





# Dosimetric Impact of Anatomical Change on VHEE and VMAT Plans: A Comparative Robustness Study

VHEE'25

Fabio D'Andrea

Supervisors: Prof. Roger Jones, Prof. Ranald MacKay, Dr. Robert Chuter, Dr Adam Aitkenhead
Fabio.dandrea@postgrad.manchester.ac.uk



# Prior Work & The Knowledge Gap

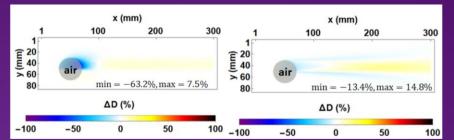


**Hypothesis:** VHEE is more robust to anatomical change

Why that's plausible?

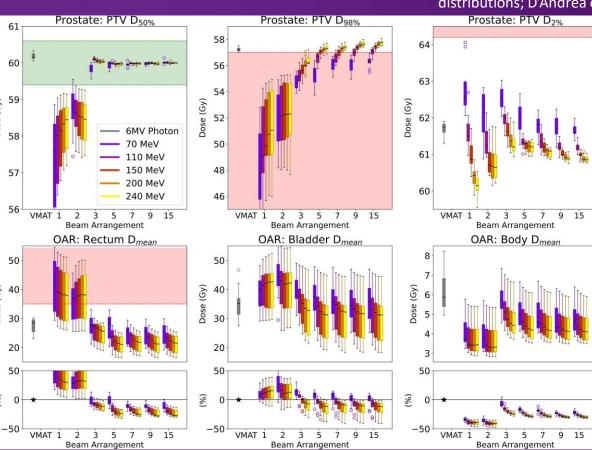
**Simulations:** MC (DesRosiers, Papiez, others) → VHEE less sensitive inhomogeneities.

**Experimental:** Lagzda et al. → VHEE profiles **stable** across inserts vs photons/protons.


**Treatment Planning:** High-quality VHEE plans; **can outperform VMAT** in plan quality & OAR sparing ( on static anatomy).

**Gap:** No direct VHEE vs VMAT under real patient changes.

**This work:** Proof of concept - Patient-based robustness comparison under clinically observed change.


[1] Lagzda et al. Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nuclear Instruments and Methods in Physics Research B (2020). https://doi.org/10.1016/j.nimb.2020.09.008

[2] D'Andrea et al. Comparative treatment planning of very high-energy electrons and photon volumetric modulated arc therapy: Optimising energy and beam parameters. Physics and Imaging in Radiation Oncology (2025).



Left: Photons vs VHEE - VHEE dose profiles remain comparatively stable across air inserts (Lagzda et al., 2020; adapted [1]).

Bottom: Prostate parameter study (n=10) - boxplots across beam numbers and energies comparing 6 MV VMAT with VHEE (420 dose distributions; D'Andrea et al., 2025 [2]).





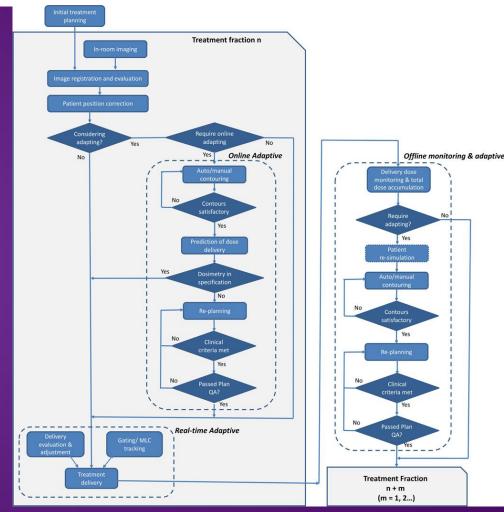
### Why does this matter?



### Plans built on a planning CT; delivered over many weeks:

### Anatomy changes (inter- & intra-fraction):

- Tumour regression (shrinkage, oedema, baseline drift)
- OAR volume change & motion (bladder filling, rectal gas, bowel peristalsis)
- Patient weight / body-contour change


### **Quick implications:**

- Risk: CTV underdose : ↓ local control
- **Risk:** OAR overdose: ↑ toxicity / limits breached

**Action:** IGRT/ART triggers → repeat imaging, plan adapt, re-fit devices

- Resource intensive
- May introduce treatment break / continue on inferior plan while replanned.

A modality with intrinsic robustness → less reliance on ART



Adaptive radiotherapy workflow showing online, offline, and real-time adaptation across fractions (imaging, registration, contouring, dose prediction/accumulation, re-planning, and plan QA). Adapted from Glide-Hurst (2021).

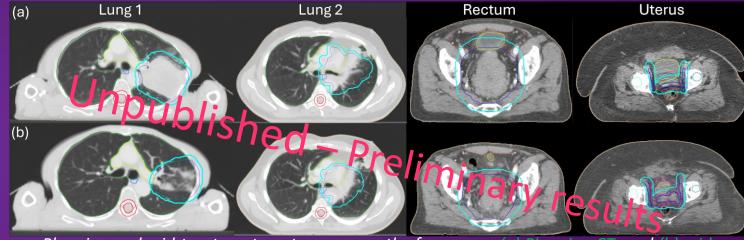


### Method: Cases & Anatomical Change



Retrospective, preliminary, proof-of-concept cohort (n=4)

→ each triggered mid-course replan


Clinical VMAT context: Approved plans; dosimetric review; replanned

#### Thorax

- Lung1 (60 Gy): marked regression; re-aeration.
- Lung2 (55 Gy): regression.

#### **Pelvis**

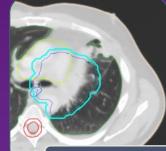
- Uterus (46 Gy): CTV stable; Bladder -67%, rectum -46%
- Rectum (45 Gy): PTV -24%, bladder -32%; Bowel stable



Planning and mid-treatment anatomy across the four cases. (a) Planning CTs and (b) midtreatment CTs for Lung1, Lung2, Rectum, and Uterus. The PTV is shown in light blue; other contours denote the re-contoured regions of interest used for evaluation



# Method: Treatment Planning






### Plans

- VMAT Clinical 6MV
- VHEE: PBS 200 MeV

Planning CT



Mid-treatment CT

Recalc (noadapt)

 Fixed-MU & spotweights on mid-CT

- Target & Key OARs
- Pass/Fail vs constraints
- $\Delta$  = mid plan

Metrics & Δ

### Compare

- VMAT should degrade
- Does VHEE degrade less?
- Mode of failure

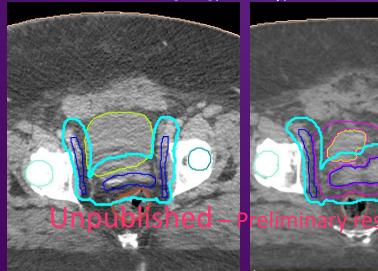
|                   | VMAT                                             | VHEE                                                                                                                   |
|-------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Delivery          | Clinical 6 MV arcs (as-delivered, approved)      | 200 MeV, PBS, static fields                                                                                            |
| Geometry          | Pelvis: full arcs Thorax: half-arc (ipsilateral) | Thorax: $n = 5$ beams,<br>equidistant over $200^{\circ}$<br>Pelvis: $n = 7$ beams,<br>equidistant around $360^{\circ}$ |
| ${\bf Spot~size}$ | _                                                | $\sigma = 4 \mathrm{mm}$ ; spacing $1.5 \sigma$ ;                                                                      |
| Validation        | Clinical TPS; dosimetrically reviewed & approved | MC (GATE/Geant4); validated (prev. work)<br>Single-spot $\gamma \geq 98\%$ (1%/1 mm)                                   |

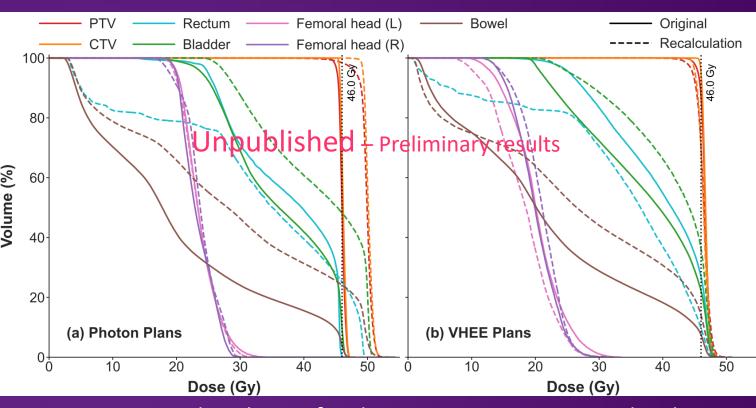
Redacted



## Results: Pelvis exemplar - Uterus




Scenario: Weight-loss, bladder –67%, rectum –46%


#### VMAT: (Plan $\rightarrow$ Mid, tolerance):

- PTV D95 [% Rx] ( $\geq$  97%): 98.4  $\rightarrow$  104.7 (pass)
- PTV D1cc [%] (≤ 110%): 102.5 → 113.3 (fail)
- Bowel V100 [cm³] (advisory): 51.3  $\rightarrow$  259 .3↑↑

#### VHEE: (Plan $\rightarrow$ Mid, tolerance):

- PTV D95 [% Rx] ( $\geq$  97%): 99.0  $\rightarrow$  97.2 (pass)
- PTV D1cc [%] (≤ 110%): 104.6 → 107.4 (pass)
- Bowel V100 [cm<sup>3</sup>](advisory): 96.5  $\rightarrow$  150.1  $\uparrow$



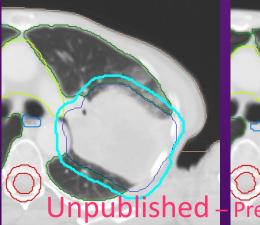


Uterus: combined DVHs for planning-CT optimisation and midtreatment recalculation.

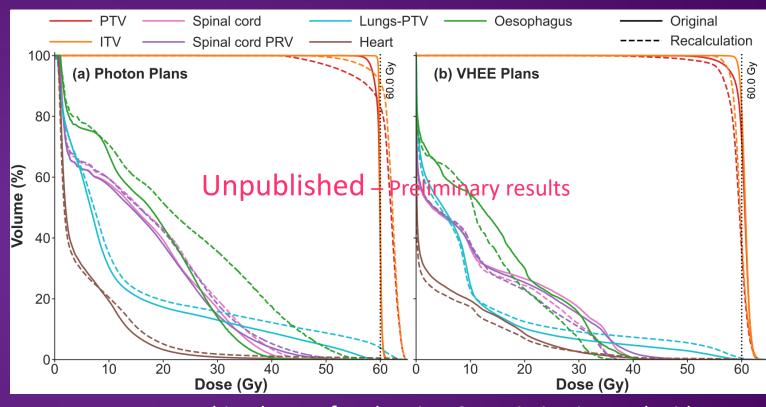


### Results: Thorax exemplar – Lung 1




Scenario: ≈34% tumour regression + lung re-aeration;

### VMAT (Plan $\rightarrow$ Mid, tolerance):


- PTV D95 [% Rx] ( $\geq$  90%): 97.5  $\rightarrow$  88.4 (fail)
- PTV D1cc [%] (≤ 107%): 102.20 → 107.7 (fail)
- Cord PRV Dmax<sup>1</sup>cc [Gy] ( $\leq 48$ ): 44.5  $\rightarrow$  49.4 (fail)
- Oesophagus Dmean [Gy] (advisory): 16.9 → 22.2
- Lung V20 [%] (≤ 35): 17.3  $\rightarrow$  19.5 (pass)

### VHEE (Plan $\rightarrow$ Mid, tolerance):

- PTV D95 [% Rx] ( $\geq$  90%): 96.3  $\rightarrow$  93.1 (pass)
- PTV D1cc [%] ( $\leq$  107%): 105.4 $\rightarrow$  105.2 (pass)
- Cord PRV Dmax<sup>1</sup>cc [Gy] ( $\leq 48$ ): 44.4  $\rightarrow 36.2$  (pass)
- Oesophagus Dmean [Gy] (advisory): 13.3 → 11.6
- Lung V20 [%] ( $\leq$  35): 10.2  $\rightarrow$  12.5 (pass)







Uterus: combined DVHs for planning-CT optimisation and midtreatment recalculation.



# Clinical takeaways & next steps



Overall: In this small stress test, results suggest VHEE was more robust than VMAT.

#### What could this mean?

- Fewer unscheduled replans and clinical interventions
- Potential for tighter PTV margins (site-selective)
- Higher delivery confidence? (FLASH etc.)

#### Limitations:

- Retrospective, small cohort (n=4); proof-of-concept.
- Comparator VMAT plans were standard, not robustoptimised

#### Next steps:

- Larger cohorts across more sites
- Benchmarks vs robust-optimised VMAT and protons (both transmission & SOBP?)

| Case            | VMAT outcome                                                                                                                                                                                                         | VHEE outcome                                                                                                                               |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Pelvis — Uterus | ! Breach:<br>PTV $D_{1cc} = 113.3\%$<br>( $\leq 110\%$ );<br>$V_{100}^{\mathrm{bowel}}: 51 \rightarrow 259 \mathrm{~cm}^3$                                                                                           | ✓ Met:<br>$D_{95}: 99.0 \rightarrow 97.2\%$<br>(≥ 97%); $D_{1cc} = 107.4\%$ ;<br>$V_{100}^{\text{bowel}}: 97 \rightarrow 150 \text{ cm}^3$ |
| Pelvis — Rectum | ✓ Met: coverage OK;<br>large OAR drift $(V_{100}^{\text{bowel}}:$<br>$30.6 \rightarrow 280, \ V_{100}^{\text{bladder}}:$<br>$6 \rightarrow 42 \text{ cm}^3)$                                                         | $126, V_{100}^{\mathrm{bladder}} : 29 \rightarrow 21 \text{ cm}^3$                                                                         |
| Thorax — Lung 1 | blished – Preliming Preach: PTV $D_{95}: 97.5 \rightarrow 88.4\%$ $(\geq 90\%);$ $\operatorname{cord} PRV D_{1cc}^{\max}: 44.5 \rightarrow$ $49.4 \text{ Gy } (\leq 48); \text{ hotspot}$ $= 107.7\% \ (\leq 107\%)$ | $D_{95}: 96.3 \rightarrow 93.1\%$<br>( $\geq 90\%$ );<br>cord PRV $D_{1cc}^{max}: 44.4 \rightarrow$                                        |
| Thorax — Lung 2 | ! Breach:<br>$D_{95}: 98.9 \rightarrow 92.3\%$<br>( $\geq 95\%$ ); hotspot<br>= 110.2% ( $\leq 107\%$ )                                                                                                              | ! Minor: hotspot<br>= $110.0\%$ ( $\leq 107\%$ );<br>coverage preserved<br>$99.4 \rightarrow 99.6\%$                                       |







Thanks for listening!

Questions?

Fabio D'Andrea – *PhD Candidate*:

Fabio.dandrea@postgrad.manchester.ac.uk

Medical Physicist:

fabio.dandrea@nhs.ne







### References:

[1] Lagzda et al. Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nuclear Instruments and Methods in Physics Research B (2020). <a href="https://doi.org/10.1016/j.nimb.2020.09.008">https://doi.org/10.1016/j.nimb.2020.09.008</a>

[2] D'Andrea et al. Comparative treatment planning of very high-energy electrons and photon volumetric modulated arc therapy: Optimising energy and beam parameters. Physics and Imaging in Radiation Oncology (2025). https://doi.org/10.1016/j.phro.2025.100732

[3] Glide-Hurst et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. International Journal of Radiation Oncology • Biology • Physics (2021). https://doi.org/10.1016/j.ijrobp.2020.10.021