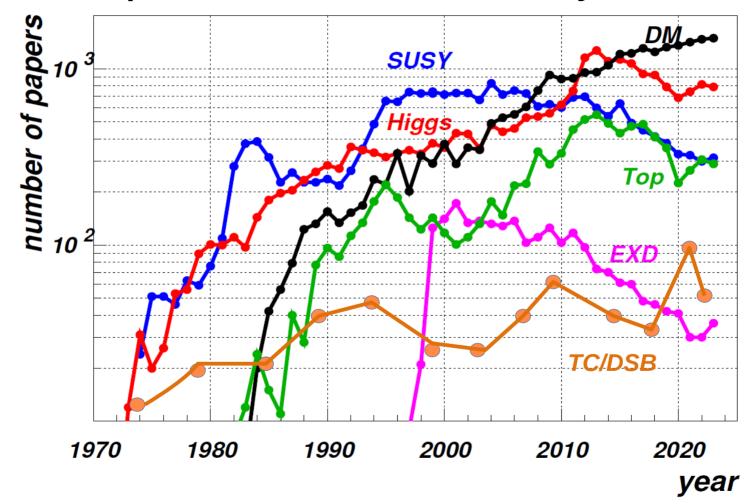
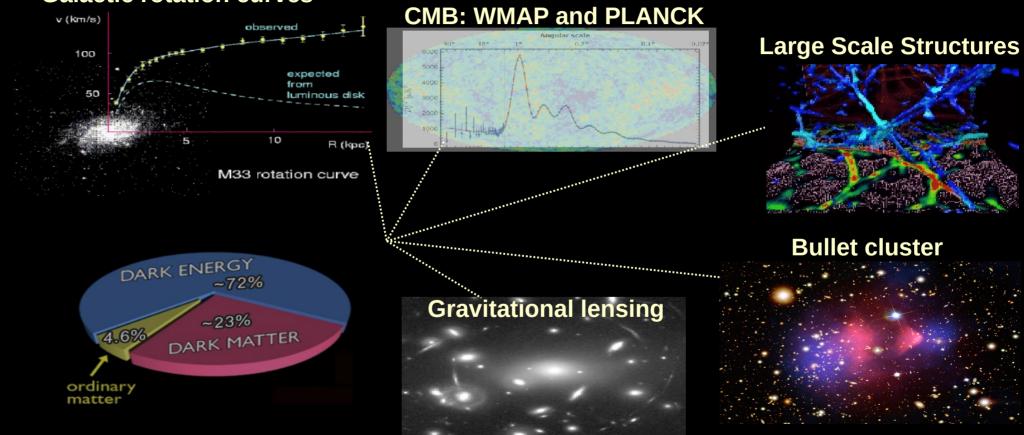
Towards decoding the nature of Dark Matter

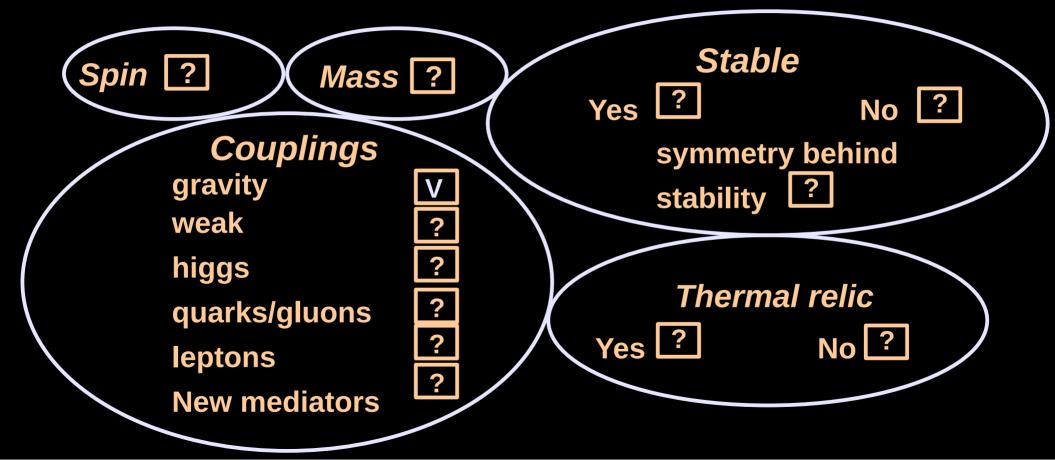
Alexander Belyaev


Southampton University & Rutherford Appleton Laboratory

2nd of April 2025, Particle Physics Seminar



Popular directions in Particle Physics



The existence of Dark Matter is confirmed by several independent observations at cosmological scale

Galactic rotation curves

DM is very appealing even though we know almost nothing about it!

How we can explore & decode the nature of Dark Matter?

We need a DM signal first!

But at the moment we can:

- * understand what kind of DM is already excluded
- * explore and systematise the DM theory space
- * prepare ourselves to discovery and decoding of DM

Collaborators & Projects

Yao, Chakraborti,AB arXiv:**25xx.xxxx**

Bertenstam, Gonçalves, Morais, Pasechnik, Thongyoi, AB arXiv: 2504.xxxxx

Panizzi, Thongyoi, AB arXiv:2504.xxxxx

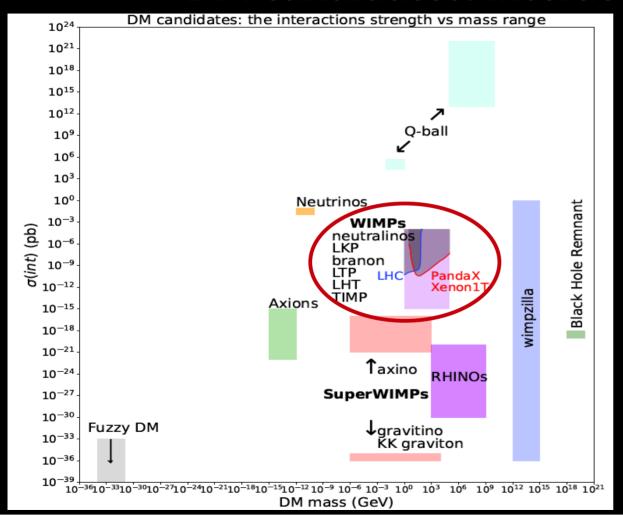
Blumenschein, Freegard, Gupta, Moretti, AB arXiv:**2204.06411**

Deandrea, Moretti, Panizzi, Ross, Thongyoi, AB arXiv: 2204.03510,2203.04681

Cacciapaglia, Locke, Pukhov, AB arXiv:2203.03660

Ginzburg, Locke, A. Freegard, Pukhov, AB arXiv:**2112.15090**

Prestel, Rojas-Abate, Zurita, AB arXiv:**2008.08591**


Cacciapaglia, McKay, Marin, Zerwekh, AB arXiv:**1808.10464**

Cacciapaglia, Ivanov, Rojas, Thomas, AB arXiv:**1612.00511**

Panizzi, Pukhov, M.Thomas, AB arXiv:**1610.07545**

Barducci, Bharucha, Porod, Sanz, AB arXiv:**1504.02472**

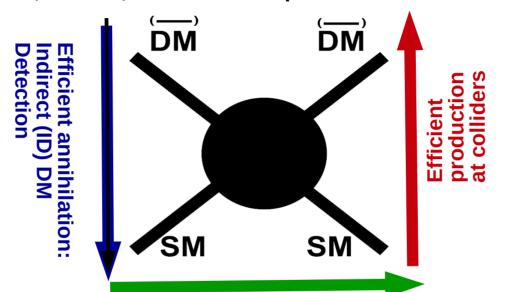
DM candidates: interaction vs mass

Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation Wimpzillas: very massive non-thermal WIMPs [Kolb,Chung,Riotto'98] **Q-balls:** topological solitons that occur in QFT [Coleman '86] EW scale WIMPs, protected by parity - LSP, LKP, LTP particles SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally) Neutrinos: usual neutrinos are too light-HDM, subdominant component only (to be consistent with large scale structures); but

heavier gauge singlet neutrinos can be CDM Axions: $\frac{\theta_{QCD}}{32\pi i^2}F^{\mu\nu}\tilde{F}^{\mu\nu}$

 θ_{QCD} is replaced by a quantum field, the potential energy allows the field to relax to near zero strength, axion as a consequence

DM Observables: the power of WIMP


Correct Relic density: efficient (co) annihilation WMAP, Planck; annihilation to photons can affect CMB

Signatures from neutralino annihilation including halo, core of the Earth and Sun

- · photons,
- Anti-protons
- · positrons,
- Neutrinos

Neutrino telescopes:

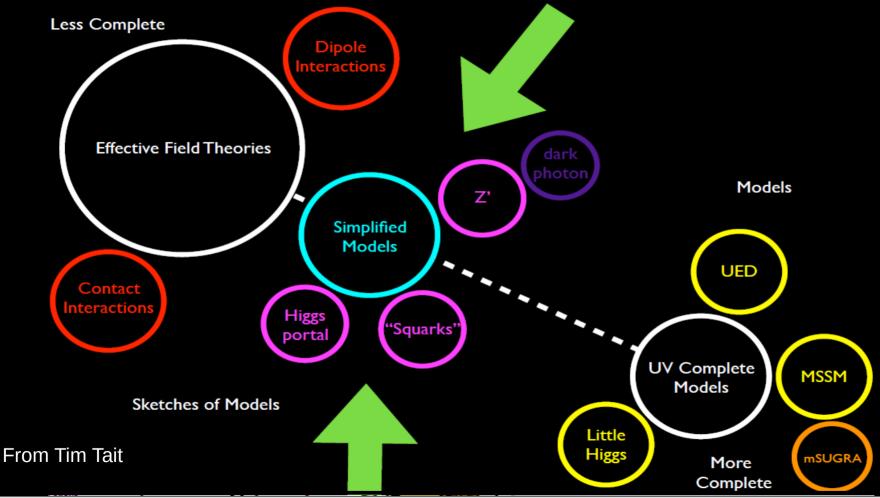
- Amanda
- Icecube
- Antares

LHC signatures

- mono-jet
- mono-photon
- mono-Z
- mono Higgs
- VBF+MET
- soft leptons+MET
 -

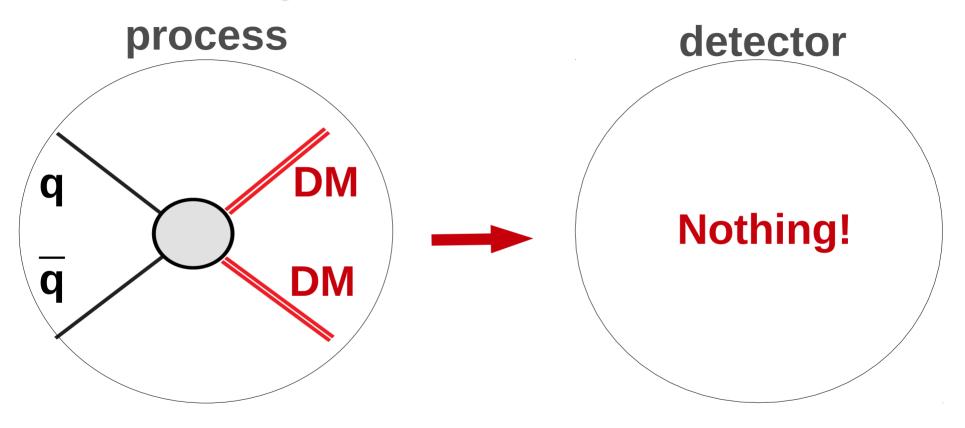
Efficient scattering off nuclei: DM Direct Detection (DD)

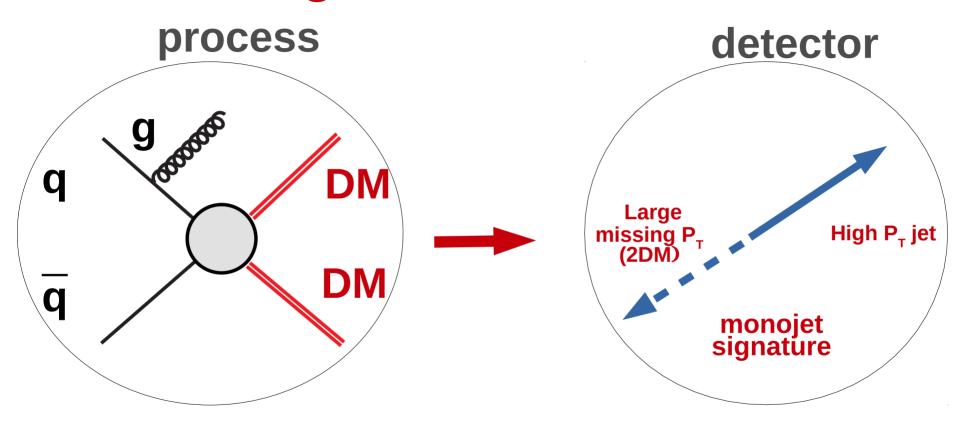
Signature from energy deposition from nuclei recoil: LUX, XENON, WARP, ...

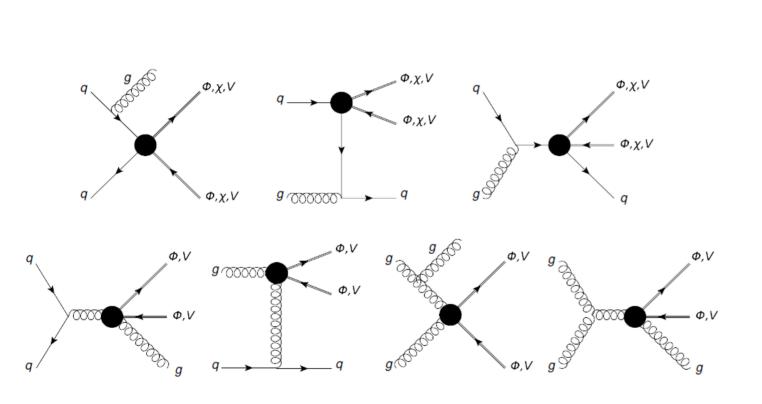

Note: there is no 100%correlation between signatures above. For example, the high rate of annihilation does not always guarantee high rate for DD!

Great complementarity:

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we can efficiently determine the nature of DM


Theory Space with Dark Matter


The LHC potential to probe DM


Hunting for DM at Colliders

Hunting for DM at Colliders

Mono-jet diagrams from EFT operators Can we test DM properties at the LHC?

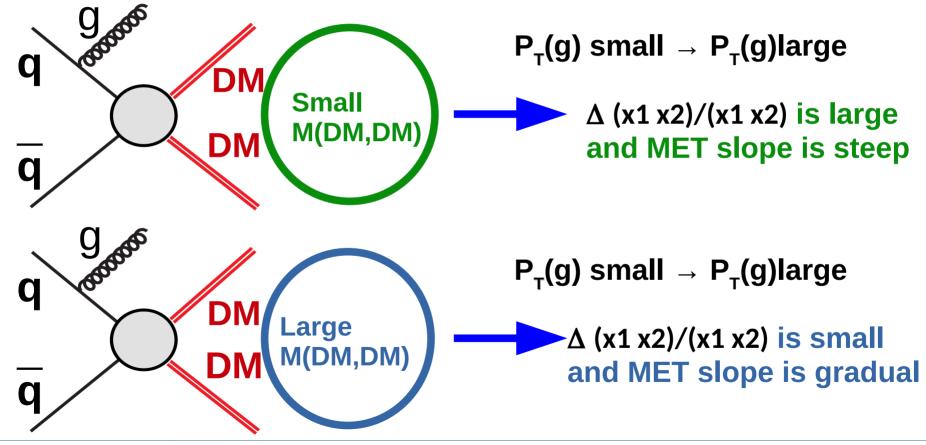
$$\frac{1}{\Lambda^{2}}\phi^{*}\phi\bar{q}q \qquad [C1]$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\bar{q}q \qquad [D1]$$

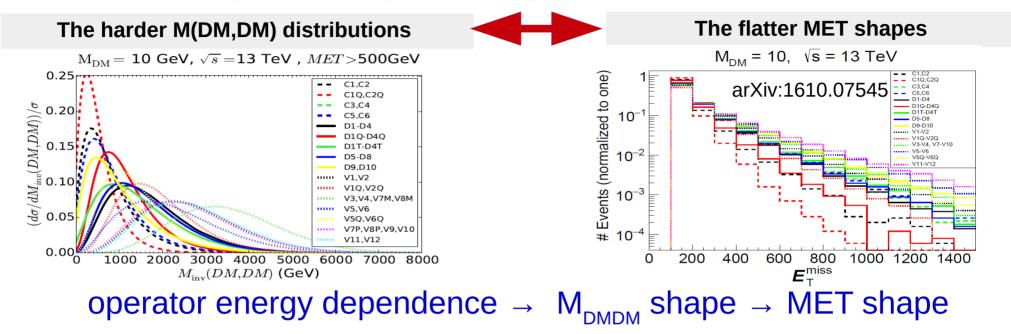
$$\frac{\tilde{m}}{\Lambda^{2}}V^{\dagger\mu}V_{\mu}\bar{q}q \qquad [V1]$$

$$\frac{1}{\Lambda^{2}}\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi\bar{q}\gamma^{\mu}q \qquad [C3]$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q \qquad [D5]$$


$$\frac{1}{\Lambda^{2}}\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q \qquad [D9]$$

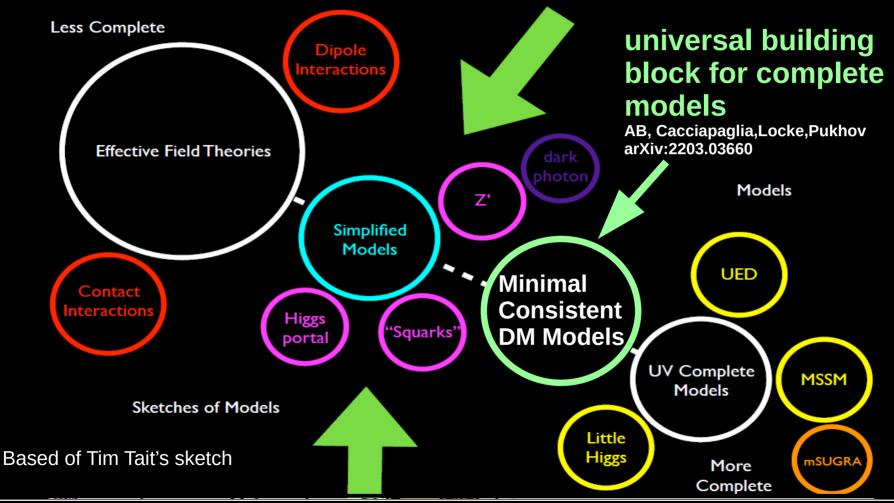
$$\frac{\tilde{m}}{\Lambda^{2}}V_{\mu}^{\dagger}V_{\nu}\bar{q}i\sigma^{\mu\nu}q \qquad [V5]$$


Alexander Belyaev

Properties of MET distributions:

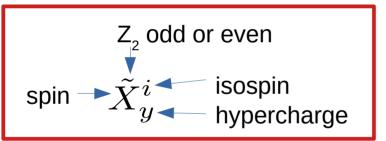
- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

Distinguishing DM operators/theories



- ⇒ projection for 300 fb⁻¹: some operators C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 can be distinguished from each other [Panizzi, Pukhov, M.Thomas, AB, arXiv:**1610.07545**]
- → Application beyond EFT: when the DM mediator is not produced on-the-mass-shell and M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}

DM classification: minimal consistent dark matter models (MCDMs)


Theory Space with Dark Matter

Minimal Consistent DM (MCDM) Models

Properties

- gauge-invariant
- renormalisable
- anomaly-free
- can also be a building block of a bigger theory (e.g. SUSY)

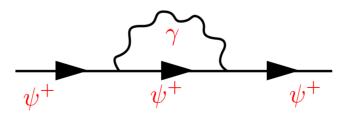
Classification

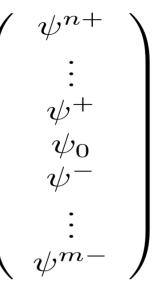
- DM is a part of EW multiplet
 - Radiative mass split
 - Disappearing track (DT) signatures
- at most one mediator multiplet

Spin of Dark Matter Spin of Mediator	0	1/2	1							
spin 0 even mediator	$\widetilde{S}_Y^I S_{Y'}^{I'}$,	$\widetilde{F}_Y^I S_0^{I'}$	$\widetilde{V}_{Y}^{I}S_{Y'}^{I'}$							
spin 0 odd mediator	$\widetilde{S}_{Y}^{I}\widetilde{S}_{Y}^{I'}$	$\widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'}$ $\widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'c}$ MSSM!	$\widetilde{V}_Y^I\widetilde{S}_{Y'}^{I'}$							
spin 1/2 even mediator										
spin 1/2 odd mediator	$\widetilde{S}_{Y}^{I}\widetilde{F}_{Y'}^{I'}$ $\widetilde{S}_{Y}^{I}\widetilde{F}_{Y'}^{I'c}$	$\widetilde{F}_Y^I \widetilde{F}_{Y\pm 1/2}^{I\pm 1/2}$	$\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'} \widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'c}$							
spin 1 even mediator	$\widetilde{S}_Y^I V_0^{I'}$	$\widetilde{F}_Y^I V_0^{I'}$	$\widetilde{V}_Y^I V_{Y'}^{I'}$							
spin 1 odd mediator	$\widetilde{S}_Y^I \widetilde{V}_{Y'}^{I'}$	$\widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'c}$	$\widetilde{V}_Y^I\widetilde{V}_{Y'}^{I'}$							

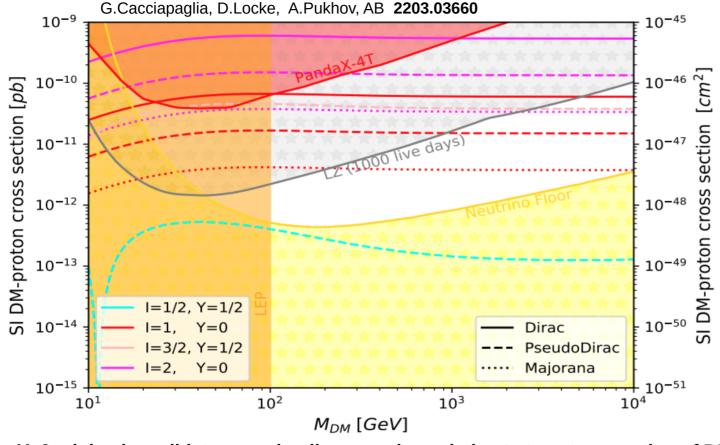
an important step for consistent exploration of DM theory space

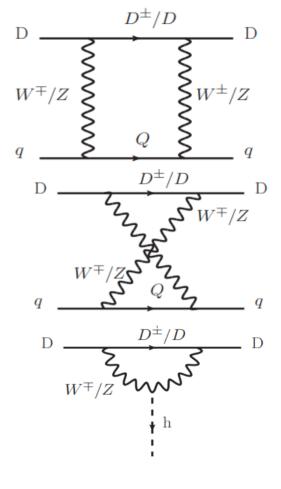
G.Cacciapaglia, D.Locke, A.Pukhov, AB 2203.03660


DM multiplet only


$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m_D\bar{\psi}\psi$$

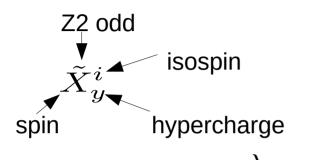
Cirelli, Fornengo, Strumia hep-ph/0512090 (Minimal Dark Matter)


$$\wp =$$


- {0,0} no gauge-interactions invisible to direct detection and collider but over(under) abundant if thermal (non-thermal)
- $\mathbf{Y} \neq 0$ (Dirac DM) Is excluded by direct detection or requires additional sector which splits the mass of ψ
- Radiative mass split very important for the phenomenology

The role of loops in DM DD

Y=0 minimal candidates may be discovered or ruled out at next generation of DD experiments. But there is a cancellation in amplitudes and some models could be accessible only at colliders! [Initially noted by Hisano, Ishiwata, Nagata arXiv:1004.4090]



$$\tilde{F}_0^0 S_0^0 (CP - odd)$$

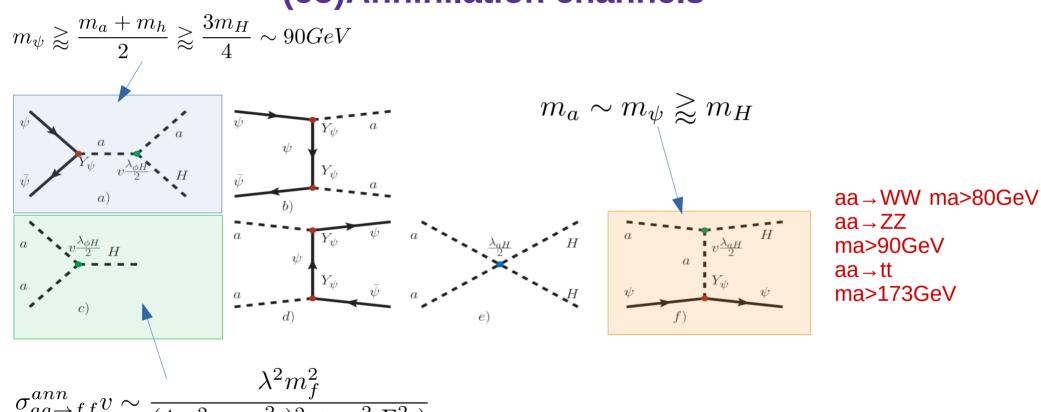
Minimal fermion DM model with pseudo-scalar mediator

new model, has not been explored previously

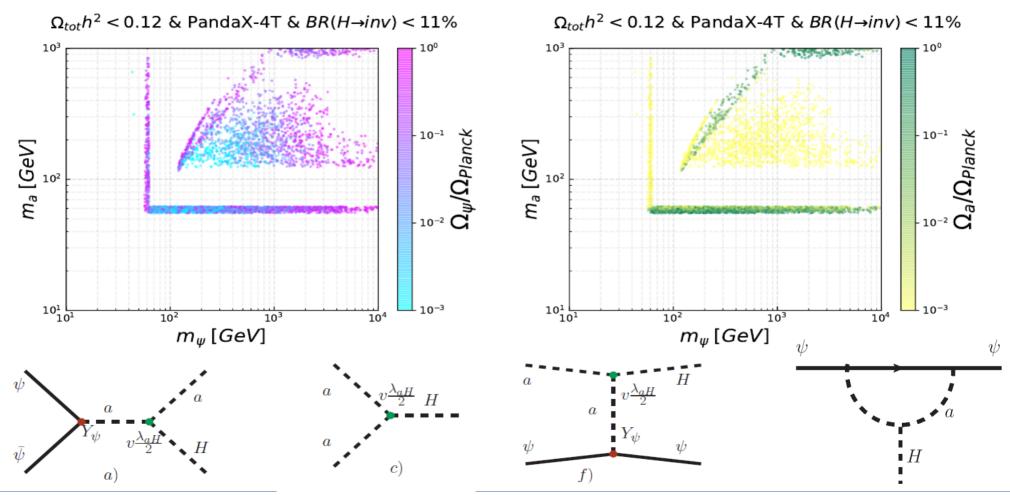
two-component DM model (pseudoscalar is accidentally stable)

spin hypercharge
$$\mathcal{L} \supset iY_{\psi} a \bar{\psi} \gamma^5 \psi - \frac{\lambda_{aH}}{4} |a|^2 \phi_H^{\dagger} \phi_H$$
 Fermion DM pseudoscalar SM Higgs doublet
$$\text{Singlet}$$
 • a does not acquire VEV \rightarrow no linear coupling to Higgs • $m_a < 2m_{\psi} \rightarrow \text{"secluded DM"}$

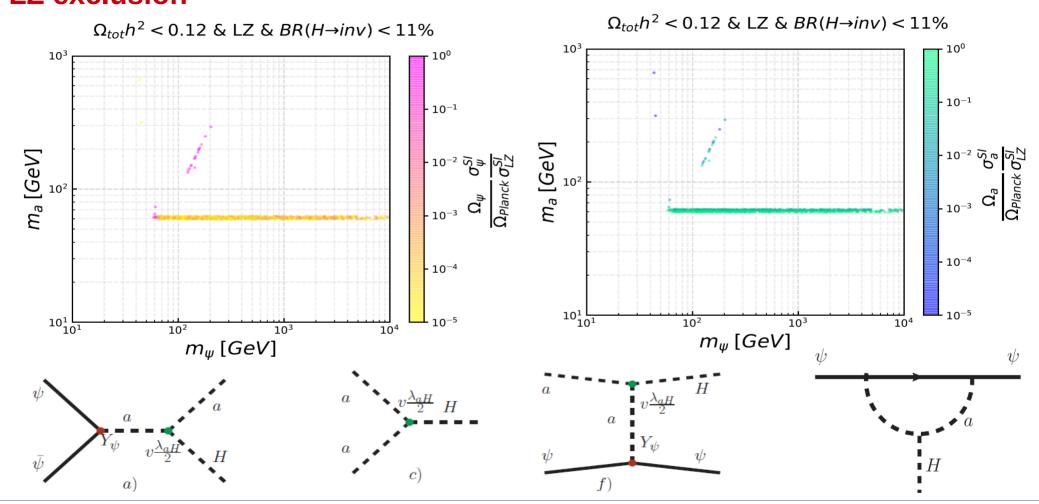
- Model implemented in LanHEP, and numerical scan
- Model implemented in LanHEP, and numerical scan performed using micrOMEGAs.


G.Cacciapaglia, D.Locke, A.Pukhov, AB arXiv:**2203.03660** B.Diaz, P. Escalona, S.Norrero, A. Zerwekh arXiv:**2105.04255**

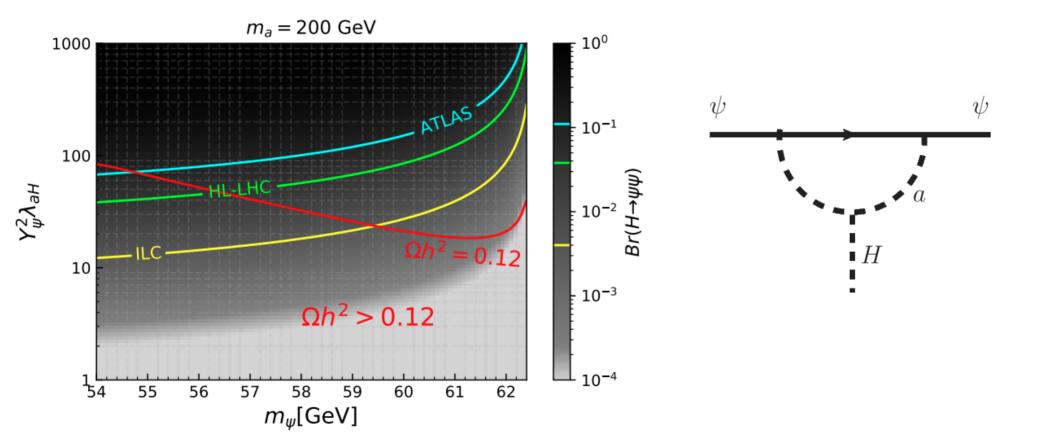
	Spin of Dark Matter Spin of Mediator	0	1/2	1	
	spin 0 even mediator spin 0 odd mediator	$\widetilde{S}_Y^I S_{Y}^{I'},$ $\widetilde{S}_Y^I \widetilde{S}_{Y}^{I'},$	$\widetilde{F}_{Y}^{I}S_{0}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{S}_{V'}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{S}_{V'}^{I'c}$	$\widetilde{V}_Y^I S_Y^{I'},$ $\widetilde{V}_Y^I \widetilde{S}_Y^{I'},$	
6	spin $1/2$ even mediator spin $1/2$ odd mediator	$\widetilde{S}_Y^I \widetilde{F}_{Y'}^{I'}$ $\widetilde{S}_Y^I \widetilde{F}_{Y'}^{I'c}$	$\widetilde{F}_Y^I \widetilde{F}_{Y\pm 1/2}^{I\pm 1/2}$	$\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'}$ $\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'c}$	
	spin 1 even mediator spin 1 odd mediator	$\widetilde{S}_Y^I V_0^{I'}$ $\widetilde{S}_Y^I \widetilde{V}_{Y'}^{I'}$	$\begin{split} \widetilde{F}_Y^I V_0^{I'} \\ \widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'} & \widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'c} \end{split}$	$\widetilde{V}_{Y}^{I}V_{Y'}^{I'}$ $\widetilde{V}_{Y}^{I}\widetilde{V}_{Y'}^{I'}$	


4 relevant parameters:

Minimal fermion DM model with pseudo-scalar mediator rich phenomenology: relic density, DD, colliders


(co)Annihilation channels

Minimal fermion DM model with pseudo-scalar mediator PandaX-4T exclusion



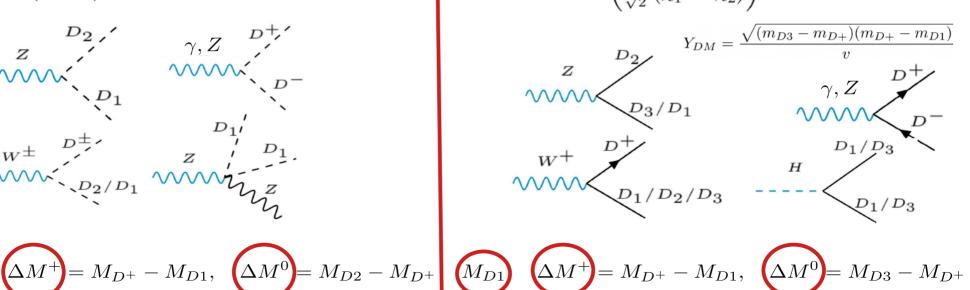
Minimal fermion DM model with pseudo-scalar mediator LZ exclusion

Alexander Belyaev

Minimal fermion DM model with pseudo-scalar mediator relic density, DD, invisible H decay @colliders

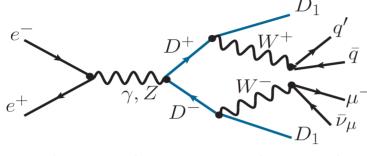
Decoding Dark Matter at future e⁺e⁻ colliders

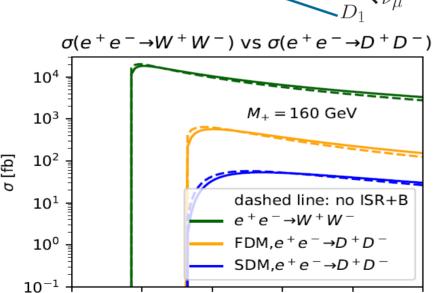
Inert 2 Higgs Doublet model $\tilde{S}_{1/2}^{1/2}$ (i2HDM)


$$\mathcal{L}_{\phi} = |D_{\mu}\phi_1|^2 + |D_{\mu}\phi_2|^2 - V(\phi_1, \phi_2)$$

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}, \quad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^+ \\ D_1 + iD_2 \end{pmatrix}$$

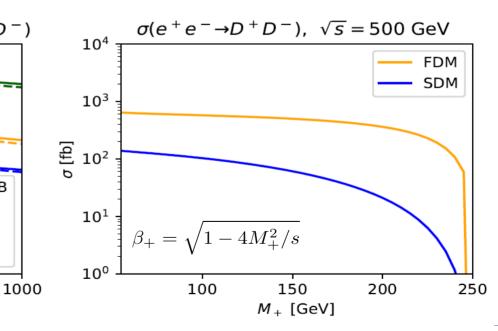
$$W^{\pm}$$
 D^{\pm}
 Z
 D_{1}
 D_{1}
 D_{2}
 D_{1}
 D_{2}


Minimal fermion DM model $\widetilde{F}_{1/2}^{1/2}\widetilde{M}_{0}^{0}$ (MFDM)


$$\mathcal{L}_{FDM} = \mathcal{L}_{SM} + \bar{\psi}(i\rlap{/}D - m_{\psi})\psi \\ + \frac{1}{2}\bar{\chi_{s}^{0}}(i\rlap{/}\partial - m_{s})\chi_{s}^{0} - (Y_{\scriptscriptstyle DM}(\bar{\psi}\Phi\chi_{s}^{0}) + h.c.) \\ \psi = \begin{pmatrix} \chi^{+} \\ \frac{1}{\sqrt{2}}(\chi_{1}^{0} + i\chi_{2}^{0}) \end{pmatrix} \qquad \text{Majorana singlet } \chi_{s}^{0}$$

The process under study

$$e^+e^- \to D^+D^- \to D_1D_1W^+W^- \to D_1D_1q'\bar{q}\mu\bar{\nu}$$

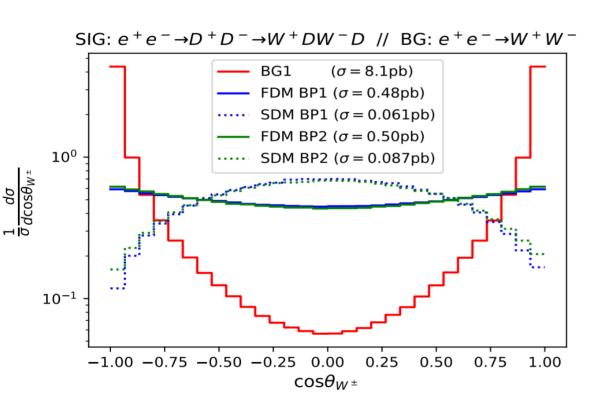

400

600

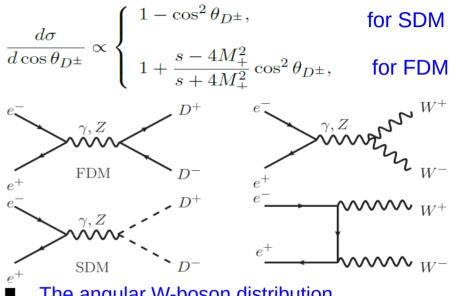
√*s* [GeV]

■ Di-jet + muon + MET signature

$$\sigma_{\gamma\gamma} = \begin{cases} \sigma_0 \beta_+ \left[1 + \frac{2M_+^2}{s} \right] & \text{if } s_D = \frac{1}{2} \\ \sigma_0 \frac{\beta_+^3}{4} & \text{if } s_D = 0 \end{cases}$$


200

800


0

The role of the ILC in decoding the spin of DM

 $e^+e^- \rightarrow D^+ D^- \rightarrow DM \ DM \ W^+ W^- \rightarrow DM \ DM \ jj \ \mu \ \nu$

AB, Ginzburg, Locke, Freegard, Pukhov arXiv:2112.15090

- The angular W-boson distribution (either for real or virtual W) is found to be very important discriminator between DM spin as well as the main BG
- The shape of angular W-boson distribution is the same for different benchmarks for DM of the same spin

Beyond the weak interactions: Vector Dark Matter (VDM) from dark SU(2)

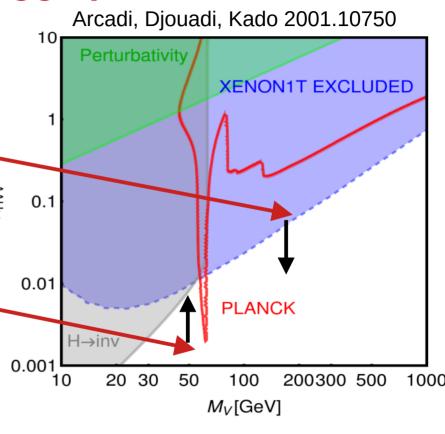
Deandrea, Moretti, Panizzi, Ross, Thongyoi, AB

arXiv:**2204.03510,2203.04681**

The abelian/non-abelian Vector DM was realised via Higgs portal

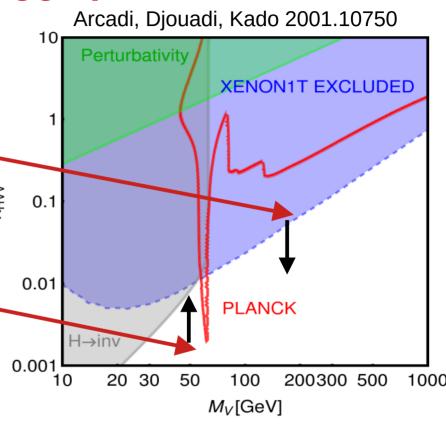
- $U(1)_D$ Group
- $V_D^\mu \leftrightarrow -V_D^\mu$ Explicit Z_2 symmetry plus a Higgs portal to provide the stability and the mass for VDM and connect it to the SM

$$\mathcal{L} \supset -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi) + \lambda_P |H|^2 |\Phi|^2$$


with
$$D_\mu\Phi\equiv\partial_\mu\Phi-gQ_\Phi V_\mu\Phi$$
 , after SSB $_\to$
$$\Phi=\frac{1}{\sqrt{2}}\left(v_\Phi+\varphi(x)\right)$$
 so one has $m_V^2=g^2Q_\Phi^2~v_\phi^2$

• Quite a few papers:

Lebedev, Lee, Mambrini 1111.4482, Baek, Ko, Park, Senaha 1212.2131 DiFranzo, Fox, Tait 1512.06853 Farzan, Akbarieh 1207.4272 Duch, Grzadkowski, McGarrie 1506.08805


Vector DM with the Higgs portal

- Since VDM 'talks' to SM via Higgs,
 V_DV_DH coupling is limited from above by DM direct detection and H → DM DM Br
- Since DM Relic density should be equal or below the PLANCK relic density limit $\,\Omega h^2 \simeq 0.11\,$ V_DV_DH coupling is **limited from below**

Vector DM with the Higgs portal

- Since VDM 'talks' to SM via Higgs, V_DV_DH coupling is **limited from above** by DM direct detection and $H \rightarrow DM$ DM Br
- Since DM Relic density should be equal or below the PLANCK relic density limit $\,\Omega h^2 \simeq 0.11\,$ V_DV_DH coupling is **limited from below**
- The Higgs portal VDM parameter space is very limited by interplay of collider, DD and DM relic density

Vector DM and Vector-Like Fermionic Portal

- Higgs portal: the parameter space for minimal scenarios is almost excluded
- Vector Like(VL) fermionic portal for Vector Dark Matter
 - lacksquare SU(2)_D gauge triplet (new dark gauge) V_{μ}^{D}
 - Complex scalar doublet charged under SU(2)_D, Φ_D to break gauge group
 - Vector-Like fermion doublet of SU(2)_D, Ψ to "talk" to SM

Vector DM and Vector-Like Fermionic Portal

- Higgs portal: the parameter space for minimal scenarios is almost excluded
- Vector Like(VL) fermionic portal for Vector Dark Matter
 - lacktriangle SU(2)_D gauge triplet (new dark gauge) V_{μ}^{D}
 - Complex scalar doublet charged under SU(2)_D, Φ_D to break gauge group
 - Vector-Like fermion doublet of SU(2)_D, Ψ to "talk" to SM
 - we assign the "dark charge" to the components of the doublets, e.g. $Q_D=T_D^3+Y_D$ and require its conservation
 - lacktriangledown we have $SU(2)_D imes U(1)_{
 m glob} o U(1)_{
 m glob}^d$ pattern of dark sector breaking
 - lacksquare \mathbb{Z}_2 subgroup can be defined as $:(-1)^{Q_D}$
 - The portal is driven by Yukawa interactions: $y'\bar{\Psi}_L\Phi_Df_R^{\rm SM}+y''\bar{\Psi}_L\Phi_D^cf_R^{\rm SM}+h.c$
 - \blacksquare Choosing e.g. $Y_D=+1/2$ for Φ_D and Ψ , make the second term above ($y^{\prime\prime}$) to disappear under the requirement of ${\it Q}_{\rm D}$ conservation: DM is established!

Vector DM and Vector-Like Fermionic Portal

- V_{μ}^{D} SU(2)_D gauge triplet
- Complex scalar $SU(2)_D$ doublet Φ_D to break gauge group
- assign $Q_D = T_D^3 + Y_D$ and require its conservation
- $SU(2)_D \times U(1)_{\text{glob}} \rightarrow U(1)_{\text{glob}}^d$ pattern of dark sector breaking
- $lacksquare \mathbb{Z}_2$ subgroup $: (-1)^{Q_D}$
- Yukawa portal

Alexander Belyaev

$$y'\bar{\Psi}_L\Phi_Df_R^{\mathrm{SM}}+y''\bar{\Psi}_L\Phi_D^cf_R^{\mathrm{SM}}$$

lacksquare Q_D conserved – DM is established!

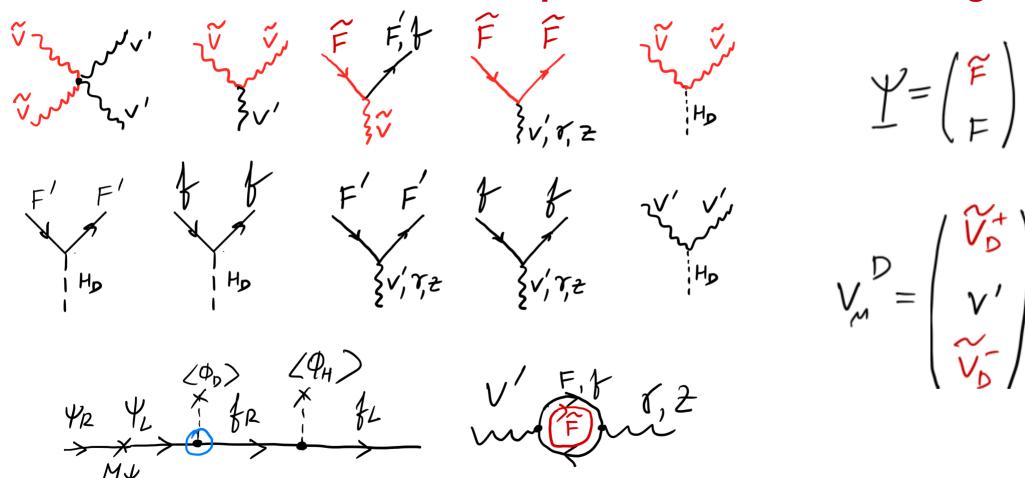
	SU(2)L	Ulily	SU(2)	QD	72
Q= (PD+12) -1/0	1	0	2	+	1
10 (PD-12) 12 (Hp+Vp)				0	+
12 / YD) /F		Q _{EM}	2	+1	1
$Y = \begin{pmatrix} Y_D \\ Y \end{pmatrix} = \begin{pmatrix} F \\ F \end{pmatrix}$				0	+
D/V_{M}^{D+}				+	
$\begin{vmatrix} V_{\mu} & = \\ V_{\mu} & 0 \end{vmatrix} = \begin{vmatrix} V_{\mu} & V_{\mu} \end{vmatrix}$			3	0	+
Var Vo				-1	

Fermionic Portal for Vector Dark Matter (FPVDM)

- It is the framework, representing the class of models [Deandrea, Moretti, Panizzi, Ross, Thongyoi, AB arXiv:2204.03510,2203.04681]
- Various realisations are possible, including one or several VL fermions

$$\mathcal{L}_{FPVDM} = -\frac{1}{4} (V_{D\mu\nu}^{i})^{2} + \bar{\Psi}iD\Psi + |D_{\mu}\Phi_{D}|^{2} - V(\Phi_{H}, \Phi_{D})$$

$$- (\underline{y}_{\alpha\beta}^{\prime} \bar{\Psi}_{L}^{i\alpha} \Phi_{D} f_{R}^{SM\beta} + h.c) - M_{\Psi}^{ij} \bar{\Psi}^{i} \Psi^{j}$$


$$V(\Phi_{H}, \Phi_{D}) = -\mu_{H}^{2} \Phi_{H}^{\dagger} \Phi_{H} - \mu_{D}^{2} \Phi_{D}^{\dagger} \Phi_{D} + \lambda_{H} (\Phi_{H}^{\dagger} \Phi_{H})^{2}$$

$$+ \lambda_{D} (\Phi_{D}^{\dagger} \Phi_{D})^{2} + \lambda_{HD} (\Phi_{H}^{\dagger} \Phi_{H}) (\Phi_{D}^{\dagger} \Phi_{D})$$

- $y'_{\alpha\beta}$ can have a flavour structure to explain flavour anomalies
- \blacksquare λ_{HD} can be negligible at tree-level, DM can be well-generated via FP
- \blacksquare the model with $~\Psi=\left(\begin{array}{c} T \\ T \end{array}\right)$ and $\lambda_{HD}=0$ was explored

FPVDM Interactions and loop-induced kinetic mixing

Minimal VL top portal VDM: collider signatures

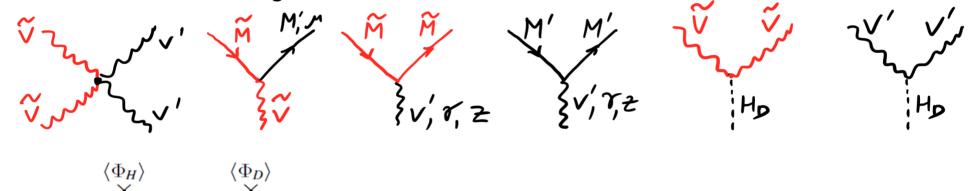
Process	Representative diagrams		
mono-jet (only loop)	$\left \begin{array}{c} g \\ \hline \\ g \\ \hline \end{array} \right _{t/T,t_D} V_D \bigg\} E_T^{\text{miss}} \int_{g}^{g} \frac{t}{t} \int_{T}^{H} \frac{V_D}{V_D} \Big\} E_T^{\text{miss}} + \text{jet from ISR or from loop} \bigg\}$		
$t\bar{t} + E_T^{ ext{miss}}$	$\left\{\begin{array}{c} g \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} g \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \end{array}\right\} E_T^{\mathrm{miss}} = \left\{\begin{array}{c} \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} \\ \overline{t_D} $		
$tar{t}tar{t}$	g		
hV' and $V'V'$ (only loop)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

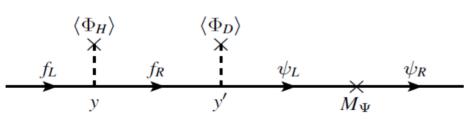
FPVDM model with $\Psi_M = \begin{pmatrix} \tilde{M} \\ M' \end{pmatrix}$, the partner of muon $\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c$ with $\tilde{V}_D, V', H_D, M', \tilde{M}$

$$\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c'$$
 with \tilde{V}_D , V' , H_D , M' , \tilde{M}_D

has potential to explain DM relic density and (g-2), anomaly

FPVDM model with $\Psi_M=\left(egin{array}{ccc} \tilde{M} \\ M' \end{array}\right)$, the partner of muon $\mathcal{L}_{\mu PVDM}\supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R+h.c$ with $\tilde{V}_D,\ V',\ H_D,\ M',\ ilde{M}$

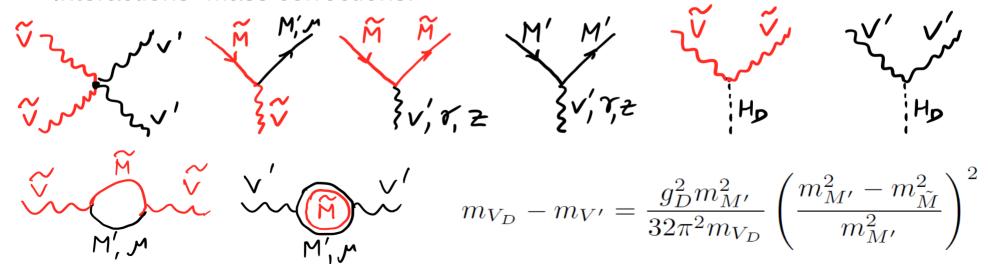

$$\mathcal{L}_{\mu PVDM} \supset -y' \bar{\Psi}_{ML} \Phi_D \mu_R + h.c$$
 with \tilde{V}_D , V' , H_D , M' , \tilde{M}_D


- has potential to explain DM relic density and (g-2), anomaly
- one should ensure
 - consistency with DD and ID DM search experiments
 - consistency with collider searches

FPVDM model with $\Psi_M = \begin{pmatrix} \tilde{M} \\ M' \end{pmatrix}$, the partner of muon $\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c$ with $\tilde{V}_D, V', H_D, M', \tilde{M}$

$$\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c'$$
 with \tilde{V}_D , V' , H_D , M' , \tilde{M}_D

- has potential to explain DM relic density and (g-2), anomaly
- one should ensure
 - consistency with DD and ID DM search experiments
 - consistency with collider searches
- Parameter space ($\lambda_{HD}=0$ for simplicity): $g_D, m_{V_D}, m_{H_D}, m_{M'}, m_{\tilde{M}}$
- Interactions+mixing:



 $y'\bar{\Psi}_L\Phi_Df_R^{\rm SM}+h.c$

FPVDM model with $\Psi_M = \begin{pmatrix} \tilde{M} \\ M' \end{pmatrix}$, the partner of muon $\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c$ with $\tilde{V}_D, V', H_D, M', \tilde{M}$

$$\mathcal{L}_{\mu PVDM} \supset -y'\bar{\Psi}_{ML}\Phi_D\mu_R + h.c'$$
 with \tilde{V}_D , V' , H_D , M' , \tilde{M}

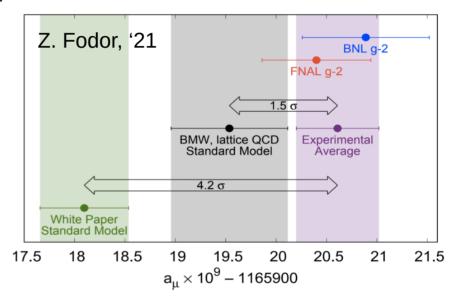
- has potential to explain DM relic density and (g-2), anomaly
- one should ensure
 - consistency with DD and ID DM search experiments
 - consistency with collider searches
- Parameter space ($\lambda_{HD}=0$ for simplicity): $g_D, m_{V_D}, m_{H_D}, m_{M'}, m_{\tilde{M}}$
- Interactions+mass corrections:

The status of $(g-2)_{\mu}$ and our approach here

 The combined experimental value from BNL +FNAL(from August 2023):

$$a_{\mu}^{EXP} = 116592059(22) \times 10^{-11}$$

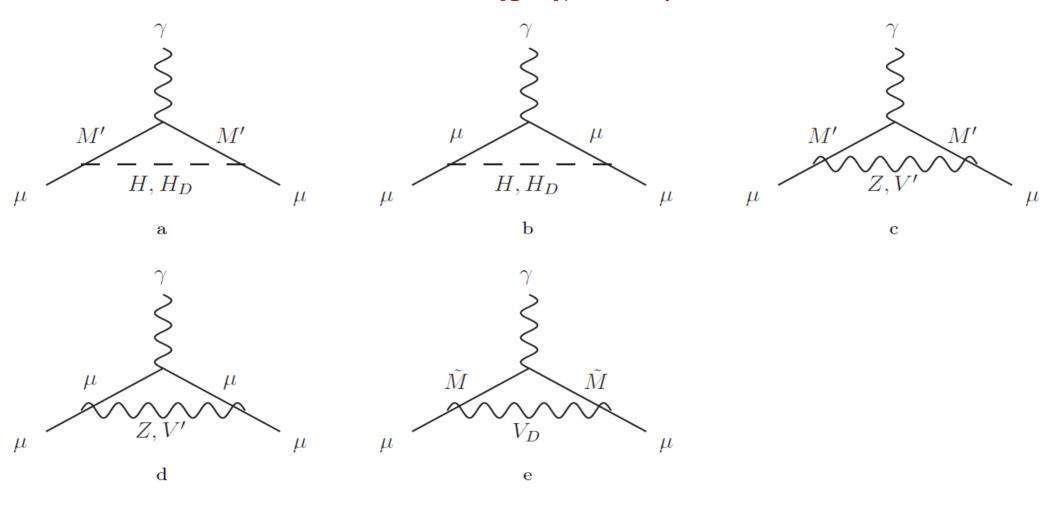
■ The SM Theory Initiative 2020 prediction [arXiv:2006.04822] provides

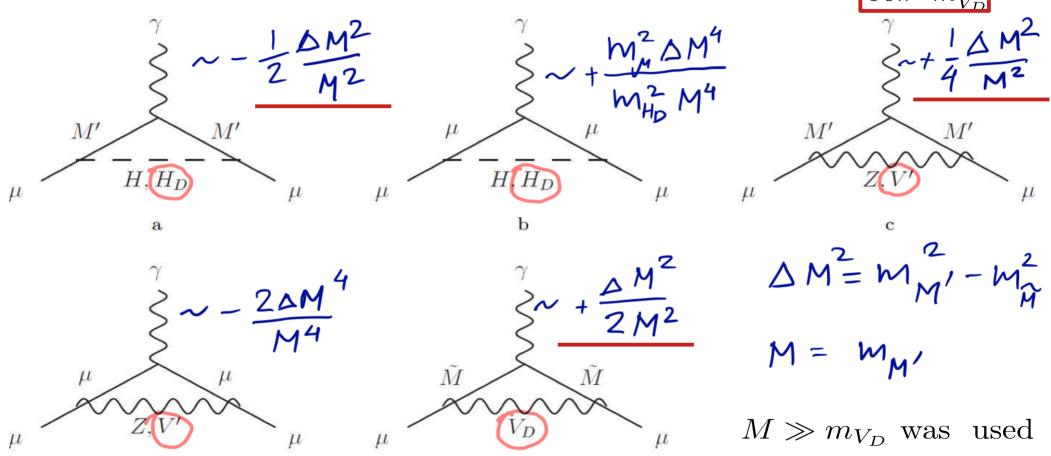

$$a_{\mu}^{SM} = 116591810(43) \times 10^{-11}$$

■ Combining above numbers, one concludes one finds 5.1σ SM vs EXP discrepancy

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 249(48) \times 10^{-11}$$

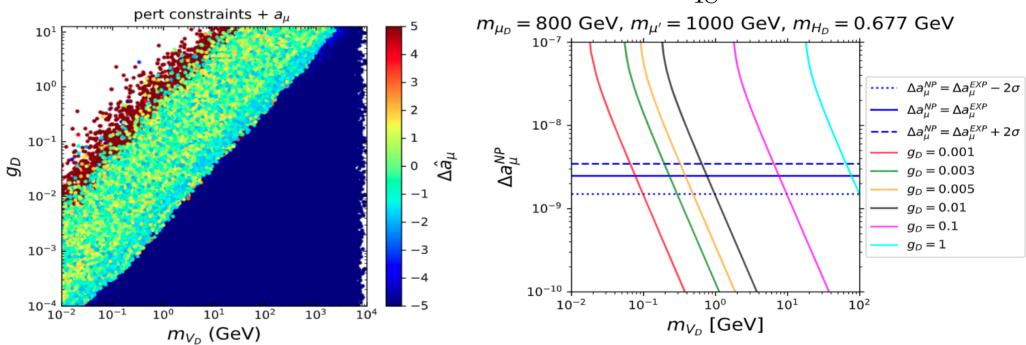
- Theory: for three contributions to (g-2)µ QED, EW and Hadronic – the Hadronic Vacuum Polarisation (HVP) is taken from the experimental data and it has the biggest contribution to the uncertainty
- Recent CMD3 results [arXiv:2302.08834] adds and additional intrigue here


 Of course recent Lattice results from BMW [Nature 593, 51 (2021)] must be add here


- (g-2)µ is an important puzzle to be solved including discrepancy between HVP from e+e- data and Lattice
- In our study we take Δa_{μ} as a real effect to be explained within our μFPVDM model

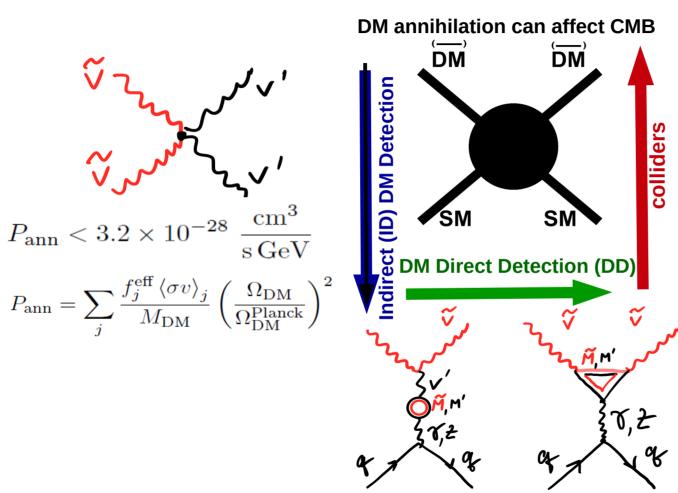
The contribution to $(g-2)_{\mu}$ from $\mu PVDM$

The contribution to $(g-2)_{\mu}$ from $\mu PVDM$

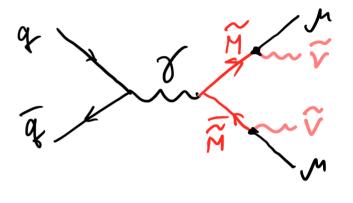


Alexander Belyaev

(g-2)_u results from scan of $g_D, m_{V_D}, m_{H_D}, m_{M'}, m_{\tilde{M}}$ space

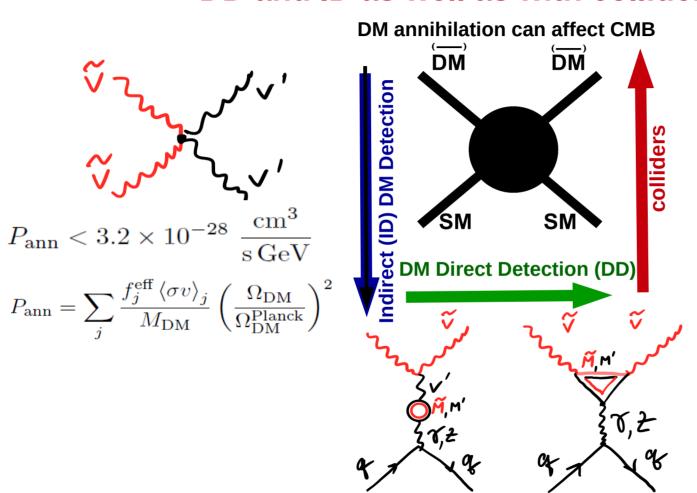

$$g_D, m_{V_D}, m_{H_D}, m_{M'}, m_{ ilde{M}}$$

$$\Delta \hat{a}_{\mu} = (\Delta a_{\mu}^{\mu PVDM} - \Delta a_{\mu})/\sigma_{a_{\mu}} \equiv \frac{\Delta a_{\mu}^{\mu PVDM} - 249}{48} \times 10^{-11}$$

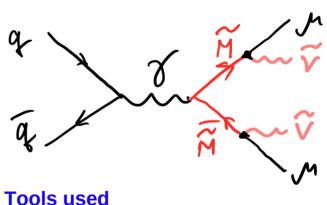


- Δa_{μ} can be explained within μFPVDM model $(g_D/m_{V_D} \sim 0.1)$
- $g_D \stackrel{r}{=} m_{V_D}$ correlation can be clearly observed as predicted by analytical calculations
- For $m_{M'}>1~{
 m TeV}$ it is hard (but possible) to explain Δa_{μ} because of $1/m_{M'}^2$ suppression

We also aim to explain DM relic density & to be consistent with DM DD and ID as well as with collider searches

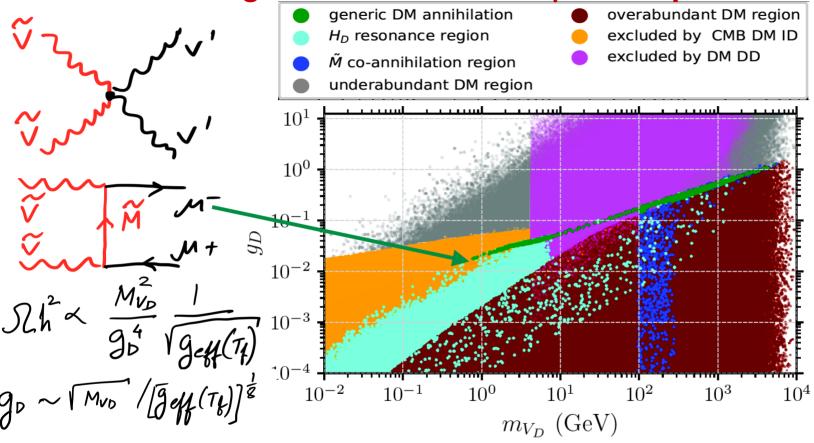


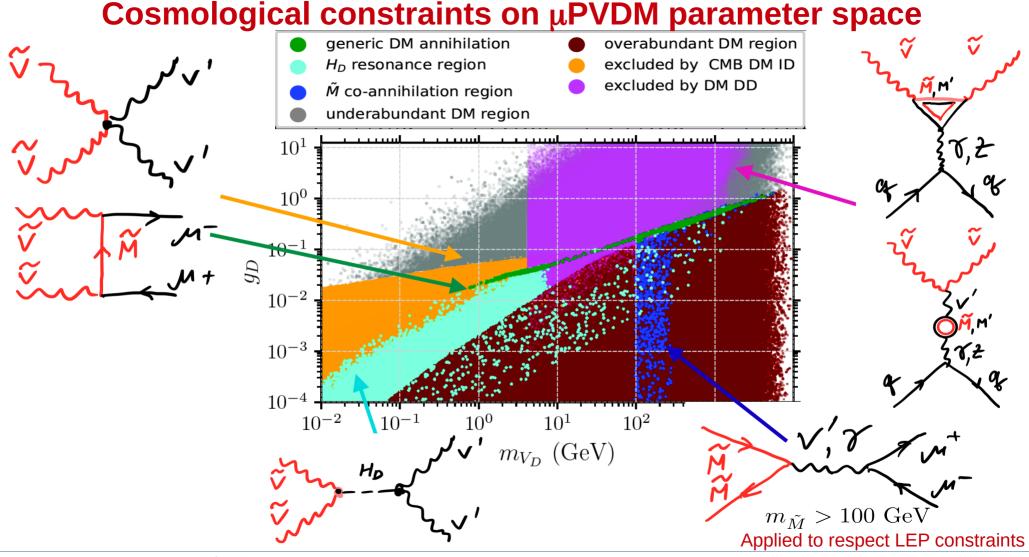
 $\Omega_{\rm DM}^{\rm Planck} h^2 = 0.12 \pm 0.0012$

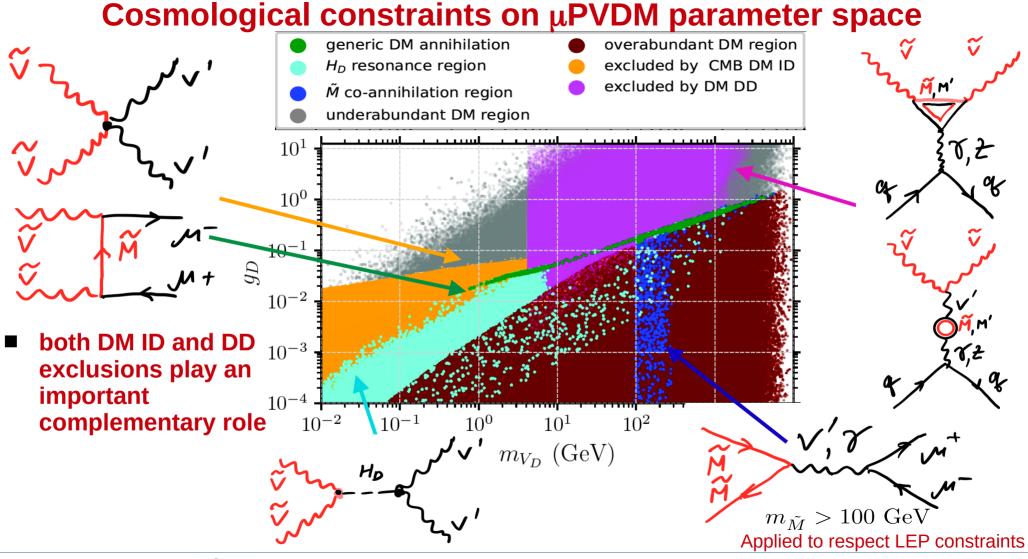


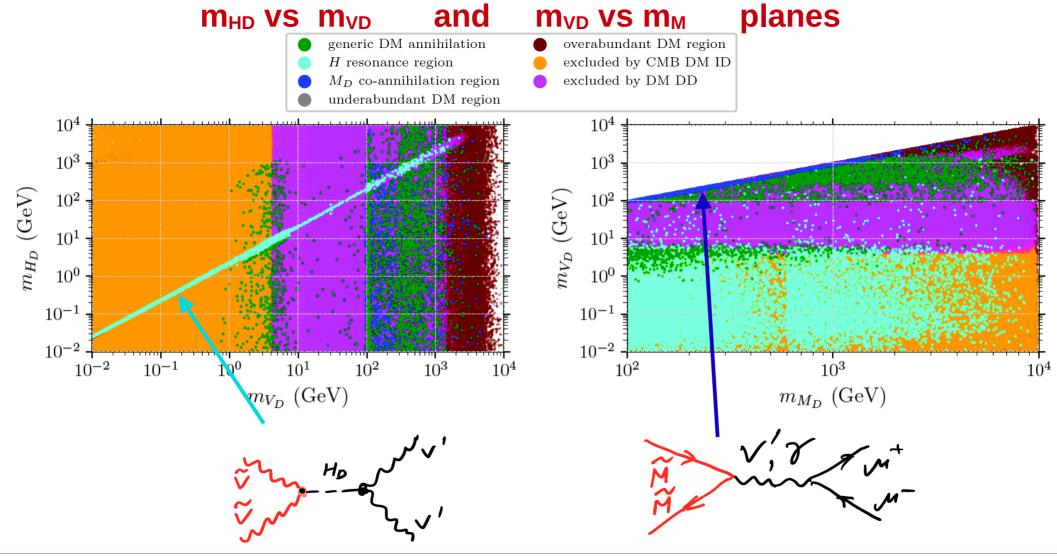
Alexander Belyaev

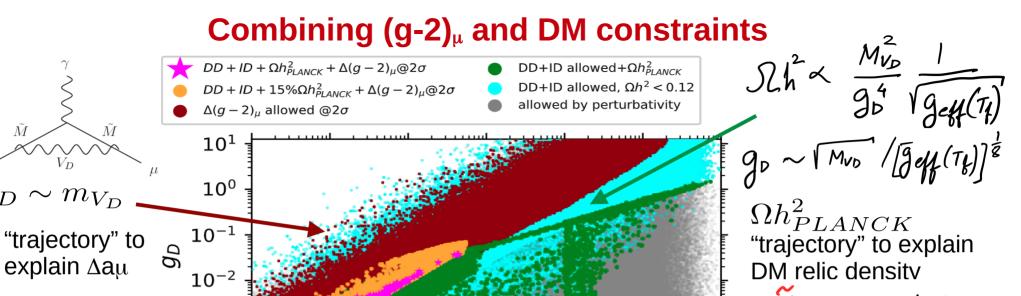
We also aim to explain DM relic density & to be consistent with DM DD and ID as well as with collider searches


 $\Omega_{\rm DM}^{\rm Planck} h^2 = 0.12 \pm 0.0012$




- DM DD, ID, Relic density
 - LanHEP, CalcHEP, micrOMEGAs
 - **Collider searches** CalcHEP, MC@NLO, **PYTHIA, DELPHES,** MadAnalysis, CHECKMATE




Cosmological constraints on µPVDM parameter space

 10^{2}

 10^{3}

 10^{4}

- (g-2) and DM relic density allowed bands have different slopes crossing at 0.1 1 GeV
 - "dark photon"(V") kind of region

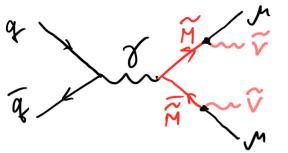
 10^{-3}

 10^{-4}

 10^{-2}

 10^{-1}

- New collider signatures (see below)
- very intriguing to explore further for GW effects and explaining NANOGrav results

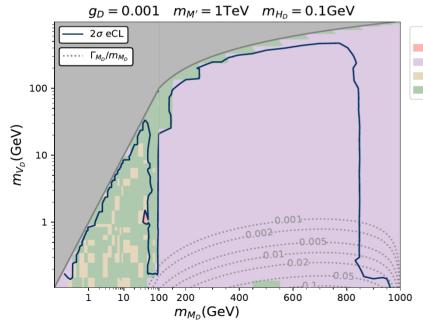

 10^{1}

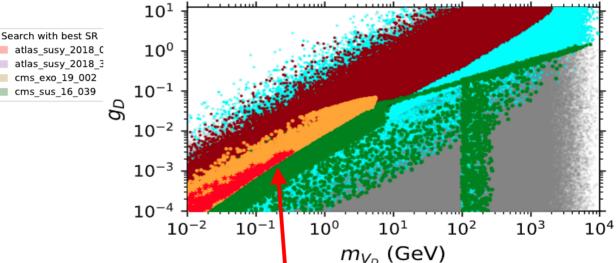
 m_{V_0} (GeV)

10⁰

Final set of very important constraints: colliders

$$pp \to \tilde{M}^- \tilde{M}^+ \to \tilde{V}_D \tilde{V}_D \mu^+ \mu^-$$

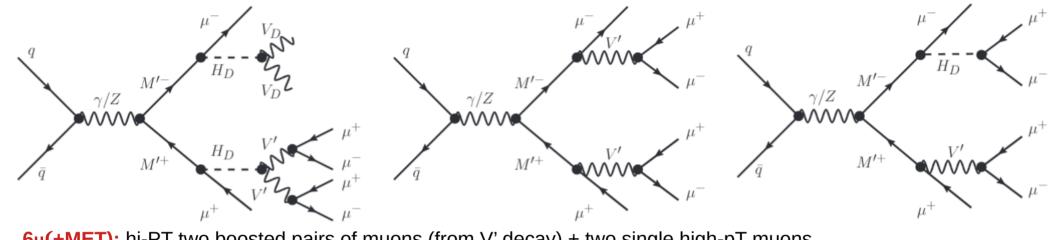

 $DD + ID + \Omega h_{Pl,\Delta NCK}^2 + \Delta (g-2)_{\mu} @2\sigma + LHC$


 $DD + ID + 15\%\Omega h_{PLANCK}^2 + \Delta(g-2)_{\mu}@2\sigma$

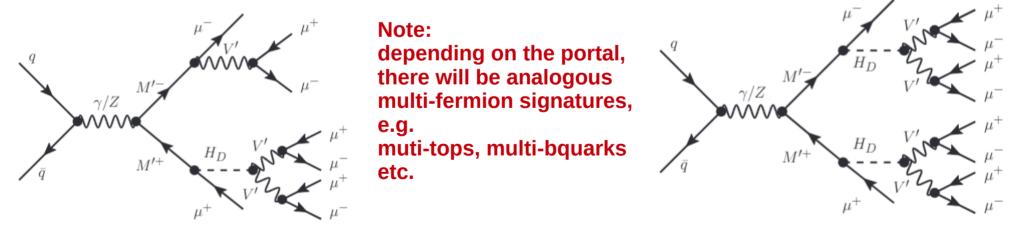
 $\Delta(g-2)_u$ allowed @2 σ

- Madgraph + PTHIA+Delphes + Madanalysis
- $\tilde{M} > 600 \text{ GeV}$ comes from the main $\mu^+\mu^- + MET$

atlas-susy-2018-32, cms-sus-16-039, cms-exo-19-010

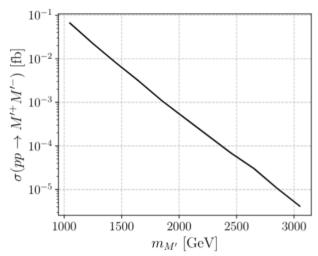

combinedconstraints require M_{DM} below 1 GeV

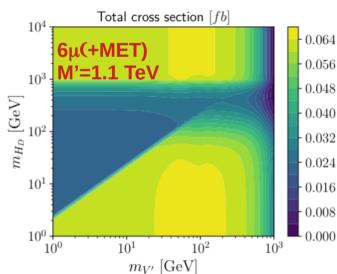
[to appear] Panizzi, Thongyoi,AB


DD+ID allowed+ Ωh_{PLANCK}^2 DD+ID allowed, $\Omega h^2 < 0.12$

allowed by perturbativity

Novel multilepton (multi-fermion) signatures


6μ(+MET): hi-PT two boosted pairs of muons (from V' decay) + two single high-pT muons

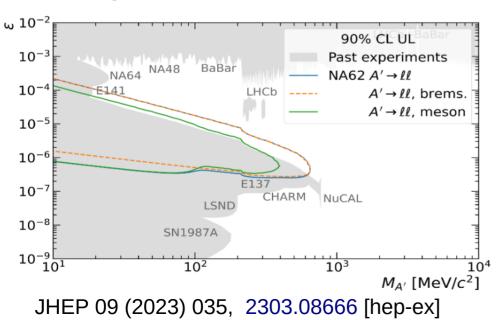


8 μ : hi-PT three boosted pairs of μ 's + 2 isolated μ 's

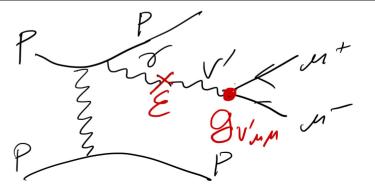
10 μ : hi-PT four boosted pairs of μ 's + 2 isolated μ 's

The rates for multi-lepton signatures

Inputs/Observables	BP1	BP2
g_D	0.003	0.003
$m_{V_D} [{ m GeV}]$	0.28	0.28
$m_{\mu_D} [{ m GeV}]$	800	900
$m_{\mu'}$ [GeV]	1000	1200
m_{H_D} [GeV]	0.677	0.677
$m_{V'}$ [GeV]	0.2756	0.2706
$Br(\mu' \to V'\mu)$	0.383	0.342
$Br(\mu' \to H_D \mu)$	0.371	0.319
$Br(\mu' \to V_D \mu_D)$	0.246	0.339
$Br(H_D \to V_D V_D^*)$	0.639	0.612
$Br(H_D \to V'V')$	0.352	0.375
$Br(H_D \to \mu^+ \mu^-)$	9.24×10^{-3}	1.31×10^{-2}
$Br(V' \to \mu^+ \mu^-)$	~1	~ 1
$Br(\mu' \to V'\mu \to 3\mu)$	0.383	0.342
$Br(\mu' \to H_D \mu \to 5\mu)$	0.131	0.12
$\sigma_{\rm tot}(pp \to \mu' \mu')$ [fb]	6.499×10^{-2}	1.867×10^{-2}
$N_{ m event}(pp o 6\mu)$	2.86	0.655
$N_{ m event}(pp o 8\mu)$	0.978	0.23
$N_{\mathrm{event}}(pp \to 10\mu)$	0.335	0.08

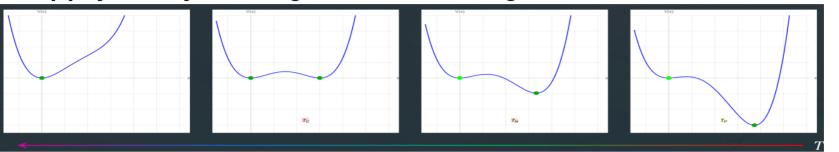

of events for 300 fb⁻¹ integrated luminosity

Yao, Chakraborti, AB [work in progress]



The model predicts sub-GeV V' bosons which look like dark-photons, but not quite...

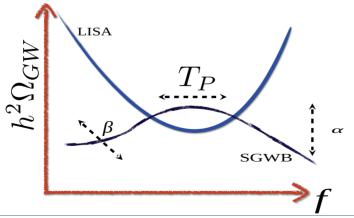
- V' bosons have kinetic mixing with photons and Z-bosons similarly to dark-photons
- At the same time V' bosons have **significant coupling to SM fermion** which is the partner of VL dark fermion
- As a result, V' bosons will can promptly decay (if kinematically allowed) to SM fermions leading to a relaxed/different bounds on dark-photons: requires dedicated analysis

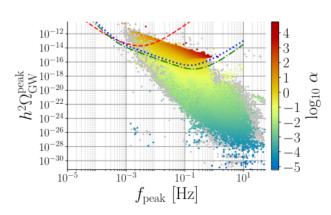

Inputs/Observables	BP1	BP2
$ au_{V'} ext{ [ns]} \ \ell_{V'} ext{ [} \mu ext{m]} \ \epsilon_{AV'}$	1.10×10^{-6} 0.33γ 1.13×10^{-5}	$ \begin{array}{ c c c c c } 7.85 \times 10^{-7} \\ 0.24 \gamma \\ 1.39 \times 10^{-5} \end{array} $

Gravitational Waves from Dark sector

[to appear] Bertenstam, Gonçalves, Morais, Pasechnik, Thongyoi, AB

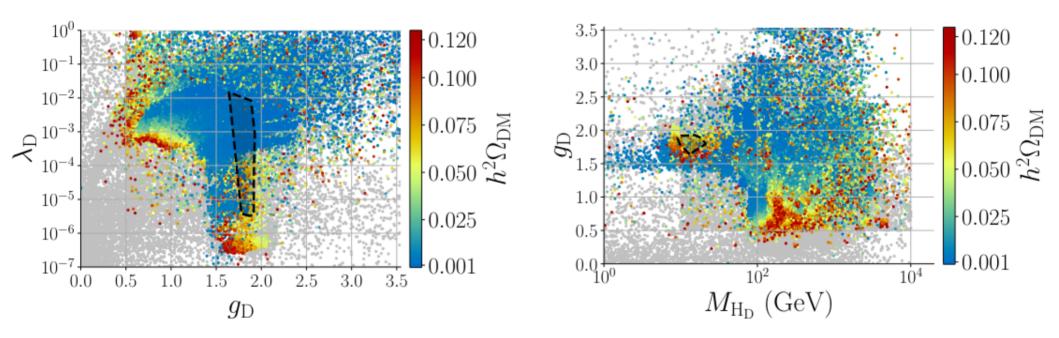
SU_D(2) symmetry breaking can induce Strong First Order Phase Transition (SFOPT)




Strength: lpha

Inverse β/H

Percolation T_P temperature


- Tools: DRalgo+CosmoTransitions, "Dralgo to python interfacer"
 - correct implementation of dimensionally reduced effective potentials from DRAlgo
 - the scale dependence of the numerical solution is greatly reduced

Gravitational Waves from Dark sector

specific parameter space can be tested by LISA and/or future facilities

- Typical mass of DM is few TeV since the g_D value required by SFOPT is of the order of one
- DM can be tested by DD experiments or from coloured fermions production at hadron colliders
- Dark Higgs production at colliders
- hhh coupling can be potentially probed at FCC's

Conclusions and Outlook

- To decode the nature of DM we need a signal first! But at the moment we should systematically explore theory/parameter space and prepare ourselves for DM decoding
- Systematic classification is important one should cover consistently the theory space
- **■** Probing DM space
 - non-singlets can be probed via DT searches or multi-lepton signatures at colliders
 - DM DD is sensitive to the loop-induced diagrams but does not exclude all models
 - rich phenomenology, complementarity of DM DD, collider signals and relic density
- **FPVDM** (available at HEPMDB) new class of models beyond weak group: an elegant solution of DM, (g-2)_u and flavour problems via VL fermion portal, new multi-fermion signatures and promising projects
- **Decoding the underlying theory**: requires joint effort of theorists and experimentalists as well as ML approach, to find the **link between signatures and underlying theory**

Backup slides

Alexander Belyaev

Mapping EFT operators to simplified models

C5,C5A
$$\frac{1}{\Lambda^{2}}\phi^{*}\phi G^{\mu\nu}G^{\mu\nu}$$
, $\frac{1}{\Lambda^{2}}\phi^{*}\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$

D1T-D4T $\frac{1}{\Lambda^{2}}\bar{\chi}q\bar{q}\chi$
 $\frac{i}{\bar{q}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C3 $\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C1 $\frac{1}{\Lambda^{2}}\phi^{*}\phi\bar{q}q\Phi \Longrightarrow \frac{v}{\Lambda^{2}}\phi^{*}\phi\bar{q}q$

C1 $\frac{1}{\Lambda^{2}}\phi^{*}\phi\bar{q}q\Phi \Longrightarrow \frac{v}{\Lambda^{2}}\phi^{*}\phi\bar{q}q$

C2 $\frac{1}{\Lambda^{2}}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$

C3 $\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C4 $\frac{i}{\Lambda^{2}}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$

C5 $\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C6 $\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C7 $\frac{i}{\eta}$

C8 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C1 $\frac{1}{\Lambda^{2}}\phi^{*}\phi\bar{q}q\Phi \Longrightarrow \frac{v}{\Lambda^{2}}\phi^{*}\phi\bar{q}q$

C2 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C3 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C4 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C5 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C6 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C7 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C1 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C2 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C3 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C4 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C5 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C6 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C7 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C9 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C1 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C2 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

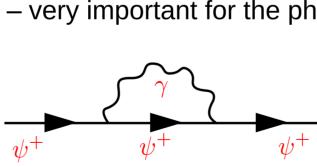
C3 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

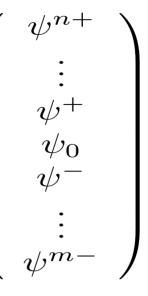
C4 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

C5 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q}$

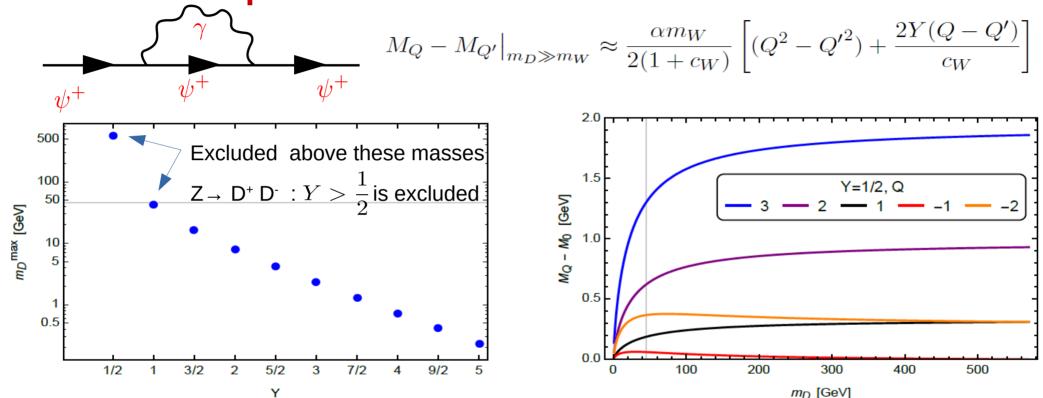
C6 $\frac{i}{\eta}[\phi^{*}(\partial_{\mu}\phi -$

NEX


D9,D10

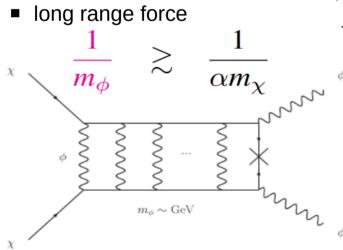

DM multiplet only

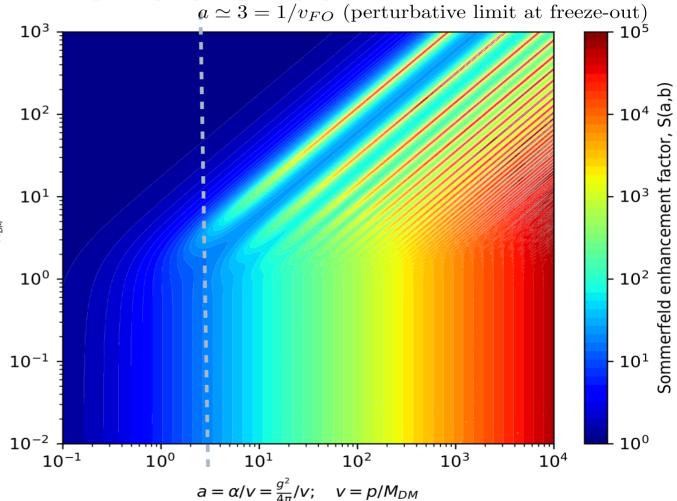
$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m_D\bar{\psi}\psi$$


Cirelli, Fornengo, Strumia hep-ph/0512090 (Minimal Dark Matter)

- {0,0} no gauge-interactions invisible to direct detection and collider but over(under) abundant if thermal (non-thermal) (Dirac DM) Is excluded by direct detection or $\frac{1}{2}$
- requires additional sector which splits the mass of
- Radiative mass split very important for the phenomenology

Radiative mass Split simplest models with Y>1/2 are excluded




Left: maximum value of m_p above which the lightest particle has charge Q = -1 for various values of Y Right: spectrum for a generic multiplet with Y = 1/2, with mD < 570 GeV. The vertical line shows $m_D \sim m_Z/2$, below which the model is excluded by the Z decays

Sommerfeld effect

- non-relativistic effect changing the cross section due to the wave function distorsion by a long range potential
- Conditions:
 - slow incoming particles

$$m_{\chi} v^2 \lesssim \alpha^2 m_{\chi}$$

