A Bayesian Approach to DUNE's Sensitivity Studies

Liban Warsame, for the DUNE Collaboration liban.warsame@stfc.ac.uk

RAL PPD Seminar Series 23rd April 2025

Science and Technology Facilities Council

1 23.04.25

Brief overview of neutrino oscillations

• Introduction to DUNE

Bayesian DUNE Sensitivities

Neutrino Oscillations in a v-tshell

Neutrinos Sources

Neutrinos Sources

• Neutrinos are **produced** in particular weak (flavour) eigenstates: v_e , v_{μ} , v_{τ}

- Neutrinos are **produced** in particular **weak** (flavour) eigenstates: v_e , v_μ , v_τ
- These are linear combinations of mass eigenstates (v_1 , v_2 , v_3)
 - Flavour eigenstates are related to mass eigenstates through a unitary mixing matrix: PMNS matrix

 μ^+ Weak state

 $\begin{array}{cccc} U_{e1}^{*} & U_{e2}^{*} & U_{e3}^{*} \\ U_{\mu 1}^{*} & U_{\mu 2}^{*} & U_{\mu 3}^{*} \\ U_{-1}^{*} & U_{-2}^{*} & U_{-2}^{*} \end{array} \right)$ ν_2

PMNS = Pontecorvo-Maki-Nakagawa-Sakata

- Neutrinos are **produced** in particular **weak** (flavour) eigenstates: v_e , v_{μ} , v_{τ}
- These are linear combinations of mass eigenstates (v_1 , v_2 , v_3)
 - Flavour eigenstates are related to mass eigenstates through a unitary mixing matrix: PMNS matrix
- Neutrinos propagate in their mass eigenstates → loss of unique flavour identity

PMNS = Pontecorvo-Maki-Nakagawa-Sakata

- Neutrinos are **produced** in particular **weak** (flavour) eigenstates: v_e , v_{μ} , v_{τ}
- These are linear combinations of mass eigenstates (v_1 , v_2 , v_3)
 - Flavour eigenstates are related to mass eigenstates through a unitary mixing matrix: PMNS matrix
- Neutrinos propagate in their mass eigenstates → loss of unique flavour identity
- When the neutrino interacts → collapses back to weak state → probability of a given flavour depends on mass state mixture

PMNS = Pontecorvo-Maki-Nakagawa-Sakata

- Neutrino oscillations depend on:
 - Neutrino energy

- Neutrino oscillations depend on:
 - Neutrino energy
 - Distance propagated

- Neutrino oscillations depend on:
 - Neutrino energy
 - Distance propagated
 - Difference in masses of v_1, v_2, v_3

- Currently we don't know the hierarchy • i.e. $\Delta m_{32}^2 < 0$ or $\Delta m_{32}^2 > 0$
- In a vacuum there is no sensitivity to the sign → we use matter effects!

- Neutrino oscillations depend on:
 - Neutrino energy
 - Distance propagated
 - Difference in masses of v_1 , v_2 , v_3
 - PMNS mixing parameters

• Three mixing angles: θ_{12} , θ_{13} , θ_{23}

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospheric/} \\ \text{Accelerator} & \text{Solar} \\ \end{array}$$

Liban Warsame | RAL PPD Seminar Series

- Neutrino oscillations depend on:
 - **Neutrino energy** Ο
 - **Distance propagated** Ο
 - Difference in masses of v_1 , v_2 , v_3 Ο

Atmospheric/ Accelerator

PMNS mixing parameters Ο

- Three mixing angles: θ_{12} , θ_{13} , θ_{23}
- **One** CP-Violating phase: **b**

14

(F. Capozzi et al., Phys. Rev. D 104, 8, 083031)

- $\cdot \quad \sin^2 \theta_{23} = 0.455 \pm 0.018$
- $sin^2\,\theta_{13}$ = 0.0223 \pm 0.0007
- $\sin^2 \theta_{12} = 0.303 \pm 0.13$
- $|\Delta m_{32}^2| = (2.45 \pm 0.03) \times 10^{-3} \text{ eV}^2$
- $\Delta m_{21}^2 = (7.36 \pm 0.16) \times 10^{-5} \text{ eV}^2$

(F. Capozzi et al., Phys. Rev. D 104, 8, 083031)

- $\sin^2 \theta_{23} = 0.455 \pm 0.018$
- $sin^2 \theta_{13} = 0.0223 \pm 0.0007$
- $\sin^2 \theta_{12} = 0.303 \pm 0.13$
- $|\Delta m_{32}^2| = (2.45 \pm 0.03) \times 10^{-3} \text{ eV}^2$
- $\Delta m_{21}^2 = (7.36 \pm 0.16) \times 10^{-5} \text{ eV}^2$

What don't we know?

- Do neutrinos violate CP?
 - \circ **\delta_{CP}** = 1.24 ± 0.18 π rads
- Mass hierarchy?
- $\theta_{23} > 45^{\circ}?$ (Octant)
- New Physics
 - PMNS Unitarity / sterile neutrinos?
 - Non standard interactions
 - And more ...

What don't we know?

- Do neutrinos violate CP?
 - \circ **\delta_{CP}** = 1.24 ± 0.18 π rads
- Mass hierarchy?
- $\theta_{23} > 45^{\circ}?$ (Octant)
- New Physics
 - PMNS Unitarity / sterile neutrinos?
 - Non standard interactions
 - And more ...

What don't we know?

- Do neutrinos violate CP?
 - \circ **\delta_{CP}** = 1.24 ± 0.18 π rads
- Mass hierarchy?
- $\theta_{23} > 45^{\circ}?$ (Octant)
- New Physics
 - PMNS Unitarity / sterile neutrinos?
 - Non standard interactions
 - And more ...

* Insert new precision long-baseline experiment here*

The Deep Underground Neutrino Experiment

DUNE Collaboration

The DUNE experiment is a large international collaboration with > 1400 collaborators from > 200 institutions in 35 countries

DUNE collaboration meeting January 2023

Liban Warsame | RAL PPD Seminar Series

Deep Underground Neutrino Experiment

- DUNE will make a beam of predominantly v_µ or v_µ
 at Fermilab
- Beam passes through near detector 574 m from target
- Beam passes through far detector 1300 km from target at Sanford Underground Research Facility (SURF) 1500m underground

PARTICLE DETECTOR

800 miles ____ 300 kilometers)

Facilities Council

Sanford Underground Research Facility

PARTICLE DETECTOR

Neutrino beam

- LBNF beamline will produce world-leading power
 - Phase 1: 1.2 MW
 - Phase 2: Upgrade to \rightarrow **2 MW**
- On-axis beam —> broad range of energies
 - Covers 1st & 2nd oscillation maxima

DUNE (1.2 MW)

MINERvA

BNB (SBND)

Flux at ND

8

E_v (GeV)

NOvA

6

1st max.

2

min

 $v_{\mu}/cm^2/GeV/year (imes 10^{12})$

Liban Warsame | RAL PPD Seminar Series

Far detector (FD)

- Liquid argon provides precise reconstruction of lepton and hadronic energy over a broad energy range
- Will consist of 4 modules:
 - First module will be a vertical drift (VD) Ο LArTPC
 - Second module will be horizontal drift Ο (HD)
- VD is the baseline design for Module 3 & 4

Near detector (ND)

• ND-LAr:

- LAr target \rightarrow constrain **y** Ar interactions
- $\circ \quad \mbox{High event rates} \rightarrow \mbox{Native 3D readout + optical modularity}$

• TMS:

- Muon momentum & sign selection
- $\circ \quad \text{Phase II} \to \textbf{GArTPC}$
- Lower threshold \rightarrow better tracking of low energy particles \rightarrow deeply probe **v** - Ar interactions

• SAND:

- Beam Monitoring
- $\circ \quad \mbox{Multiple targets} \rightarrow \mbox{exclusive} \\ neutrino-nucleus measurements \\ \mbox{measurements} \\ \mbox$

Near detector (ND)

- DUNE-PRISM:
 - Use off-axis effect to sample multiple fluxes using the same detectors
 - Probe the smearing between observed and true energy

Precision Reaction-Independent Spectrum Measurement

Inferring Oscillation Parameters

How do long-baseline analyses work?

 $N(\text{Observables}) = \int \frac{\text{Flux}(E_{\nu}, \text{time}) \times \text{Interaction prob}(E_{\nu}, \text{final state})}{\times \text{Detector Efficiency}(\text{final state}) \times \text{Osc}(E_{\nu})}$

- Measure event rates \rightarrow product of **oscillations** and **flux/interaction/detector models**
- Near detector has lots of events and assumed to have no oscillations → constrain the systematics
- Far detector has oscillations → apply systematic constraints → infer oscillation parameter values

27

2020 Sensitivity Study

- Current DUNE sensitivities produced using frequentist framework
- Full results available in "Long-baseline neutrino oscillation physics potential of the DUNE experiment" – Eur. Phys. J. C 80, 978 (2020)
- Sensitivity to CP violation depends on the "true" value of δ_{CP}
 - What percentage of true values of b_{CP} can we exclude CP conservation to ... sigma

Bayesian Study

Science and Technology Facilities Council

Analysis Strategy

- **Oscillation** probabilities, flux model, interaction model and detector model \rightarrow predictions of far and near detector spectra
- Build likelihood space as a function of oscillation and systematic parameters
- **MCMC** to explore the full likelihood space
- **Bayesian inference** of oscillation parameters and systematic parameters

Systematic Implementation

High statistics in next-generation near detectors requires **sophisticated** systematic implementation

Splines

Normalisation

Shift-like

2

Systematics which change reconstructed variables

Bin A

 Generally for detector systematics

- Continuous response functions using piecewise cubic interpolation
- Binned or event-by-event
- Cross-section parameters

- Weights events up and down relative to parameter movement
- Apply to specific kinematic ranges and events
- Flux parameters
- Events that move bin keep their original weights —> re-calculate the response for that bin

Bin B

MCMC - Markov Chain Monte Carlo

- Semi-random walk around the full parameter space
- MR²T² algorithm for accepting or rejecting steps
- Builds up distribution of steps in each parameter -> proportional to target distribution
- Scales well with dimensions
- Can deal with discontinuous likelihoods (caused by event shifting)

Bayesian Inference

- MCMC let's evaluate a nearly impossible integral to get the posterior distribution
- Multi-dimensional posterior... we only want oscillation parameters
- Marginalisation integrate out nuisance parameters
- MCMC gives us this integral for free

theorem:
$$P(B \mid A) \cdot P(A) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$

Bayes'

Sensitivity Study Details

- Simultaneous fit to FD and ND samples
- NuFit 4.0 normal ordering (NO) parameter values chosen:
 - Flat priors in oscillation parameters of interest
 - Gaussian constraint used for sin²(θ₁₂) and Δm₂₁² from NuFit 4.0
- Markov chain ran for **180 million** steps
 - Sufficient for reliable 3σ intervals
- Systematic model: (288 pars) for xsec (55 pars), flux (204 pars) and detector (24 pars)
- Using nominal staged 7 year exposure (336 ktMWyr)

Samples

- 4 FD samples: **V**/**V** and **numu-like/nue-like**
 - +2 ND samples: **V/V** CC numu 0 inclusive
- sin²(2θ₂₃) sensitivity from dip in disappearance spectra
 - Δm_{32}^2 sensitivity from position of dip 0
- $sin^{2}(\theta_{23})$ and $sin^{2}(\theta_{13})$ sensitivity from appearance
 - Allows for θ_{23} octant selection Ο
- δ_{CP} from $V v \overline{V}$ + appearance rate/shape
 - Eur. Phys. J. C 80, 978 (2020)

DUNE v. Appearance

Normal Ordering

sin²20,, = 0.088

 $\sin^2 \theta_{23} = 0.580$

NC

3.5 years (staged)

(V_µ + V_µ) CC

(V. + V.) CC

 $\delta_{CP} = -\pi/2$

 $\delta_{CP} = +\pi/2$

 $-\delta_{CP} = 0$

5

Reconstructed Energy (GeV)

Beam (ve + ve) CC

$\bar{\nu}$ mode

80

60

40

20

Samples

- 4 FD samples: **V/V** and **numu-like/nue-like**
 - +2 ND samples: *v/v* CC numu inclusive
- sin²(2θ₂₃) sensitivity from dip in disappearance spectra
 - Δm_{32}^2 sensitivity from position of dip
- sin²(θ₂₃) and sin²(θ₁₃) sensitivity from appearance
 - Allows for θ_{23} octant selection
- δ_{CP} from $V v \overline{V}$ + appearance rate/shape

Eur. Phys. J. C 80, 978 (2020)

Liban Warsame | RAL PPD Seminar Series

Samples

- 4 FD samples: **V/V** and **numu-like/nue-like**
 - +2 ND samples: *v/v* CC numu inclusive
- sin²(20₂₃) sensitivity from dip in disappearance spectra
 - Δm_{32}^2 sensitivity from position of dip
- sin²(θ₂₃) and sin²(θ₁₃) sensitivity from appearance
 - Allows for θ_{23} octant selection
- δ_{CP} from **V** vs **V** + appearance rate/shape

Reconstructed Energy (GeV)

Liban Warsame | RAL PPD Seminar Series

Eur. Phys. J. C 80, 978 (2020)

Sensitivities

Science and Technology Facilities Council

- *No* posterior in IO \rightarrow strong sensitivity to the mass hierarchy
- New **proposal function** for switching hierarchy?

- Both θ_{23} octants being evaluated \rightarrow correct octant chosen
- Bayes factor of $2.76 \rightarrow$ light evidence for upper octant

• Tail towards 0 caused by δ_{CP} octant degeneracy \rightarrow mostly sensitive to $sin\delta_{CP}$

Advantages: Reweighting and Reprojection

- MCMC allows the ability to reweight the posterior distribution given a change of prior
 - I.e. flat $\sin^2(\theta_{13}) \rightarrow$ reactor constraint
 - New result/sensitivity from another experiment?
 - Does not require a new fit!
- One caveat is that there are enough MCMC steps in the region that the new posterior favours
- Also trivial to produce a posterior distribution in some new variable that is a function of the variables included in the MCMC
 - I.e. if you have a posterior for α and $\beta \rightarrow$ easy to produce any distribution of $f(\alpha, \beta)$

Reactor Constraint

- So far results shown have use a flat prior in sin²(θ₁₃)
 - Check **DUNE's** sensitivity

 Currently well-measured by multiple reactor neutrino experiments → dominated by Daya Bay (arXiv:1203.1669)

 Reweight posterior with a Gaussian prior → central value and uncertainty from NuFit 4.0

NuFit 4.0 (2018)

Reactor Constraint

- Second θ₁₃ peak completely suppressed
- Wrong θ_{23} octant also suppressed

- Flat prior in δ_{CP} results in **non-uniform prior** in other quantities e.g. $\sin \delta_{CP}$ or $\cos \delta_{CP}$
- Flat $sin\delta_{CP}$ prior of interest $\rightarrow CPV$ is a function of $sin\delta_{CP}$

- The Jarlskog invariant (J_{CP}) indicates the magnitude of CP violation
 - Value of 0 indicates **no CP violation**

$$J_{CP} = \frac{1}{8} \cos \theta_{13} \sin (2\theta_{13}) \sin (2\theta_{12}) \sin (2\theta_{23}) \sin \delta_{CP}$$

- The Jarlskog invariant (J_{CP}) indicates the magnitude of CP violation
 - Value of 0 indicates **no CP violation**
- Two features in the distribution

$$J_{CP} = \frac{1}{8} \cos \theta_{13} \sin (2\theta_{13}) \sin (2\theta_{12}) \sin (2\theta_{23}) \sin \delta_{CP}$$

- The Jarlskog invariant (J_{CP}) indicates the magnitude of CP violation
 - Value of 0 indicates no CP violation

 $J_{CP} = \frac{1}{8} \cos \theta_{13} \sin (2\theta_{13}) \sin (2\theta_{12}) \sin (2\theta_{23}) \sin \delta_{CP}$

- Two features in the distribution
- With reactor constraint:
 - $J_{CP} = 0$ excluded at 3σ
 - Removes outer bump

- The Jarlskog invariant (J_{CP}) indicates the magnitude of CP violation
 - Value of 0 indicates no CP violation
- Two features in the distribution
- With reactor constraint:
 - $J_{CP} = 0$ excluded at 3σ
 - Removes outer bump
- Flat $\sin \delta_{CP}$ prior:
 - Removes dip around peak

$$J_{CP} = \frac{1}{8} \cos \theta_{13} \sin (2\theta_{13}) \sin (2\theta_{12}) \sin (2\theta_{23}) \sin \delta_{CP}$$

Improved MCMC Sampling

$3\sigma \to 5\sigma \ Feasibility$

- Steps are correlated → ~ 10k steps to get an independent step
 - 180 million steps -> ~ 40 independent points outside the 3σ contour
 - Enough to confidently determine where the 3σ contour lies
- For the same number of independent points outside the 5σ contour requires 5000x more steps
 - ~ 800 billion steps!
 - Would currently require > 1 billion CPU hours
- This is **unfeasible!**
 - We need a more efficient method of sampling the **tail regions**

Umbrella Sampling

- Method of sampling low probability regions in a distribution:
 - Sample multiple biased likelihoods → bias increases probability in tail regions
- Combination of each biased sample requires weights
 - Undo the bias from each sample
 - Account for over/under sampled regions as a result of "overlaps"
- Several bias options → Tempered likelihood has been tested as a first attempt

Tempered Likelihood

- Flatten entire distribution rather than confining the chain to a specific low probability region
 - Low probability regions explored more frequently

$$\mathcal{L}
ightarrow \mathcal{L}^{1/T}$$

- Higher "temperature" \rightarrow more flat likelihood distribution
 - Sample at several temperatures → combine together using Umbrella Sampling weighting

56 23.04.25

Tempered Likelihood

- Effect of temperature on $\delta_{CP}^{}$ sin² $\theta_{13}^{}$ distribution:
 - Same number of steps at each temperature
- Next step: Combine these chains using umbrella weights
 - Hopefully credible intervals lie where we'd expect them too!

Summary

- DUNE will enable an exciting physics program and aims to make precise measurements of the oscillation parameters:
 - Definitively measure the **MO** regardless of other oscillation parameters
 - Sensitivity to **CPV** and θ_{23} octant

- First Bayesian analysis of DUNE has been performed
 - Complementary to existing and future frequentist sensitivities
 - Provides ability to update results based on new information
 - Does not require a new fit
 - First in-depth look at alternative quantities e.g. J_{CP}
- Exploring new sampling methods to reduce computational cost for achieving high significance measurements

Neutrinos

Standard Model of Elementary Particles

- Three generations of matter:
 - Three charged leptons
 - Three corresponding neutrino flavours

- Neutrinos...
 - Neutral
 - Massless (in SM)
 - Interact via weak force

DUNE Physics Goals

DUNE has a **rich** physics program which includes:

- **1.** Make precise measurements of the oscillation parameters θ_{23} , θ_{13} and Δm_{32}^2
- 2. Resolve the neutrino mass hierarchy, i.e. whether $m_3^2 > m_2^2$ or $m_3^2 < m_2^2$
- **3.** Determine the octant of θ_{23}
- 4. Determine whether CP is violated in neutrinos and make a measurement of δ_{CP}
- **5.** Search for τ appearance
- 6. Check the unitarity of the PMNS matrix
- 7. Search for nucleon decay
- 8. Be ready to detect low-energy neutrinos from a supernova
- 9. Search for Beyond Standard Model physics, e.g. sterile neutrinos, heavy neutral leptons etc .

NuFit 4.0 Parameters

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 4.7)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
	$\sin^2 heta_{23}$	$0.580\substack{+0.017\\-0.021}$	$0.418 \rightarrow 0.627$	$0.584\substack{+0.016\\-0.020}$	$0.423 \rightarrow 0.629$
	$\theta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$
	$\sin^2 heta_{13}$	$0.02241\substack{+0.00065\\-0.00065}$	$0.02045 \to 0.02439$	$0.02264\substack{+0.00066\\-0.00066}$	$0.02068 \rightarrow 0.02463$
	$ heta_{13}/^{\circ}$	$8.61\substack{+0.13 \\ -0.13}$	$8.22 \rightarrow 8.99$	$8.65\substack{+0.13 \\ -0.13}$	$8.27 \rightarrow 9.03$
	$\delta_{ m CP}/^{\circ}$	215_{-29}^{+40}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$

NuFIT 4.0 (2018), www.nu-fit.org, JHEP 01 (2019) 106 – arXiv:1811.05487

CPV Sensitivity

CP Violation Sensitivity

CP Violation Sensitivity

After 10 years (staged), there is significant CP violation (δ_{CP} ≠ 0, π) discovery potential across true values of δ_{CP} and for both hierarchies

Mass Ordering Sensitivity

 Obtain a definitive answer for the mass hierarchy within 7 years (staged), regardless of the values of the other oscillation parameters

