

Laser-driven source (WPB): Introduction & Overview

LhARA Collaboration Meeting #8, 18-19th September 2025

Laser driven ion source for LhARA

- High energy (e.g. ~15 MeV p+, 4 MeV/u C6+) from source
- Needs to operate at 10 Hz for long periods
- Deliver 10⁹ protons or 10⁸ carbon ions per shot in narrow energy band & solid angle

Previous highlights

High Fidelity Simulation Campaign

State-of-the-art modelling to:
Predict laser & target requirements
Optimisation of parameters hard to access experimentally

Source demonstration at SCAPA

Multiple campaigns at SCAPA Bunker B, showing: Acceleration of protons up to ~12 MeV, enabling PoPLaR Demonstration of repetitive operation of source

Technical R&D

Derisking key technology:
Integrated data acquisition and experimental control platform at SCAPA
Investigating debris generation and optics degradation
Development of diagnostics capable of measuring LhARA beams

Specification of LhARA laser

Current LhARA-related activities

This session

- → Developments for SCAPA Bunker B Ben Torrance (Strathclyde)
- Progress Towards a Calibrated High Repetition-Rate Thomson Parabola Spectrometer at SCAPA - Ben Torrance (Strathclyde)
- Optimisation of high repetition rate diagnostic design using synthetic modelling - me (Imperial)
- Discussion and Q&A