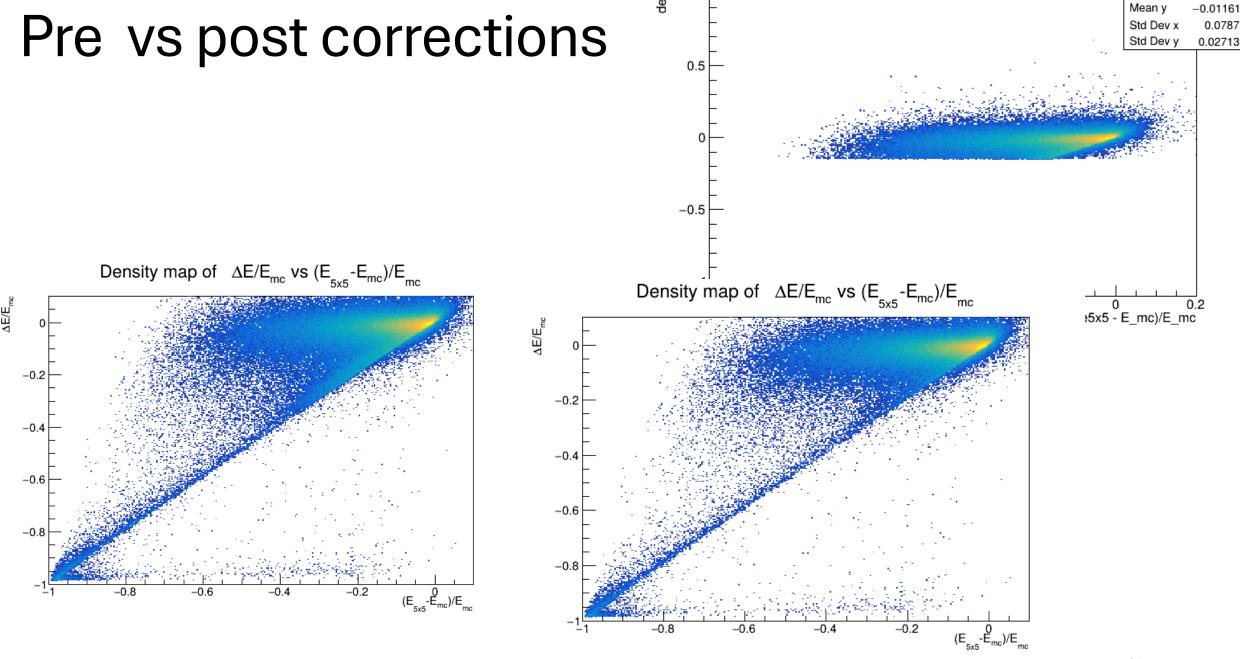


BACKUPS ON BACKUPS

Pre vs post corrections



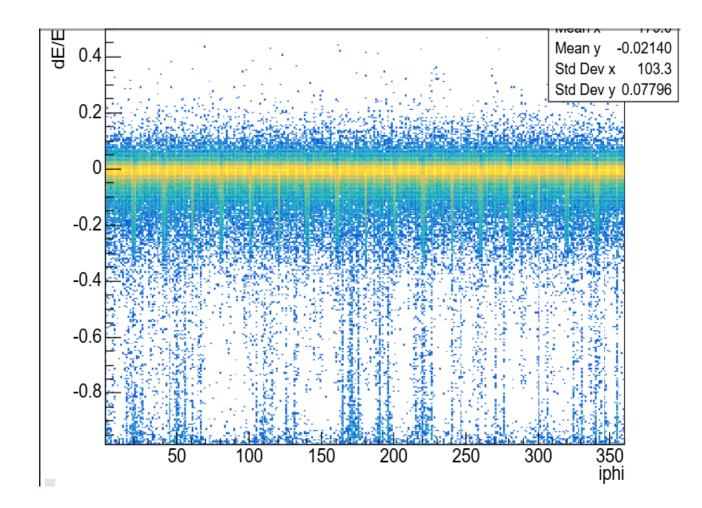




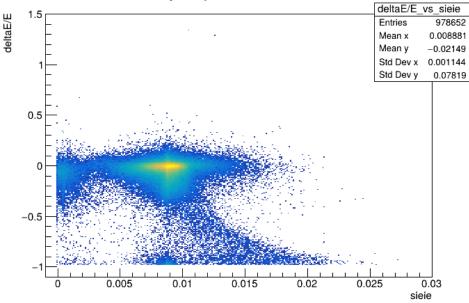
-0.06112

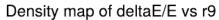
Investigating errors

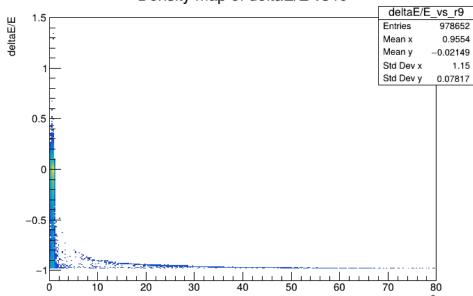
- Plot of err vs iphi:
 - 18 Fringes 18 Super modules



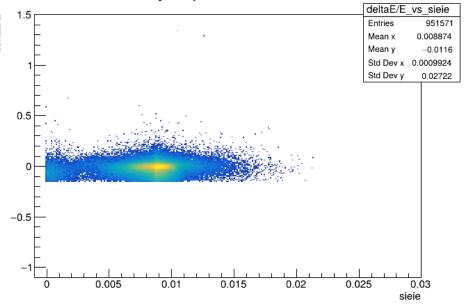
Density map of deltaE/E vs sieie



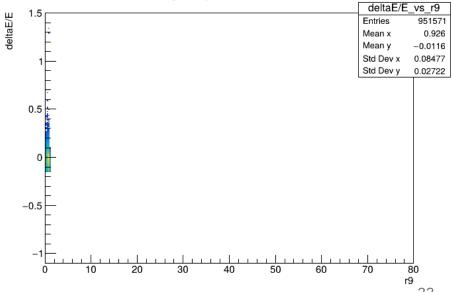




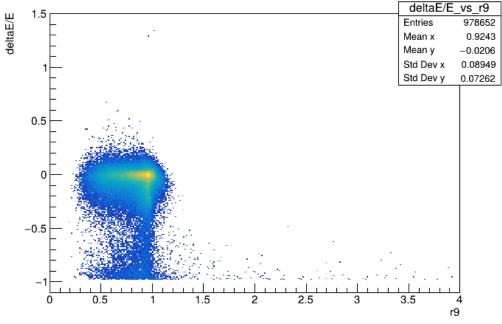
Density map of deltaE/E vs sieie



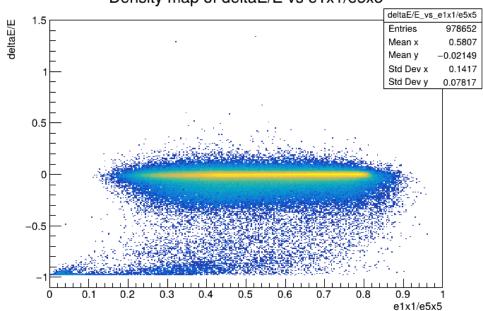
Density map of deltaE/E vs r9



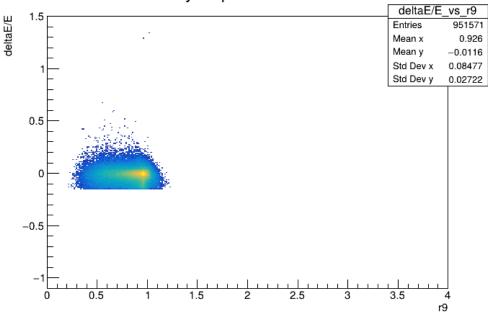
Density map of deltaE/E vs r9



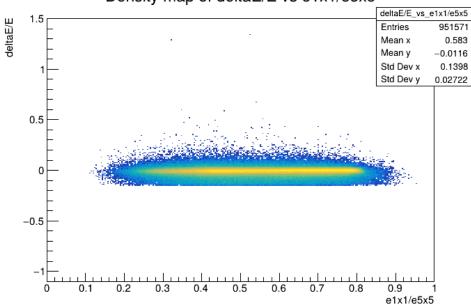
Density map of deltaE/E vs e1x1/e5x5



Density map of deltaE/E vs r9

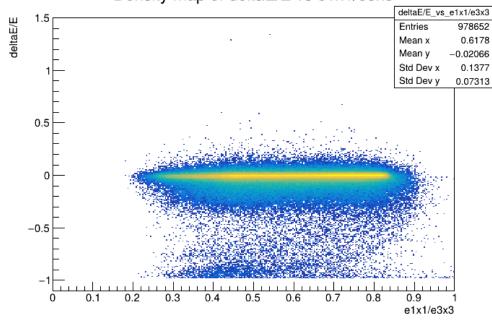


Density map of deltaE/E vs e1x1/e5x5

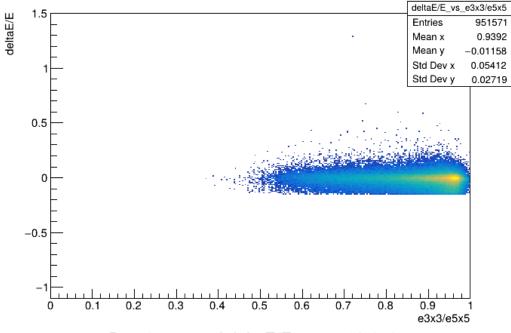


Density map of deltaE/E vs e1x1/e3x3

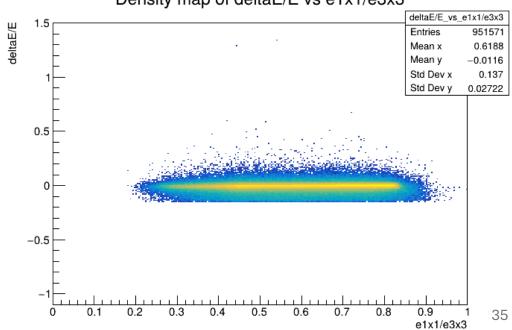
e3x3/e5x5



Density map of deltaE/E vs e3x3/e5x5

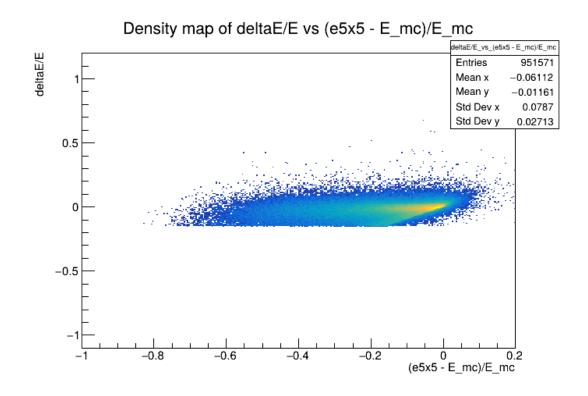


Density map of deltaE/E vs e1x1/e3x3



Post Correction 1:

• E_reco > 0.85 * E_mc



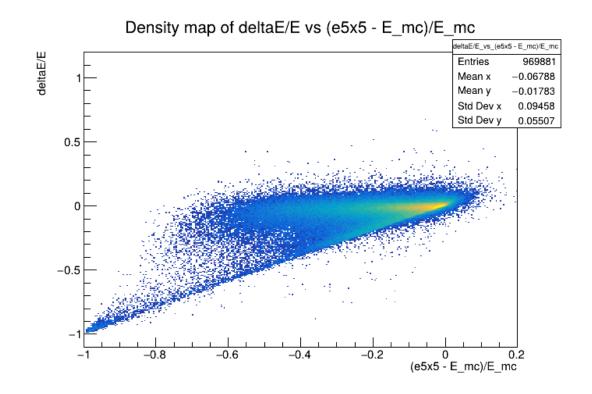


Post Correction 2:

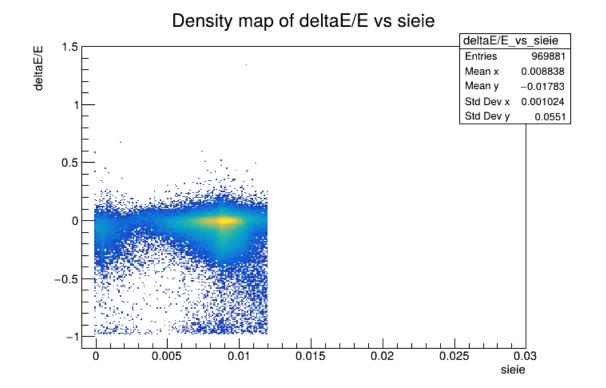
• emax/e3x3 < 1,

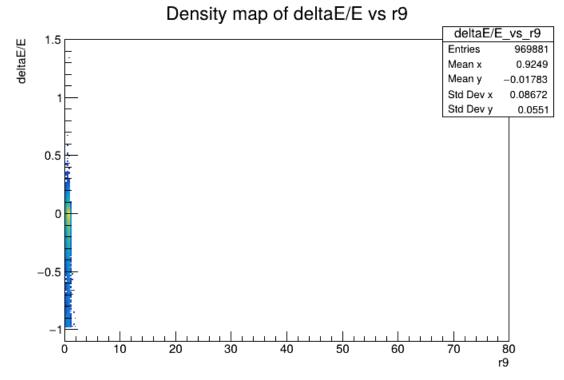
• e3x3/e5x5 > 0.5,

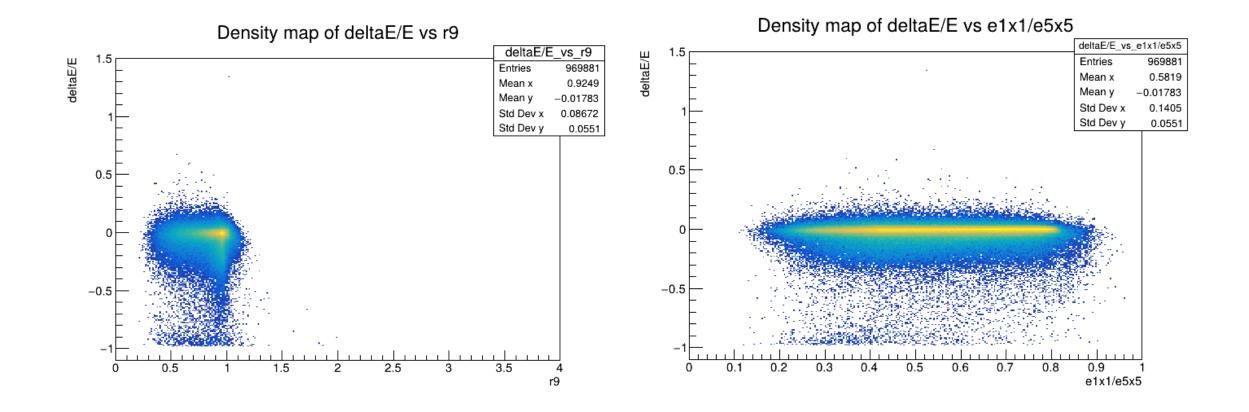
- r9 < 2,
- sieie < 0.012

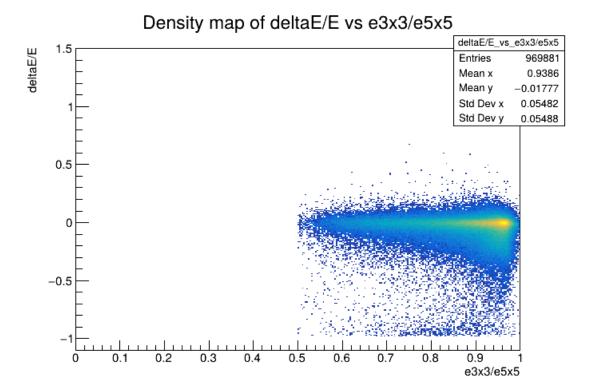


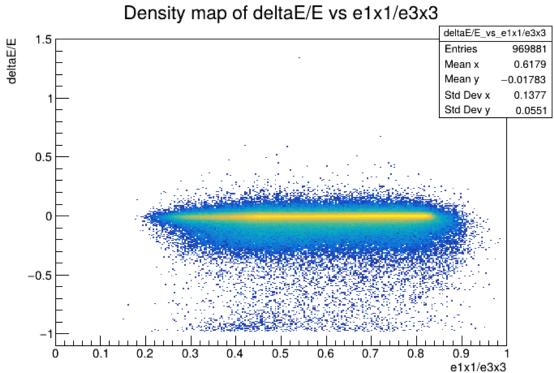


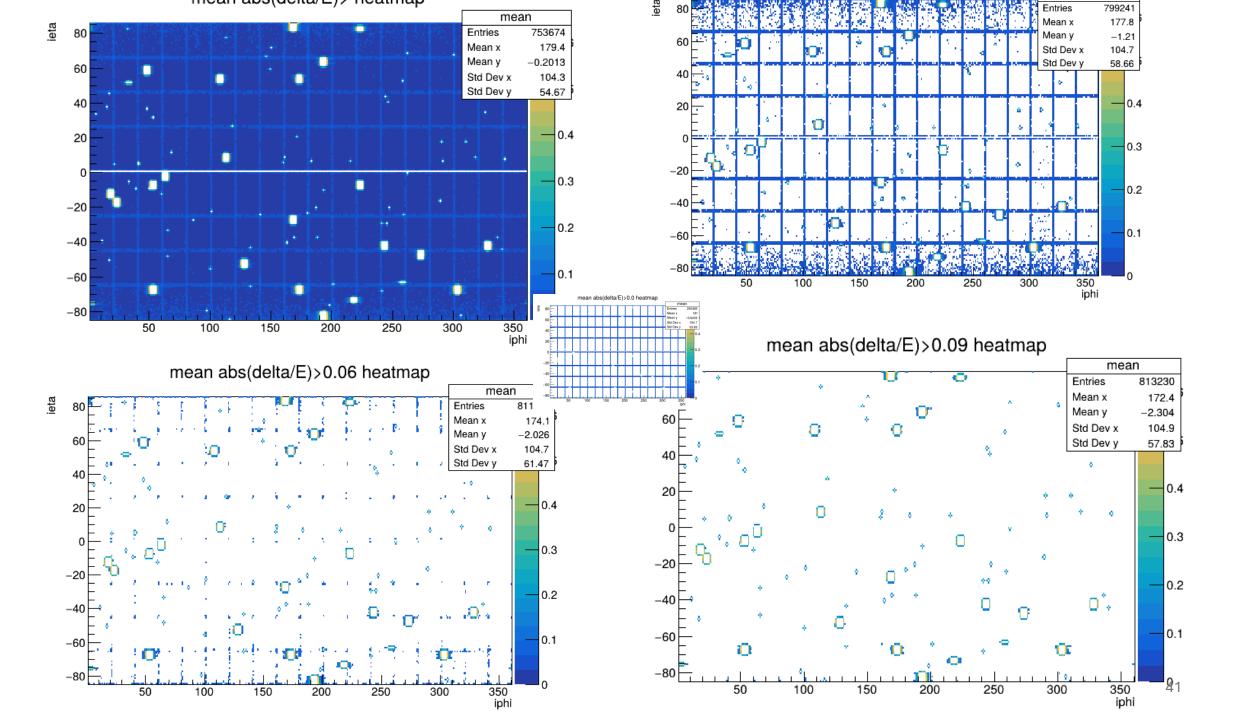


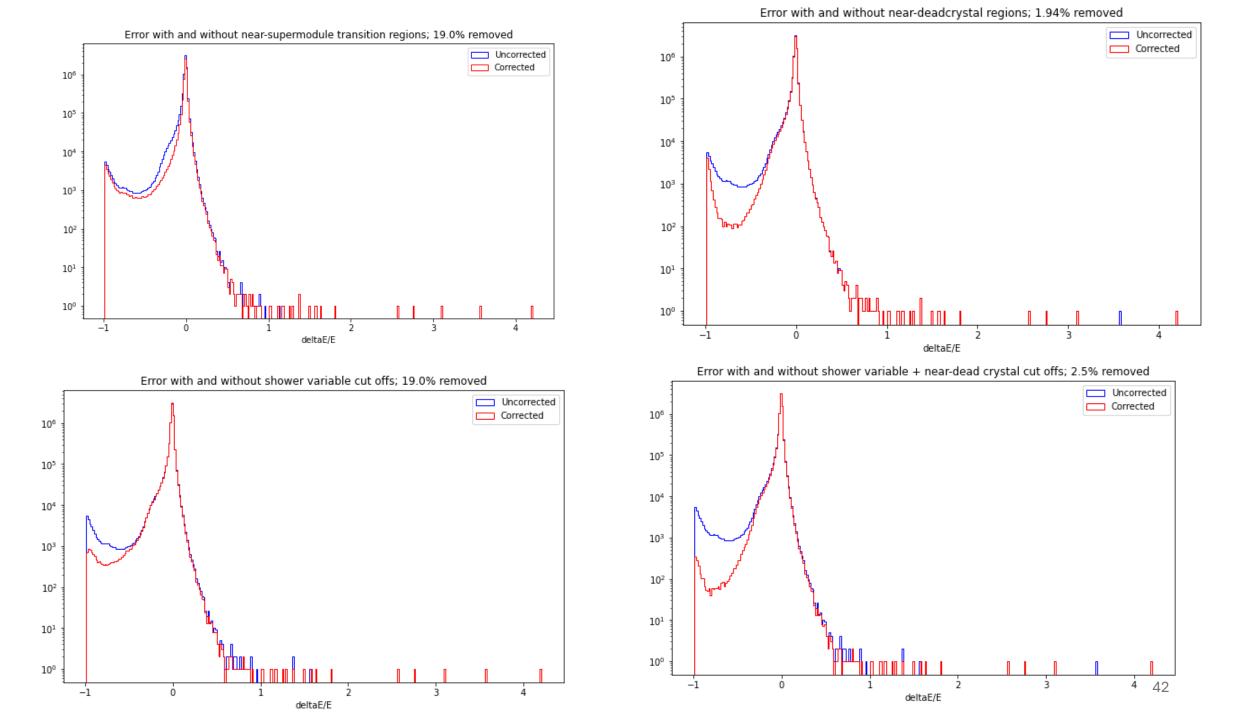


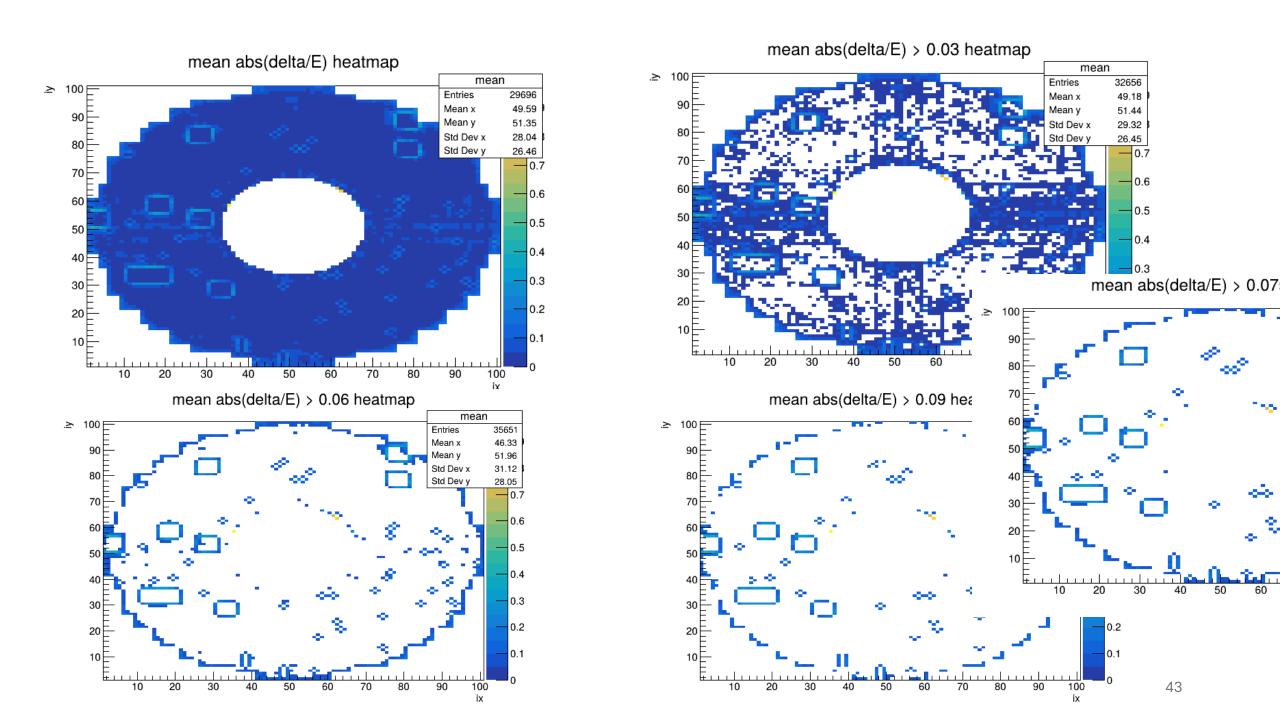












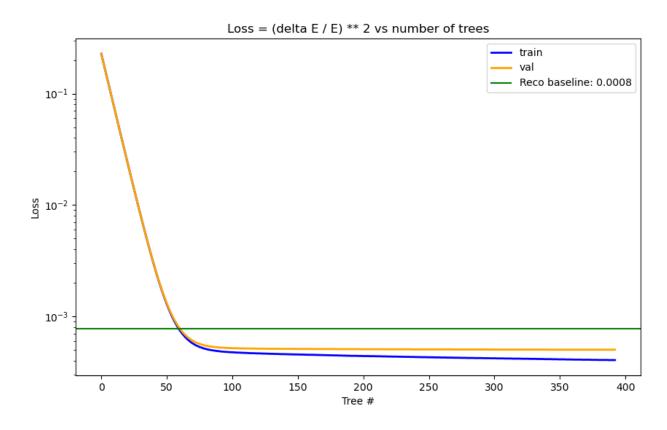
BDT

XGBoost

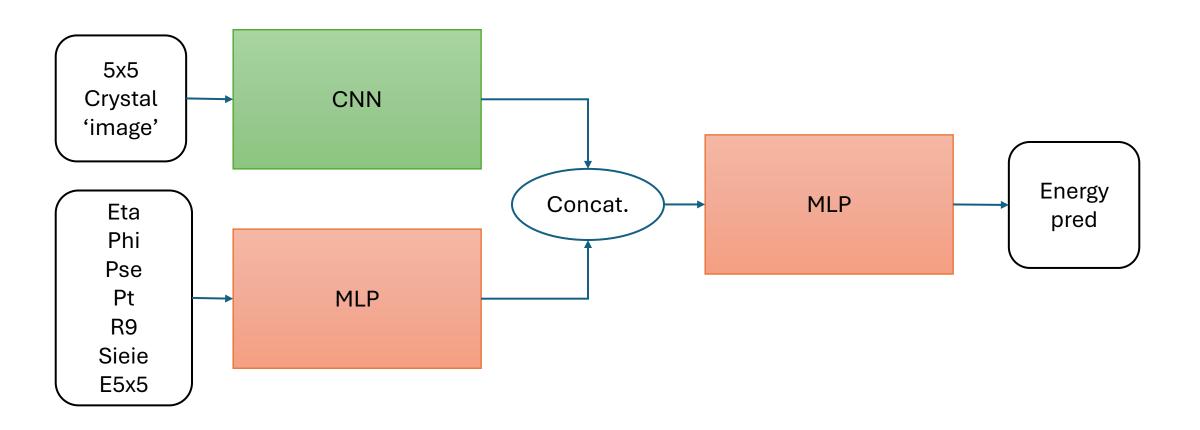
- Features:
 - e1x5
 - e2nd
 - e2x5B, e2x5L, e2x5M, e2x5R, e2x5T
 - e5x5
 - eB, eL, eR, eT
 - eMax
 - eta ieta
 - iphi phi
 - pse
 - pt
 - r9
 - sieie

- Labels:
 - y_true = E_mc / E_reco
 - y_pred = prediction on y_true
- Loss:
 - ((E_pred E_mc)/E_mc) ** 2
 - = ((y_pred * E_reco E_mc) / E_mc) ** 2
 - = ((y_pred E_mc/E_reco) / (E_mc/E_reco)) ** 2
 - = ((y_pred y_true)/y_true) ** 2
- No normalization (not necessary for BDT)

BDT (XGBoost) - Best model



Deep Learning: CNN – MLP Hybrid



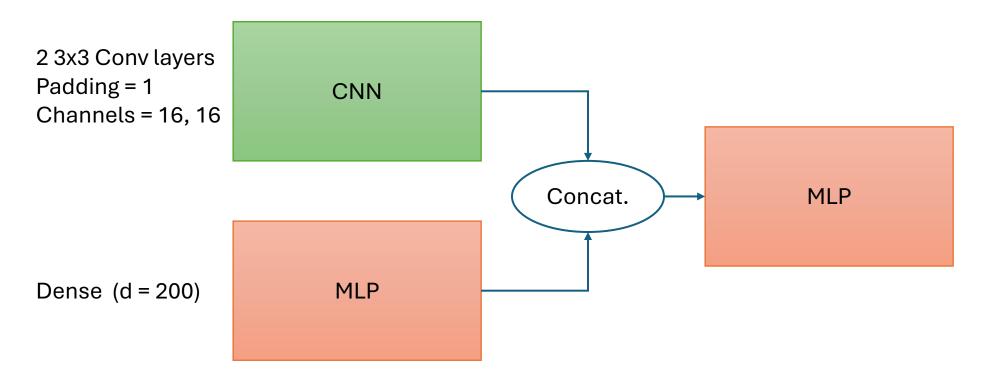
Attempted Normalizations

- Input image (X_img):
 - Normalise each image by its eMax
 - Log then normalise each image by its eMax
 - Sieie normalization: $(max(0, 0.47 + log(E_i/E_5x5))$
- Input features (X_tabular):
 - Mean std normalization
 - Transforming to [0,1] (dividing by scale factor)
 - Taking log then applying one of the two above
 - Sin-cos embedding for phi
- Output labels (y):
 - Unscaled
 - Transforming to [0,1] (dividing by scale factor)
 - Log
 - Y = E_mc / E_reco

Loss functions

- L = ((E_mc E_reco / E_mc))**2
- L = (E_mc E_reco) ** 2
- L = log(sig ** 2) + 0.5 * ((E_mc mu) / sig)) ** 2 (predicting mu and sig)
- First loss performed best

More on architecture



Train vs val for CNN

