

Recent results from the LHC From ATLAS and CMS

Alex Martyniuk (UCL) on behalf of the ATLAS and CMS collaborations

Lake Louise Winter Institute March 6th, 2020

Alex Martyniuk

Recent results from the LHC

Recent results from the LHC From ATLAS and CMS

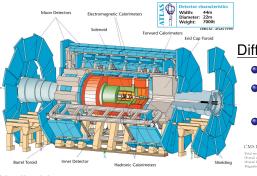
Alex Martyniuk (UCL)

April 15th, 2020

ching .


Alex Martyniuk

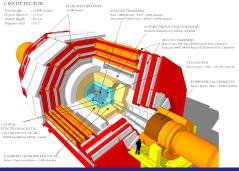
Recent results from the LHC


Not To Scale Birds Eye View

The General Purpose Detectors

• This talk will focus on the results from ATLAS* and CMS

The General Purpose Detectors

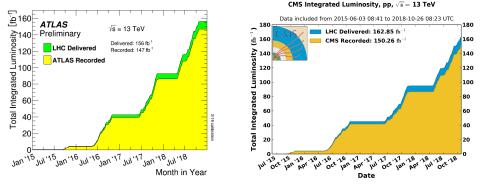


Similarities

- Cylindrical detectors: barrel & end-caps
- Concentric detectors: Tracking, EM→had-calorimetry, muon chambers
- Close to 4π solid angle coverage
- Hardware/software combined trigger systems

Differences

- Detector technology choices
- *B*-field configuration: Solenoid vs Solenoid+Toroid
- Size/weight (though both are colossal!)

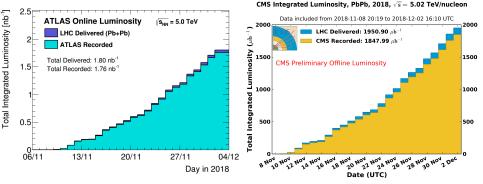


Alex Martyniuk

Recent results from the LHC

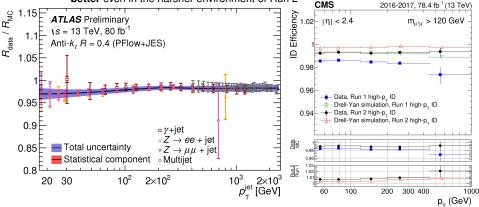

Run 2 Summary: Integrated Luminosity

- The LHC had an **excellent** Run 2, delivering \approx 160 fb⁻¹ to both experiments!
- Both experiments recorded data with superb overall Run 2 data taking efficiency: ATLAS 94.2%, CMS 92.3%
 - This was achieved despite **challenging** pile-up conditions with $< \mu > 35$: i.e. on average 35 **simultaneous** p p collisions per bunch crossing!
- The LHC is very **versatile** machine, delivering in **special** runs throughout Run 2: Pb Pb, p Pb, Xe Xe and low pileup p p data to both experiments


Run 2 Summary: Pileup

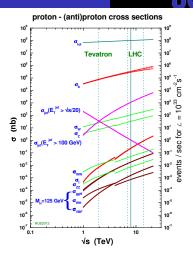
- The LHC had an excellent Run 2, delivering \approx 160 fb⁻¹ to both experiments!
- Both experiments recorded data with superb overall Run 2 data taking efficiency: ATLAS 94.2%, CMS 92.3%
 - This was achieved despite **challenging** pile-up conditions with $< \mu > 35$: i.e. on average 35 **simultaneous** p p collisions per bunch crossing!
- The LHC is very **versatile** machine, delivering in **special** runs throughout Run 2: Pb Pb, p Pb, Xe Xe and low pileup p p data to both experiments

Run 2 Summary: Versatility

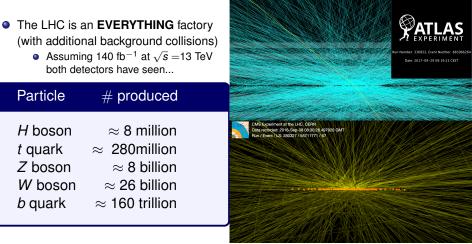


- The LHC had an excellent Run 2, delivering \approx 160 fb⁻¹ to both experiments!
- Both experiments recorded data with superb overall Run 2 data taking efficiency: ATLAS 94.2%, CMS 92.3%
 - This was achieved despite **challenging** pile-up conditions with $< \mu > 35$: i.e. on average 35 **simultaneous** p p collisions per bunch crossing!
- The LHC is very versatile machine, delivering in special runs throughout Run 2: Pb – Pb, p – Pb, Xe – Xe and low pileup p – p data to both experiments

Reconstruction and Calibration


- **≜UCI**
- Both experiments have excellent reconstruction and calibration performance, even in the harsh pileup conditions of Run 2
- Continuous improvements seen in the calibrations, understandings of efficiencies, systematic uncertainties etc. over a wide *p*_Γ range
 - A better understanding of the detectors along with data-driven and machine learning techniques mean that object calibrations and efficiencies are often now better even in the harsher environment of Run 2

What is in this data?


- The LHC is an EVERYTHING factory (with additional background collisions)
 - Assuming 140 fb⁻¹ at √s =13 TeV both detectors have seen...

Particle	# produced	
H boson t quark Z boson W boson b quark	$\approx 8 \text{ million}$ $\approx 280 \text{million}$ $\approx 8 \text{ billion}$ $\approx 26 \text{ billion}$ $\approx 160 \text{ trillion}$	

- These datasets give both experiments broad physics programme potential
 - High-precision SM measurements, including Higgs properties
 - Detection of extremely rare processes
 - Exploration of new kinematic regimes for potential new physics signals!

What is in this data?

- These datasets give both experiments broad physics programme potential
 - High-precision SM measurements, including Higgs properties
 - Detection of extremely rare processes
 - Exploration of new kinematic regimes for potential new physics signals!

The Standard Model

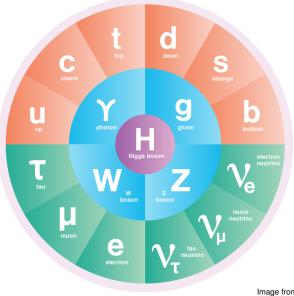
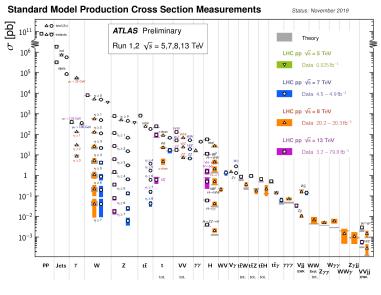
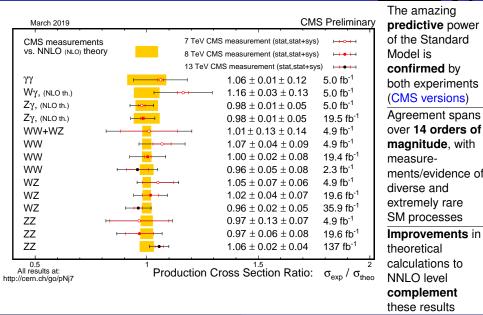



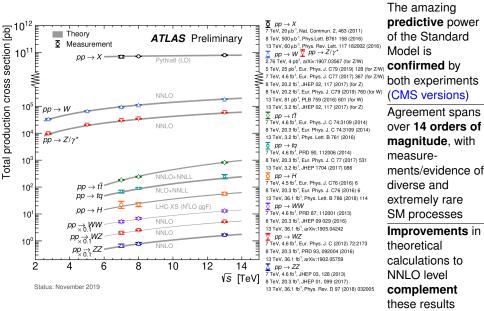
Image from Symmetry Magazine

Remarkable agreement


predictive power of the Standard Model is confirmed by both experiments (CMS versions) Agreement spans over 14 orders of magnitude, with measurements/evidence of diverse and extremely rare SM processes Improvements in

The amazing

Improvements in theoretical calculations to NNLO level complement these results


Remarkable agreement

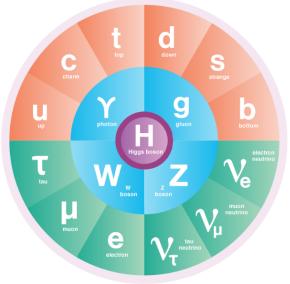
≜UCL

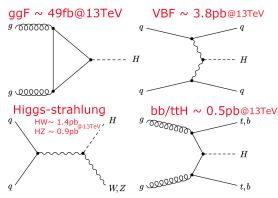
Remarkable agreement

≜UCL

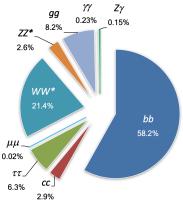
Alex Martyniuk Recent results from the LHC

Let's focus first on the new kid...



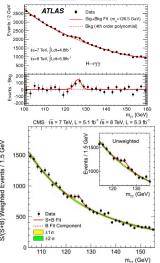

Image from Symmetry Magazine

- The discovery of the Higgs boson (m_H = 125.10 GeV) in 2012 by ATLAS and CMS together fulfilled one of the main aims of the LHC: Identifying a mass generation mechanism for the SM
- Its discovery showed us that some form of the Brout-Englert-Higgs* mechanism is realised in nature!
- It has given us access to a new sector of the SM Lagrangian with new lines of enquiry to follow:
 - Yukawa couplings, a new type of interaction to investigate
 - Gauge-scalar boson interactions
 - The parameters of the Higgs potential, and its self coupling


*Please insert your own preferred naming convention for the mechanism

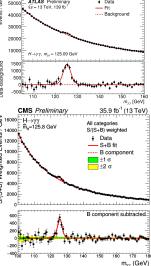
The Higgs Production/Decay

- In Run 1 ATLAS and CMS observed the gg fusion and VBF production modes
- In Run 2 we now have observed the Higgs-strahlung and ttH productions modes!

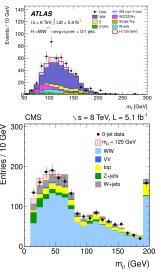


- The discovery channels (γγ, ZZ, WW) dominated Run 1 results
- In Run 2 both experiments are digging into the more challenging decay modes

Higgs Progress: Discovery → Measurement

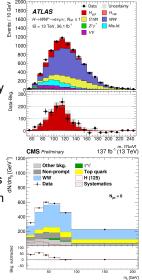

Run 1: ATLAS & CMS

$$H \to \gamma \gamma$$

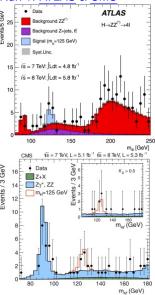

- Significant progress has been made in the discovery channels since 2012
- We have collected
 thousands of Higgs
 bosons candidate events
 with which to perform
 differential measurements
- Can really start to dig down[®] into the properties and couplings of this new scalar boson

Run 2: ATLAS & CMS

Higgs Progress: Discovery → Measurement

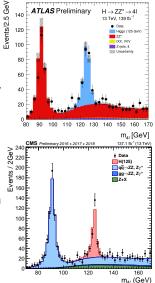

Run 1: ATLAS & CMS

 $H \rightarrow WW$


- Significant progress has been made in the discovery channels since 2012
- We have collected thousands of Higgs bosons candidate events with which to perform differential measurements
- Can really start to dig down into the properties and couplings of this new scalar boson

Run 2: ATLAS & CMS

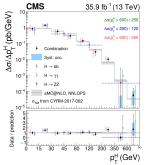
Higgs Progress: Discovery → Measurement

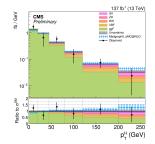

Run 1: ATLAS & CMS

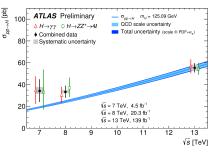
$$H \rightarrow ZZ$$

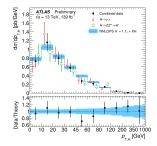
- Significant progress has been made in the discovery channels since 2012
- We have collected thousands of Higgs bosons candidate events with which to perform differential measurements
- Can really start to dig down into the properties and couplings of this new scalar boson

Run 2: ATLAS & CMS

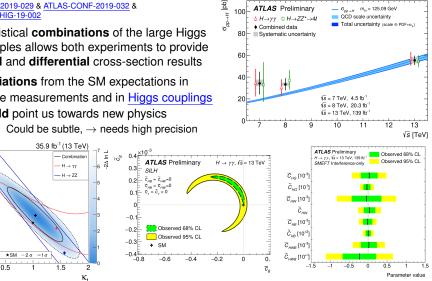



Differential Higgs Measurements




ATLAS-CONF-2019-029 & ATLAS-CONF-2019-032 & HIG-17-028 & <u>HIG-19-002</u>

- Statistical combinations of the large Higgs samples allows both experiments to provide total and differential cross-section results
- Deviations from the SM expectations in these measurements and in <u>Higgs couplings</u> could point us towards new physics


Alex Martyniuk

Differential Higgs Measurements

ATLAS-CONF-2019-029 & ATLAS-CONF-2019-032 & HIG-17-028 & HIG-19-002

- Statistical **combinations** of the large Higgs samples allows both experiments to provide total and differential cross-section results
- Deviations from the SM expectations in these measurements and in Higgs couplings could point us towards new physics

Ould be subtle, → needs high precision

-0.04 + Best fit

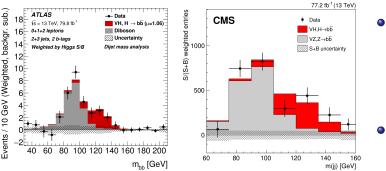
CMS

ບຶ_{0.08}⊧ັ

0.06

0.04

0.02


-0.02

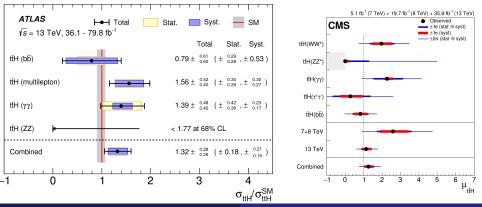
 $B(\kappa_c,\kappa_b)$

Two for one: $pp \rightarrow VH \rightarrow bb$

HIGG-2018-04 & HIG-18-016

- Observation of the Higgs production/decay pp → VH → bb directly confirms both the low cross section Higgs-strahlung production mode and the abundant H → bb decay mode
- Made possible by triggering on "clean" leptonic V decays to reduce the multi-jet background
- An incredible achievement as the H → bb decay channel was considered by some a lost cause at a hadron collider

• Combined Run $1+2 H \rightarrow bb$ significances <u>-ATLAS-</u> 5.4(5.5) σ <u>-CMS-</u> 4.8(4.9) σ

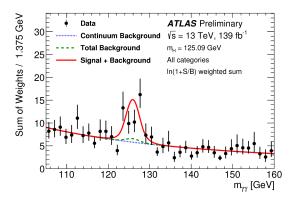

 Both agree with the SM signal strength

The rarest production mode: $t\bar{t}H$

≜UCL

HIGG-2018-13 & HIG-17-035

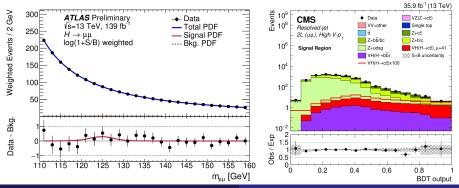
- **Combinations** of decay modes from both experiments have previously **confirmed** the presence of the $pp \rightarrow t\bar{t}H$ production channel at, ATLAS: $6.3(5.1)\sigma$, CMS: $5.2(4.2)\sigma$
- A superb confirmation of a rare Higgs production mode, confirming the tree level coupling of top quarks to the Higgs

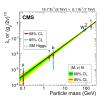

Alex Martyniuk

The rarest production mode: $t\bar{t}H$

HIGG-2018-13 & HIG-17-035 & ATLAS-CONF-2019-004

- **Combinations** of decay modes from both experiments have previously **confirmed** the presence of the $pp \rightarrow t\bar{t}H$ production channel at, ATLAS: $6.3(5.1)\sigma$, CMS: $5.2(4.2)\sigma$
- A superb confirmation of a rare Higgs production mode, confirming the tree level coupling of top quarks to the Higgs

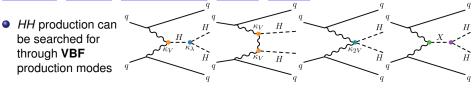

- ATLAS has now followed up with a **single channel** $(H \rightarrow \gamma \gamma)$ observation of the $t\bar{t}H$ process at a significance of 4.9 σ
- An **exceptionally** rare process with a measured,

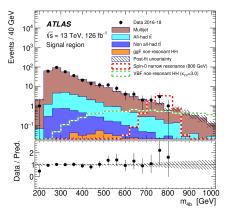

 $\sigma_{t\bar{t}H} imes \mathcal{B}_{H o \gamma\gamma} = 1.59^{+0.43}_{-0.39} ext{ fb}$

The Rarer Decay Modes: 2nd Gen.

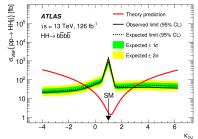
ATLAS-CONF-2019-028 & HIG-18-031

- ATLAS and CMS are digging down toward the rare second generation Higgs decay modes
- Using multivariate techniques and new reconstruction techniques
- Nothing is seen (or expected to be) seen yet, but these modes are starting their journeys now ready for Run 3/4
 - ATLAS $H \rightarrow \mu\mu$: $\mu = 1.7$ & CMS $H \rightarrow cc$: $\mu = 70@$ 95%CL

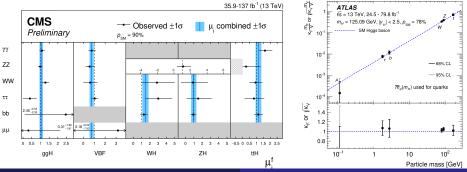

Alex Martyniuk


Recent results from the LHC

The "Future": Di-Higgs production



HDBS-2018-18 & HDBS-18-33 & ATLAS-CONF-2019-049 & HIG-17-030 & HIG-18-013


- Can be used to explore the Higgs self coupling λ, probing the Higgs potential
- Also useful to search for new heavy resonances

Run 2 Higgs Overview

HIGG-2018-57 & HIG-19-005

- The ATLAS and CMS Higgs programs are switching from discovery to measurements quickly
- Will be able to compare the results to the SM expectations with greater and greater precision
- The Higgs sector touches upon many questions: naturalness, vacuum stability, flavour...
- We will be poking this field for a long time to come

The Electroweak sector segue

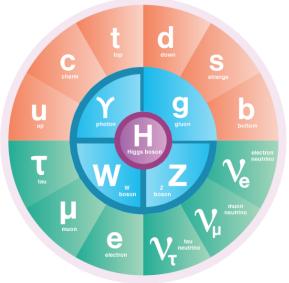
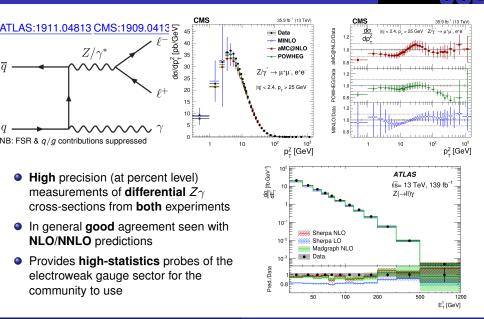
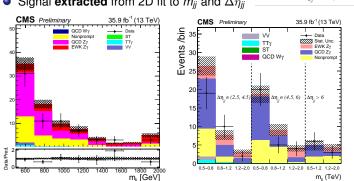
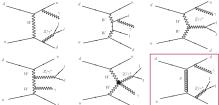



Image from Symmetry Magazine

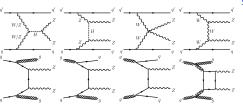
High-statistics probes: $Z\gamma$ cross section



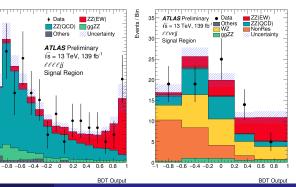

Rare processes: EW VBS $Z\gamma i j$

SMP-18-007 (ATLAS: arXiv:1910.09503)

- Evidence of the electroweak vector-boson scattering process $pp \rightarrow Z\gamma jj$ directly probes the EWK SM gauge structure
- Selection reduces contribution from strong production
- Signal **extracted** from 2D fit to m_{ii} and $\Delta \eta_{ii}$



- Obs (exp) significance at 3.9 (5.2) σ with a cross-section of 3.20+1.15 fb⁻¹
- Additionally, places stringent limits on anomalous quartic gauge couplings


Events/bin

Rare Processes: EW VBS ZZjj

ATLAS-CONF-2019-033

- Observation of the electroweak vector-boson scattering process pp → ZZjj is a milestone in observing one of the rarest processes of the EW sector
- Selected from other QCD/EW diboson processes by a Boosted Decision Tree

Observed at 5.5σ with a cross-section of 0.82 fb

 One of the rarest SM process observed so far at the LHC

 CMS has plans (FTR-18-014) to measure the longitudinal component with 3 ab⁻¹

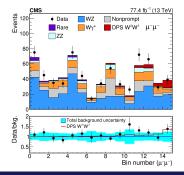
Alex Martyniuk

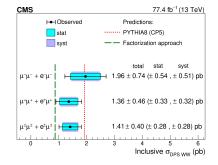
20

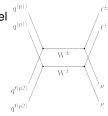
18

16

14

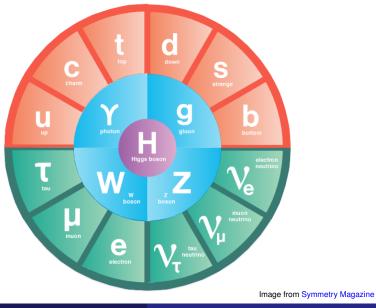

12


Recent results from the LHC


Double Parton Scattering: WW

arXiv:1909.06265

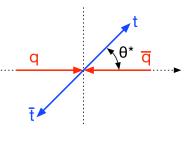
- Evidence of double parton scattering in the pp → W[±]W[±] channel is a first for DPS at the LHC
 - Could become a background to new physics with longitudinal correlations at HL-LHC, as well as other diboson processes
- Multivariate classifiers used to discriminate DPS events from other diboson backgrounds
- Evidence at 3.9 σ with a cross-section of 1.41 pb⁻¹

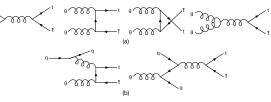


Alex Martyniuk

The Fermions

34/64


Alex Martyniuk Recent results from the LHC


tt Forward/Backward Asymmetry

TOP-15-018

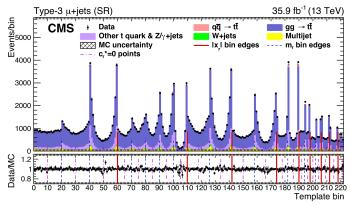
- Top quarks are **predominantly** produced in pairs in the SM
- Anomalous production modes can be searched for by studying the the **angular** distribution of the produced $t\bar{t}$ pairs

• I.e. these anomalies would impact,

$$c^* = \cos \theta^*$$

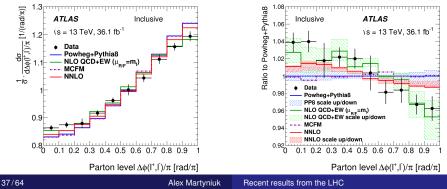
 This can be quantified by using the forward/backwards asymmetry,

$$A_{FB} = rac{\sigma(c^* > 0) - \sigma(c^* < 0)}{\sigma(c^* > 0) + \sigma(c^* < 0)} \ (A_{FB}^{SM} = 0.095)$$


- Trickier than at the Tevatron as gg fusion production is dominant at the LHC which produces no A_{FB} , need to extract $q\bar{q}$ contribution
- Can also measure the anomalous chromoelectric (*d̂*_t) and chromomagnetic (*μ̂*_t) dipole moments (*d̂*_tSM = *μ̂*_tSM = 0)

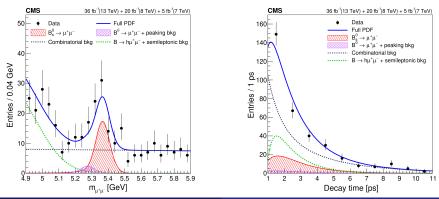
tt Forward/Backward Asymmetry

TOP-15-018


- Record differential cross sections in a series of channels defined by decay topology, lepton charge and flavour
- A linear **combination** of 3D MC templates is fitted to this data to **independently** extract
- $A_{FB}^{(1)} = 0.048^{+0.095}_{-0.087}(\text{stat})^{+0.020}_{-0.029}(\text{syst})$
- $\hat{\mu}_t = -0.024^{+0.013}_{-0.009}(\text{stat})^{+0.016}_{-0.011}(\text{syst})$

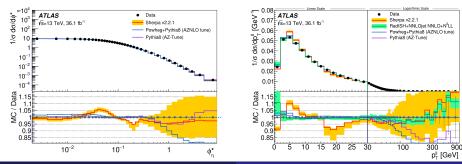
Top Spin Correlations

<u>TOPQ-2016-10</u> (<u>TOP-18-006</u>)

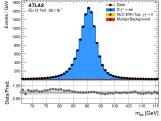

- Top quarks decay before their spins can be flipped by the strong interaction, passing this information to their decay products
- The initial $t\bar{t}$ spin states at the LHC depend on the **production mode** ($q\bar{q}$ annihilation/gg fusion), \therefore a **different** measurement at Tevatron c.f. LHC
- Measurements by ATLAS and CMS generally agree with fixed order predictions (ATLAS has some tension with the NNLO prediction)
 - ATLAS also has some tension with one NLO+PS prediction (POWHEG+PYTHIA8)

 $\rightarrow \mu\mu$ BPH-16-004

- The decay of $B_S^0 \to \mu^+ \mu^-$ is **observed** by CMS with a branching fraction of $\mathcal{B}(B_S^0 \to \mu^+ \mu^-) = 2.9^{+0.7}_{-0.6} \times 10^{-9}$ with a significance of 5.6σ
 - No significant excess is seen for the $B^0 \rightarrow \mu^+\mu^-$, upper limits set at $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) = 3.6 \times 10^{-10}$
- The results are **consistent** with the SM expectation, and provide a significant **constraint** on BSM models which could enhance this channel


Recent results from the LHC

Alex Martyniuk

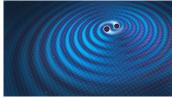

Drell-Yan: $pp \rightarrow Z/\gamma^* \rightarrow II$

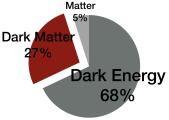
STDM-2018-14

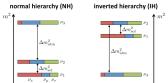
- A precise measurement of transverse momentum and φ^{*}_η (a measure of the lepton's scattering angle w.r.t. the beam) in Drell-Yan events
- High statistics measurements of standard candle processes are important inputs to beyond the Standard Model searches
- Unfolded differential cross section provide information to improve the **modelling** of these channels

Alex Martyniuk

Beyond the Standard Model






Image (kinda) from Symmetry Magazine

Some of the sticking plasters...

- Gravity... It's just not in there...
- Dark Matter... Astronomers/Cosmologists say that it is everywhere...
 - The SM looks blankly into the distance...
 - Neutrino mass not enough, and SM doesn't even include them anyway...
- Neutrino masses... Also missing...
 - We know they have mass, the SM says they don't ...
 - No (observed) ν_R so no Yukawa coupling...
 - What is the correct way to stick that in?
- A complete list of sticking plasters, things lacking an explaination and omissions would be **quite long**...
 - The Higgs mass, mass hierarchies in general, vacuum stability of the universe, multiple generations of fermions...
- And so we go **searching**...

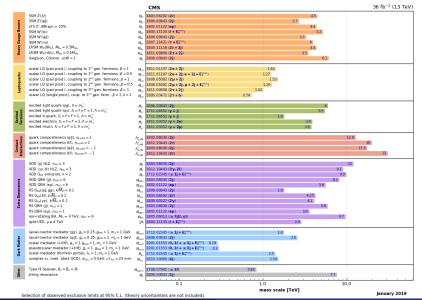
ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

ATLAS Preliminary

 $\int f dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	· · · ·			Emiss	C		.2 - 139) ID -	vs = 0, 13 lev
	Model	ℓ,γ	Jets†	ET	∫£ dt[ft			Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{NK} + g/q\\ \text{ADD non-resonant } \gamma\gamma\\ \text{ADD oBH}\\ \text{ADD BH high } \sum p_{\gamma}\\ \text{ADD BH high } \sum p_{\gamma}\\ \text{ADD BH miltijet}\\ \text{RS1} G_{NK} \to \gamma\gamma\\ \text{Bulk RS} G_{KK} \to WW/ZZ\\ \text{Bulk RS} g_{KK} \to WW/ZZ\\ \text{Bulk RS} g_{KK} \to tr\\ \text{ZUED / RPP} \end{array}$		1 - 4 j - 2j $\ge 2j$ $\ge 3j$ - 3j = 2J $\ge 1 b, \ge 1J$ $\ge 2 b, \ge 3$		36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Ma 727 W Ma 68 TeV Ma 88 TeV Ma 88 TeV Ma 88 TeV Ma 88 TeV Ma 98 T	$\begin{array}{l} s=2\\ s=3\; \mathrm{HLZ}\; \mathrm{NLO}\\ s=6\\ s=6, M_D=3\; \mathrm{TeV}, \mathrm{rot}\; \mathrm{BH}\\ s=6, M_D=3\; \mathrm{TeV}, \mathrm{rot}\; \mathrm{BH}\\ k/\overline{H}_{P_1}=0.1\\ k/\overline{H}_{P_1}=1.0\\ k/\overline{H}_{P_1}=1.0\\ \Gamma/m=15\%\\ \Gamma/m=15\% \end{array}$	1711.0301 1707.04147 1703.09127 1606.0225 1512.02586 1512.02586 1512.02586 1512.02586 1512.02586 1512.02586 1512.0258 1513.0678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell \ \ell \\ {\rm SSM} \ Z' \to \tau \tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to bt \\ {\rm SSM} \ W' \to t \ \ell \\ {\rm SSM} \ W' \to \ell \ \ell \\ {\rm SSM} \ W' \to \psi \\ {\rm HVT} \ V' \to WZ \to qqq \ mode \\ {\rm HVT} \ V' \to WZ \to qqq \ mode \\ {\rm HVT} \ V' \to WZ \to qqq \ mode \\ {\rm LFSM} \ W_R \to tb \\ {\rm LFSM} \ W_R \to \mu N_R \end{array}$	1 e,μ 1 τ		- - /2j Yes Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	2 max 5.1 KW 2 max 2.42 TeV 2 max 2.1 TeV 2 max 2.1 TeV 4 max 2.5 TeV W max 5.7 TeV W max 5.7 TeV W max 5.7 TeV W max 5.7 TeV W max 5.2 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(H_R) = 0.5$ TeV, $g_C = g_R$	1903.08248 1709.07242 1806.0929 1804.10823 CERN-EP-2019-100 1801.08982 ATLAS-CONF-2019-003 17712.08518 1807.10473 1904.12679
õ	Cl qqqq Cl ffqq Cl tttt	2 e,μ ≥1 e,μ	2 j 	- - Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^{-} 40.0 TeV η_{LL}^{-} $ C_{tt} = 4\pi$	1703.09127 1707.02424 1811.02305
WQ	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac VV $\chi\chi\chi$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	DM) 0 e, μ 0 e, μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J		36.1 36.1 3.2 36.1	Mead 1.55 TeV Mead 1.67 TeV M, 700 GeV mp 3.4 TeV	$\begin{split} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) &= 1 \text{ GeV} \\ g{=}1.0, m(\chi) &= 1 \text{ GeV} \\ m(\chi) < 150 \text{ GeV} \\ \gamma &= 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV} \end{split}$	1711.03301 1711.03301 1608.02372 1812.09743
10	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 nd gen Scalar LQ 3 nd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LO mass 1.4 TeV LO mass 1.56 TeV LO [*] mass 1.03 TeV LO [*] mass 970 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{L}Q_1^r \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{L}Q_1^r \rightarrow \tau\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{l} VLQ\; TT \rightarrow Ht/Zt/Wb + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3}\; T_{5/3}\; T_{5/3} \rightarrow Wt + X \\ VLQ\; Y \rightarrow Wb + X \\ VLQ\; QD \rightarrow Hb + X \\ VLQ\; QQ \rightarrow WqWq \end{array}$	1 e, µ	el	Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.24 TeV Toy mass 1.24 TeV Y mass 1.84 TeV W mass 1.84 TeV B mass 1.82 TeV B mass 1.23 TeV G mass 1.23 TeV G mass 0.24 TeV	$\begin{array}{l} \mathrm{SU}(2) \mbox{ doublet} \\ \mathrm{SU}(2) \mbox{ doublet} \\ \mathfrak{U}(T_{S(2)} \rightarrow Wt) = 1, \ c(T_{S(2)}Wt) = 1 \\ \mathfrak{L}(Y \rightarrow Wb) = 1, \ c_H(Wb) = 1 \\ \mathfrak{c}_{R} = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -	-	139 36.7 36.1 20.3 20.3	e'mas 6,7 TeV e'mas 5,3 TeV P'mas 2,6 TeV P'mas 3,0 TeV Y mas 1,6 TeV	enly a^* and $a^\mu, \Lambda=m(q^*)$ only a^* and $a^\mu, \Lambda=m(q^*)$ $\Lambda=3.0 \text{ TeV}$ $\Lambda=1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other		1 e,μ 2μ 2,3,4 e,μ (S 3 e,μ,τ - - - - - - - - - - - - - - - - - - -	√s = 1 full d	lata	79.8 36.1 36.1 20.3 36.1 34.4	M*main 500 GeV Merimain 3.2 TeV Merimain 870 GeV Mith data gradel main 20 GeV Mith data gradel main 2.2 TeV Mith data gradel main 10 -1 10 ⁻¹ 1 10	$\begin{split} m(W_{0}) &= 4.1 \text{ TeV}, g_{L} &= g_{0} \\ \text{DY production} \\ \text{DY production}, g(H_{L}^{12} \rightarrow \ell \tau) &= 1 \\ \text{DY production}, g(g) &= 5e \\ \text{DY production}, [g] &= 1g_{0}, \text{ spin } 1/2 \\ \hline \\ \textbf{Mass scale [TeV]} \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.00673 1905.10130


*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter i (.1)

Alex Martyniuk

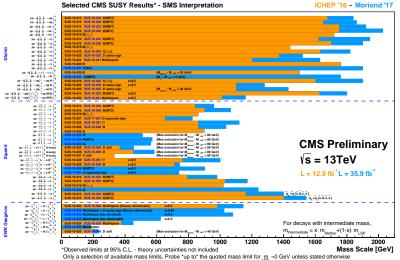
Overview of CMS EXO results

43/64

Alex Martyniuk

ATLAS SUSY Searches* - 95% CL Lower Limits

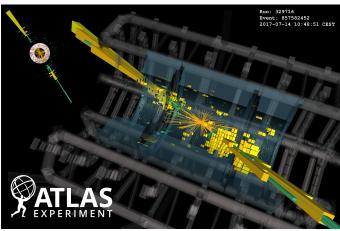
									ATLAS Preliminary
limit									Reference


July 2019

Ju	ily 2019											$\sqrt{s} = 13 \text{ TeV}$
	Model	Si	ignatur	e∫	£ dt [fb) Ma	ss limit					Reference
	$\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{t}_{1}^{0}$	0 e.μ mono-jet	2-6 jets 1-3 jets	$\substack{ \substack{ E_T^{\rm min} \\ E_T^{\rm min} } }$	36.1 36.1	₫ [2x, 8x Degen.] ₫ [1x, 8x Degen.]	0.43	0.9	1.5	5	$m(\tilde{t}_{1}^{0})$ <100 GeV $m[\tilde{q}]$ - $m(\tilde{t}_{1}^{0})$ =5 GeV	1712.02332 1711.03301
arche	$\hat{g}\hat{g}, \hat{g} \rightarrow q\hat{g}\hat{T}_{1}^{0}$	0 e. µ	2-6 jets	$E_T^{\rm miss}$	36.1	ž ž		Forbidden	0.95-1	2.0	m(t ²)~200 GeV m(t ²)~900 GeV	1712.02302 1712.02302
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}(\ell\ell)\tilde{\ell}_1^0$	3 e. μ ce. μμ	4 jets 2 jets	E_T^{\min}	36.1 36.1	8 8			1.2	1.85	m(R ⁰ ₁)<800 GeV m(R ⁰ ₁)=50 GeV	1706.03731 1805.11381
	$gg, g \rightarrow qqWZ\tilde{r}_{1}^{0}$	0 e, μ SS e, μ	7-11 jets 6 jets	E_T^{miso}	36.1 139	Ř Ř			1.15	1.8	m(\tilde{t}_1^0) <400 GeV m(\tilde{t}_1^0)=250 GeV	1708.02794 ATLAS-CONF-2019-015
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow d\tilde{X}_{1}^{0}$	0-1 e.μ SS e.μ	3 <i>b</i> 6 jets	E_T^{min}	79.8 139	ž ž			1.25	2	25 m(t ² ₁)<200 GeV m(<u>t</u>)-m(t ² ₁)=300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$b_1 b_1, b_1 {\rightarrow} b \tilde{t}_1^0 / \tilde{t}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 139	δ ₁ Forbidden δ ₁ δ ₁	Forbidden Forbidden	0.9 0.58-0.82 0.74		mjã	$\begin{split} m(\tilde{t}_1^0) = 300 \text{GeV}, & \text{BP}(h\tilde{t}_1^0) = 1 \\ m(\tilde{t}_1^0) = 300 \text{GeV}, & \text{BP}(h\tilde{t}_1^0) = \text{BP}(h\tilde{t}_1^0) = 0.5 \\ \text{(= 200 GeV}, & m(\tilde{t}_1^0) = 300 \text{GeV}, & \text{BP}(h\tilde{t}_1^0) = 1 \end{split}$	1708.09266, 1711.03001 1708.09266 ATLAS-CONF-2019-015
gen. squarks set production	$b_1 b_1, b_1 {\rightarrow} b \tilde{t}_2^0 {\rightarrow} b h \tilde{t}_1^0$	0 e, µ	6 b	$\mathcal{E}_T^{\rm min}$	139	$\frac{\delta_1}{\delta_1}$ Forbidden $\frac{\delta_2}{\delta_1}$	0.23-0.48		0.23-1.35		$\begin{array}{c} \Delta m(\tilde{x}_{1}^{0},\tilde{x}_{1}^{0})\!=\!130\text{GeV},m(\tilde{x}_{1}^{0})\!=\!100\text{GeV}\\ \Delta m(\tilde{x}_{1}^{0},\tilde{x}_{1}^{0})\!=\!130\text{GeV},m(\tilde{x}_{1}^{0})\!=\!0\text{GeV} \end{array}$	SUSY-2018-31 SUSY-2018-31
불유	$\hat{i}_1\hat{i}_1, \hat{i}_1 \rightarrow Wb\hat{\chi}_1^0 \text{ or } i\hat{\chi}_1^0$		0-2 jets/1-2		36.1	î ₁		1.0			m(2)=1 GeV	1506.08616, 1709.04183, 1711.11520
2.8	$\bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow W h \tilde{\chi}_1^0$		3 jets/1 b	E_T^{miss}	139	î _l	0.44-0				m(2)+400 GeV	ATLAS-CONF-2019-017
3" ger direct j	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e_{,\mu,\tau}$		E _T min	36.1	î,			1.16		m(t1)=800 GeV	1803.10178
3v din	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}c\tilde{X}_1^0/\tilde{c}\tilde{c},\tilde{c}{\rightarrow}c\tilde{X}_1^0$	0 е. µ 0 е. µ	2 c mono-iet	E_T^{min} E_T^{min}	36.1 38.1	ē Ā	0.45	0.85			m(\hat{k}_1^0)=0 GeV m(\hat{k}_1 , \hat{x})-m(\hat{k}_1^0)=50 GeV m(\hat{k}_1 , \hat{x})-m(\hat{k}_1^0)=5 GeV	1805.01649 1805.01649 1711.03301
	$\hat{l}_{2}\hat{l}_{2}, \hat{l}_{2} \rightarrow \hat{l}_{1} + h$	1-2 e. µ	4.6	E_T^{min}	36.1	î _t		0.32-0.88			$m(\hat{x}_{1}^{0})=0$ GeV, $m(\hat{x}_{1})-m(\hat{x}_{1}^{0})=180$ GeV	1706.03906
	$\hat{i}_{2}\hat{i}_{2}, \hat{i}_{2} \rightarrow \hat{i}_{1} + Z$ $\hat{i}_{2}\hat{i}_{2}, \hat{i}_{2} \rightarrow \hat{i}_{1} + Z$	3 e. µ	1 b	E_T E_T^{miss}	139	12 12	Forbidden	0.86			$m(\tilde{r}_1)=0$ GeV, $m(\tilde{r}_1)=m(\tilde{r}_1)=100$ GeV $m(\tilde{r}_1)=360$ GeV, $m(\tilde{r}_1)-m(\tilde{r}_1)=40$ GeV	ATLAS-CONF-2019-016
	对控 via WZ	2-3 e, μ ee, μμ	21	E_T^{miss} E_T^{miss}	36.1 139	$\frac{\hat{x}_{1}^{*} \hat{x}_{1}^{0}}{\hat{x}_{1}^{*} \hat{x}_{1}^{0}} = 0.205$		0.6			$m(\tilde{t}_{1}^{0})=0$ $m(\tilde{t}_{1}^{0})=m(\tilde{t}_{1}^{0})=5$ GeV	1403.5294, 1806.02293 ATLAS-CONF-2019-014
	$\hat{\chi}_1^{\pm} \hat{\chi}_1^{\mp}$ via WW	2 e. µ		E_T^{min}	139	\hat{X}_{1}^{\pm}	0.42				m(R ⁰ ₁)=0	ATLAS-CONF-2019-008
	$\hat{x}_{1}^{+}\hat{x}_{2}^{0}$ via Wh	0-1 c, µ	2 N2 y	E_T^{mins}	139	λ ⁴ ₁ /k ⁰ ₁ Forbidden		0.74			m(R ²)=70 GeV	ATLAS-CONF-2019-019, ATLAS-CONF-2019-X1
EW	$\hat{x}_{1}^{*}\hat{x}_{1}^{*}$ va \tilde{t}_{L}/\hat{r}	2 e. µ		E_T^{mino}	139	\hat{X}_{1}^{k}		1.0			$m(\tilde{t},t)=0.5(m(\tilde{t}_1^3)+m(\tilde{t}_1^0))$	ATLAS-CONF-2019-008
백명	$\hat{\tau}\hat{\tau}, \hat{\tau} \rightarrow \tau \hat{k}_{1}^{0}$ $\hat{\ell}_{LR}\hat{\ell}_{LR}, \hat{\ell} \rightarrow \ell \hat{k}_{1}^{0}$	2 T 2 T.H	0 jets	E_T^{min} E_T^{min}	139	f [PL-fR,L] 0.16-0.3	0.12-0.39	0.7			$m(\xi_1^0)=0$ $m(\xi_1^0)=0$	ATLAS-CONF-2019-018 ATLAS-CONF-2019-018
	$\ell_{L,R}\ell_{L,R}$, $\ell \rightarrow D\ell_1$	2 e. µ 2 e. µ	> 1	E_T^{laiss}	139	7 0.256		0.7			$m(\hat{x}_1^*)=0$ $m(\hat{x}_1^*)=10 \text{ GeV}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	BB, B→hG/ZG	0 e. µ	≥ 3.0	Autio	36.1	// 0.13-0.23		0.29-0.88			$BR(\tilde{X}_1^0 \rightarrow h\tilde{G})=1$	1806.04030
	nn, n=n0/20	4 e.μ	0 jets	$\begin{array}{c} \mathcal{E}_T^{\rm min} \\ \mathcal{E}_T^{\rm min} \end{array}$	36.1	H 0.13/0.23		0.290.00	_		$BP(\tilde{e}_1 \rightarrow AG)=1$ $BP(\tilde{e}_1 \rightarrow ZG)=1$	1804.03602
Long-lived particles	$\operatorname{Direct} \hat{\chi}_1^* \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}_1^*$	Disapp. trk	1 jet	E_T^{miss}	36.1	$\frac{\hat{x}_{1}^{4}}{\hat{x}_{1}^{4}} = 0.15$	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
B.F	Stable g R-hadron		Multiple		36.1	8				2.0		1902.01636,1808.04095
30	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{t}_1^0$		Multiple		38.1	ž [r(ž) =10 ns, 0.2 ns]				2.05	2.4 m(ξ ⁰ ₁)=100 GeV	1710.04901,1808.04095
	LFV $pp \rightarrow \hat{v}_T + X, \hat{v}_T \rightarrow \epsilon \mu / \epsilon \tau / \mu \tau$	69.67.97			3.2	ř.				1.9	Zur=0.11, dreaman=0.07	1907.08079
	$\hat{\chi}_{1}^{\pm} \hat{\chi}_{1}^{\pm} / \hat{\chi}_{2}^{0} \rightarrow WW/ZUUUr$	4 e. µ	0 jets	E_T^{min}	36.1	$\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} = U_{11} \neq 0, J_{12} \neq 0$		0.82	1.33		m(2 ⁰)=100 GeV	1804.03502
	$\tilde{x}\tilde{y}, \tilde{x} \rightarrow ag\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow agg$	4-	5 large-R je	nts	36.1	∦ (k ⁰)=200 GeV (100 GeV)			1.3	1.9	Large J'	1804.03568
٨db			Multiple		36.1	k [1] -20-4, 20-5]		1.0		2.0	m(t ²)=200 GeV, bino-like	ATLAS-CONF-2018-023
Ω.	$\tilde{u}, \tilde{\iota} \rightarrow i \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ibs$		Multiple		36.1	∦ [l ^v ₁₂₁ =2a-4, 1a-2]	0.5		5		m(t ²)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	1 ₁ [69.85]	0.42	1.61				1710.07171
	$\hat{t}_1\hat{t}_1, \hat{t}_1 \rightarrow q\ell$	2 e, μ 1 μ	2 b DV		36.1 136	$ \hat{I}_1 = [10\text{-}10\text{-}3]_{330}^{\prime} \times [10\text{-}8, 30\text{-}10\text{-}3]_{230}^{\prime} $	<36-9]	1.0	0.4-1.45	1.6	BR(<i>l</i> ₁ →q ₂)=100%, cosil)=1	1710.05544 ATLAS-CONF-2019-006
"Only.	a selection of the available ma	ss limits on n	new state	s or	1)-I			1		Mass scale [TeV]	-
phen	omena is shown. Many of the	limits are bas	sed on			,					muaa acdie [Tev]	

44/64

ICHEP '16 - Moriond '17

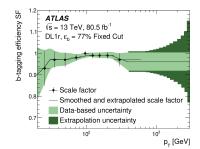


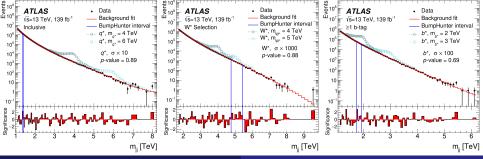
More up to date, but separated summaries can be found here

Pushing to the edges...

- Searches for exotic phenomena and SUSY partners push to extremes of phase space
- They also often turn the normal operation of the detectors upside down

- These extremes include...
- The highest invariant mass events
- Low mass particles
- Compressed spectra
- Small couplings
- Long-lived particles
- Multi-charged particles
- Forbidden decays
- Complicated decays

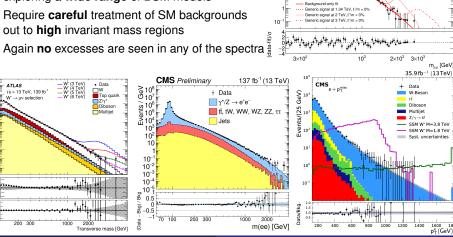

A $m_{jj} = 9.3$ TeV dijet event recorded by ATLAS


Dijet resonances

EXOT-2019-03 & EXO-19-012

- Dijet resonance searches probe the **highest** invariant mass events, $m_{jj} = 9.3$ TeV now for ATLAS, $m_{jj} = 8.2$ TeV in CMS
- This iteration from ATLAS is expanding on the inclusive search by requiring additional b-tagging selections to probe other models

• No excesses are seen in any of the spectra



Alex Martyniuk

Dilepton resonances

EXOT-2018-08 & EXOT-2018-30 & EXO-19-019 & EXO-16-033

- Dilepton resonance searches are complimentary searches to the dijet searches, exploring a wide range of BSM models
- Require careful treatment of SM backgrounds out to high invariant mass regions

Alex Martyniuk

Recent results from the LHC

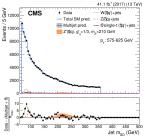
Events / 10 GeV

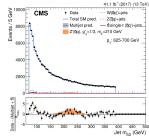
10

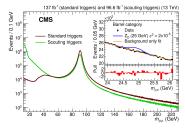
10

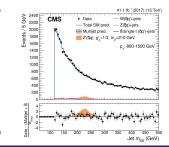
10

Data

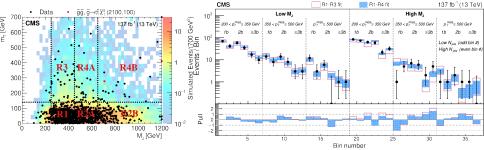



ATLAS vs = 13 TeV, 139 fb


"Low" mass resonances


EXO-19-018&EXO-18-012&EXOT-2018-05&EXOT-2016-20

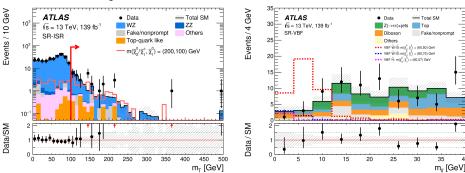
- Can access lower mass resonances than triggers would usually allow by recoiling the system against ISR, or by running on reduced size trigger level data
- Multiple examples from **both** experiments, pushing searches into areas **previously** thought inaccessible to the LHC
- No excesses seen in any of these searches either, but they demonstrate the **ingenuity** of collaboration members

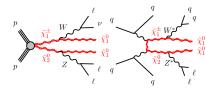


Alex Martyniuk

Strong SUSY

SUS-19-007

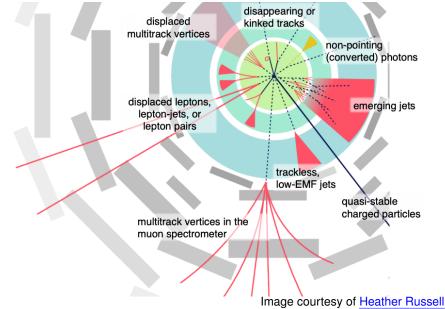

- A search for gluino pairs with a spectacular fireworks display of a final state of tttt + p_T^{miss}
- The variables M_J, the scalar sum of large-R jets, and M_T, transverse mass of leading lepton + p_T^{miss}, offer strong handles on these busy events
- Regions (*R*_{1,2,3}) **dominated** by background are used to estimate the background in the signal region (*R*₄)
- Data is able to exclude gluinos with masses below 2.15 TeV



Electroweak SUSY

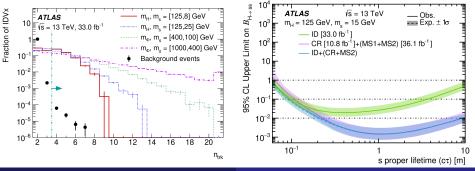
SUSY-2018-06 & SUSY-2018-16

- Searches also ongoing for **production** of electroweakinos, **close** to the EW mass scale, and in **compressed** spectra
- Push back into regions where the m(x̃₂⁰) ≈ m(x̃₁⁰) + m(Z) or m(x̃₁⁰) = m(x̃₂⁰)
- The "easier" search regions are longer term statistics driven games now



Alex Martyniuk Recent

Long-Lived Particles

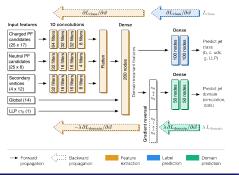


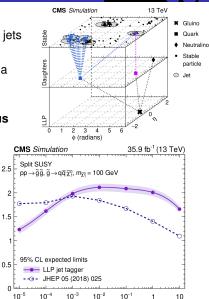
53/64

Long-Lived Particles

EXOT-2018-61

- Searches for LLPs require **novel** trigger and reconstruction techniques, often a complete **re-write**
- New reconstruction methods developed for displaced tracks in the ID and MS detectors
- **Unusual** backgrounds from material interactions, fake vertices or punch through jets
- Place limits on the cr of the long lived particles




Alex Martyniuk

Long-Lived Particles: DNN Jet Tagging

EXO-19-011

- CMS has developed a novel tagger to identify jets originating from LLP events
- Uses a Deep Neural Network which **achieves** a tagging efficiency of 30-80% for gluinos with $1 mm \le c\tau_0 \le 10m$
- Expect an improvement in limits over previous results by using this novel technique

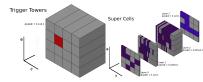
cτ₀ (m)

Alex Martyniuk

Recent results from the LHC

m_ĝ (TeV)

...not by a long way


Hilur

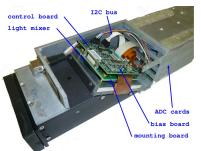
ATLAS Phase-1 upgrades

Liquid Argon Calorimeter Electronics

- Aiming to improve the Level-1 calorimeter decisions for Run 3 and beyond
- Finer segmentation leading to enhanced jet rejection and pileup subtraction capabilities

TDAQ upgrades

 Take advantage of finer segmentation in LAr electronics and improved muon trigger (NSW)


Muons: New Small Wheel

- Replacing the inner muon stations in the endcaps
- Reduced muon fake rates, and maintain the same position resolution/efficiency for HL-LHC

CMS Phase-1 upgrades

- CMS is well advanced on it's Phase-1 upgrades
 - Upgrades of the pixels, L1Trigger system and replacement of some HCAL readout have already occured
 - Final upgrades ongoing in LS2 including replacing the inner layer of the pixel barrel

Muons: GEM GEI/I detectors

- Technically already a Phase-2 upgrade, but going in now in LS2
- Installing Gas-Electron-Multiplier chambers which can operate in high-rate environments

Replace photosensors of hybrid photodetectors

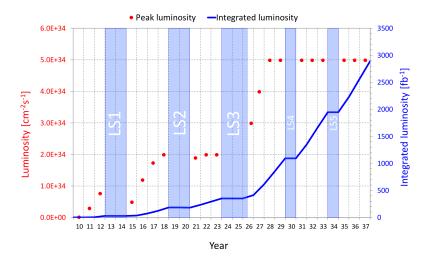
 Will improve the readout to 5Gbps and increase the longitudinal segmentation of the detector

57/64

Alex Martyniuk

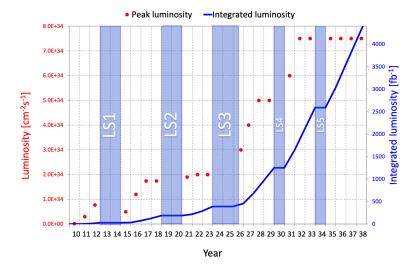
Recent results from the LHC

Hadronic Calorimeter Electronics


with silicon photomultipliers

...not by a long way

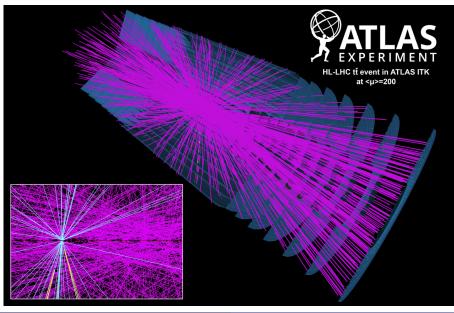
We are not done yet...



There is a lot of data incoming... pessimistically 3 ab⁻¹

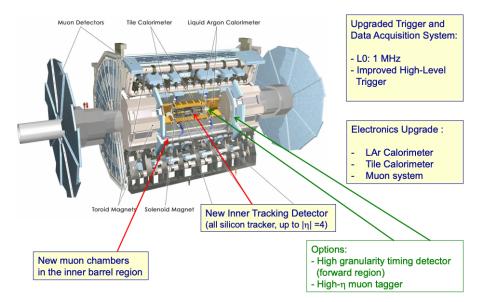
Alex Martyniuk Recent results from the LHC

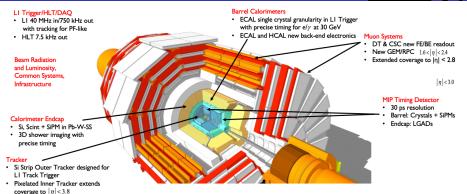
We are not done yet...



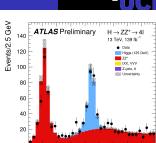
There is a lot of data incoming... or **optimistically** $4++ab^{-1}$

That data will be at $<\mu>=$ 200

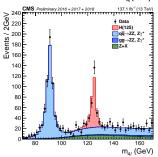



Alex Martyniuk Rec

ATLAS Phase-2 upgrades



CMS Phase-2 upgrades

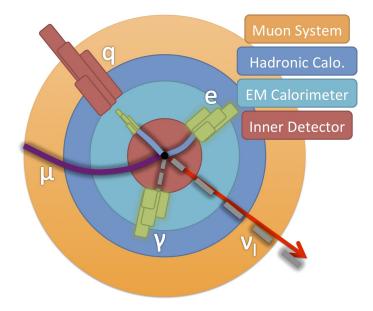


- Both of the upgrade programs are major undertakings
- Equivalent to (re-)building a good fraction of the detectors in each case, but while the collaboration is still running the existing system and producing physics results
- Very challenging!

- ATLAS & CMS are **ploughing** through their $\approx 140 {\rm fb}^{-1}$ Run 2 datasets
- No new physics seen, but exciting results none the less
 - **Precision** differential Higgs cross section measurements, **progress** in rare Higgs decays and constraints on the *VVHH* system
 - **Observation** of the *WWjj*, *WZjj*, *ZZjj* electroweak scattering processes
 - Precision measurements of SM processes, increasing our understanding and constraining backgrounds to new physics
 - **Powerful** searches continue for new physics exploring new signatures and new parameter space
- Both experiments are preparing for the challenges of Run 3 and beyond into HL-LHC
- We already have a gold mine of experimental data, soon* we will be spoiled with 10× as much data!

80 90

110 120 130


150 160

m, [GeV]

*For a generous definition of soon

The General Purpose Diagram

