

The Quantum Era: Global trends and the UK's path to leadership

Dr. Najwa Sidqi

Quantum cluster manager, Harwell Campus National Quantum Computing Centre Business and Innovation Directorate, STFC

Harwell, 26th of February 2025

Brief Introduction

•Current Role: Quantum Cluster Manager, Harwell Campus, NQCC

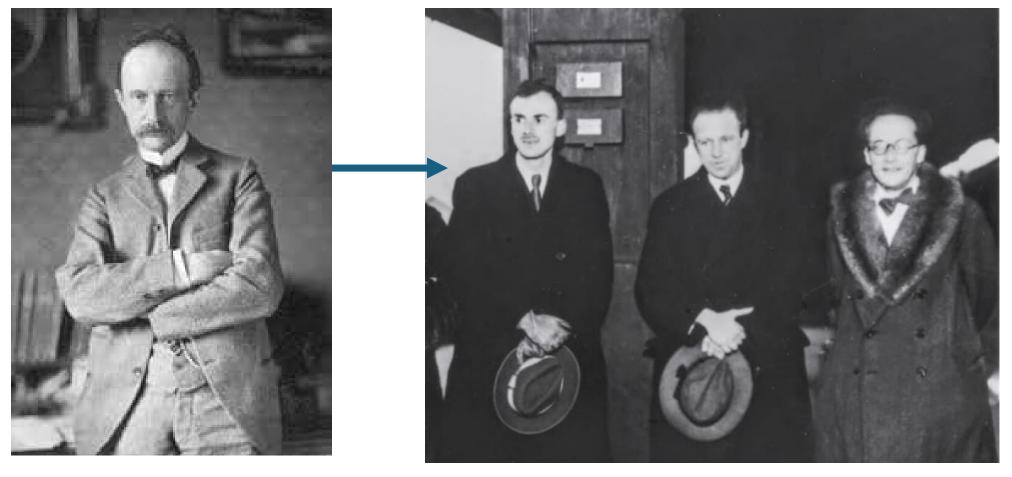
•Expertise: Quantum technologies, innovation strategy, photonics and semiconductor

•Key achievements: Mapping the UK's quantum landscape and contributed to national strategy reviews

•Academic background: PhD in Ultrafast Photonics, Heriot-Watt University

Talk overview

- The International Year of Quantum
- Quantum initiatives around the world
- The UK quantum landscape
- Harwell Campus: A hub for quantum innovation
- Challenges and opportunities for quantum in the UK


• The International Year of Quantum

- Quantum initiatives around the world
- The UK quantum landscape
- Harwell Campus: A hub for quantum innovation
- Challenges and opportunities for quantum in the UK

National Quantum Computing Centre

Innovation Clusters The international Year of Quantum 2025

The international Year of Quantum 2025

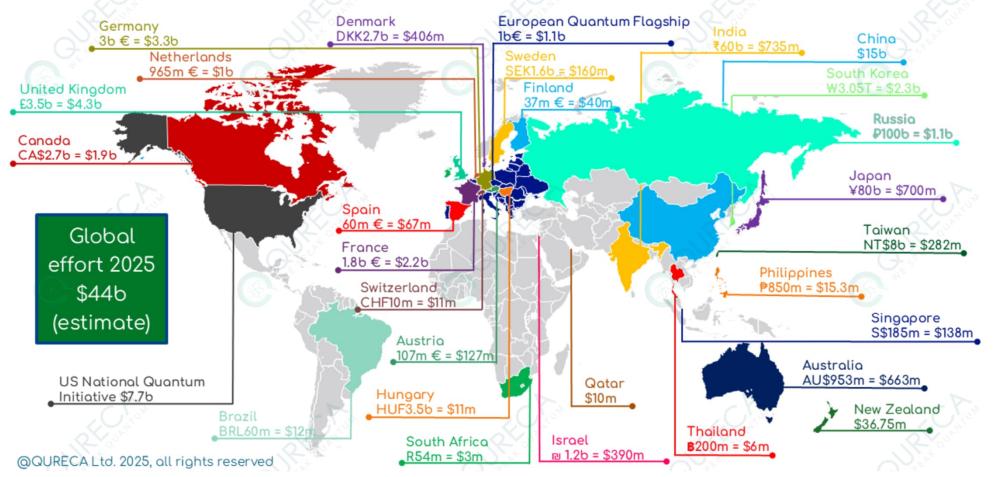
UNTERNATIONAL YEAR OF Quantum Science and Technology

https://quantum2025.org/

Anne L'Huillier, who won the 2023 Nobel Prize for her work in attosecond physics, presented an overview of the early development of quantum mechanics.

The International Year of Quantum

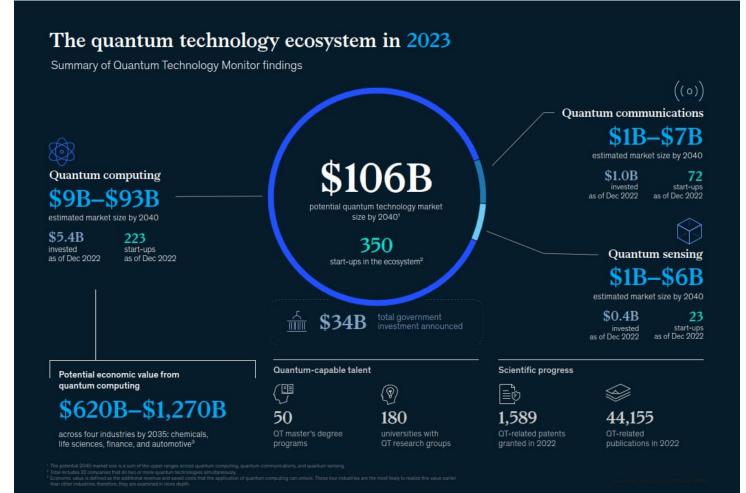
• Quantum initiatives around the world


- The UK quantum landscape
- Harwell Campus: A hub for quantum innovation
- Challenges and opportunities for quantum in the UK
- Collaboration

Quantum initiatives around the world

National Quantum

Computing Centre



Global market dynamics

Innovation Clusters

Source: Quantum Technology Monitor, Mckinsey and Company, 2023

- The International Year of Quantum
- Quantum initiatives around the world
- The UK quantum landscape
- Harwell Campus: A hub for quantum innovation
- Challenges and opportunities for quantum in the UK

The UK quantum landscape

National Centres

All

All

All

A U.K. Hub for Quantum	Integrated	UK National Quantum	National	The Quantum	Academic partners
Enabled Position, Navigation and Timing (QEPNT) Led by University of Glasgow	Quantum Networks (IQN) Quantum	Technology Hub in Sensing and Timing Led by University of	Quantum Computing Centre	<u>Computing</u> <u>and</u> Simulation	Aalto University
	Technology Research Hub	Birmingham	(NQCC) Led by UK	Hub Led by	Argonne National Laboratory
QCI3: Hub for Quantum	Led by Heriot-Watt University	QuantIC - The UK Quantum	Research and Innovation	University of Oxford	Aston University
Computing via Integrated and Interconnected Implementations		Technology Hub in Quantum Imaging Led by University of Glasgow			Australian National University
Led by University of Oxford	Quantum Biomedical Sonoing Boocorch				Australian Research Council
UK Quantum Technology Hub	Sensing Research Hub Led by University	Quantum Metrology	The Quantum		Bar-Ilan University
in Sensing, Imaging and Timing (QuSIT) Led by University of Birmingham	College London	Institute-NPL Led by National Physical Laboratory	Communication Led by University		Bates College
					Ben-Gurion University of the Negev
					Boston University
arch Applications Search C	apabilities Resea	rch Topics Industrial Part	ners Acade	mic Partners	0

https://iuk-businessconnect.org.uk/programm e/quantum-landscape/

Applications	Capabilities	Research topics	1QBit
			IQBIL
3D Imaging	Atomic clocks	Algorithms	3DMD
Atomic Scale Mass Sensing	Bayesian methods	Applications	AAC Clyde Space
Automotive Applications	Chip Scale QKD	Architectures	
Autonomous Vehicles	Cold Atoms	Atomics	ADVA AG Optical Net
Autonomous vehicles	Compact Atomic Clocks	Clocks	ARM Holdings
Biomedical Imaging	Compact sources	Cold Atoms	AWE
Collision Avoidance	Component prototyping	Computational Methods	AegiQ
Contamination Control	Computational Modelling	Control & Emulation	Agency for Science,
Defense and Security	Computational Stereo	Detector Development	Technology and Resea
Detection of Cancer	Covert imaging	Fundamentals	Airbus Defence and S
Biomarkers		Gaussian Boson	Allectra GmbH

Industrial partners

Cardiff University

All

_	1QBit
	3DMD
	AAC Clyde Space
	ADVA AG Optical Networking
	ARM Holdings
	AWE
	AegiQ
	Agency for Science, Technology and Research (A*
	Airbus Defence and Space
	Allectra GmbH

MENU

National Quantum Computing Centre

The National Quantum Technologies Programme

National Physical Laboratory

The Science Inside

Ministry of Defence

Innovate UK

Engineering and Physical Sciences Research Council

Science and Technology Facilities Council

The National Quantum Technologies Programme

- Quantum Technology Hubs
- Building national capabilities
- Research
- **Driving commercialisation and industrialisation**
- National Quantum Strategy Missions

The UK National Quantum Strategy(2023)

- By 2033 we will maintain our top 3 position in the quality of our quantum science publications, whilst increasing the volume of our research publications.
- By 2033, we will have funded an additional 1000 postgraduate research students in quantum relevant disciplines
- By 2033 we will have bilateral arrangements with 5 further leading quantum nations, based on substantive collaborative work programmes
- By 2033, the UK will have a 15% share of global private equity investment into quantum technology companies.
- By 2033, the UK will have a 15% share of the global quantum technologies market.
- By 2033, all businesses within key relevant sectors of the UK will be aware of the potential of quantum technologies and 75% of relevant businesses will have taken steps to 12 prepare for the arrival of quantum computing.
- The UK will be a global leader in establishing global standards for quantum.

The National Quantum missions

Mission 1: By 2035, there will be accessible, UK-based quantum computers capable of running 1 trillion operations and supporting applications that provide benefits well in excess of classical supercomputers across key sectors of the economy.

Mission 2: By 2035, the UK will have deployed the world's most advanced quantum network at scale, pioneering the future quantum internet.

Mission 3: By 2030, every NHS Trust will benefit from quantum sensing-enabled solutions, helping those with chronic illness live healthier, longer lives through early diagnosis and treatment.

Mission 4: By 2030, quantum navigation systems, including clocks, will be deployed on aircraft, providing next-generation accuracy for resilience that is independent of satellite signals.

Mission 5: By 2030, mobile, networked quantum sensors will have unlocked new situational awareness capabilities, exploited across critical infrastructure in the transport, telecoms, energy, and defence sectors.

- The International Year of Quantum
- Quantum initiatives around the world
- The UK quantum landscape

• Harwell Campus: A hub for quantum innovation

• Challenges and opportunities for quantum in the UK

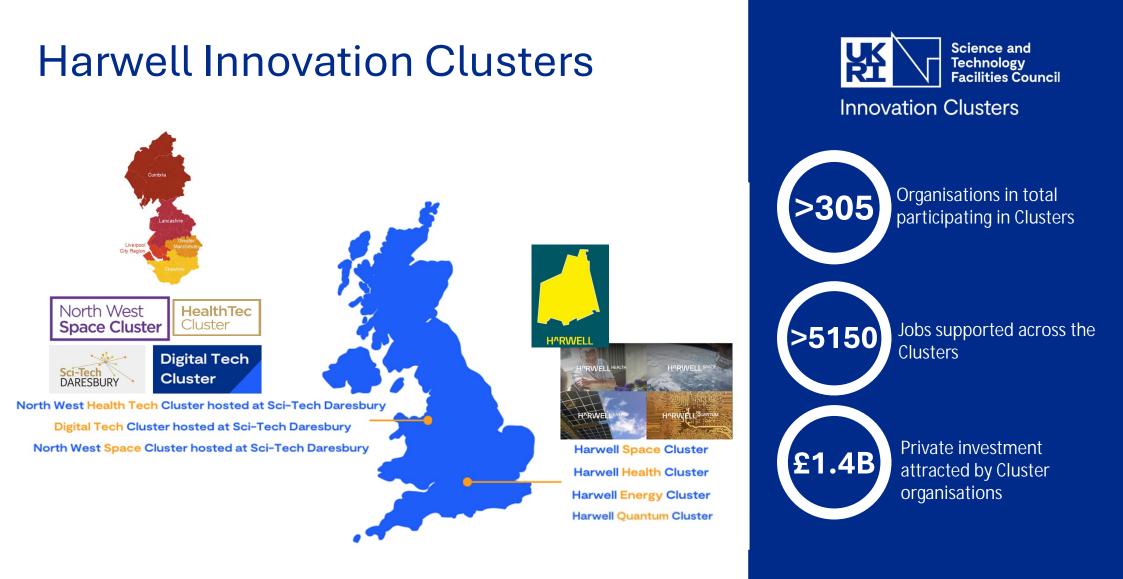


Image © STFC John Dawson

The Quantum Cluster

National Quantum Computing Centre:

QC readiness, training, applications and sector engagement

RAL Space: Quantum communication, satellite QKD, cold atom sensors, gravimeters

ESA: Satellite QKD, Quantum sensing and quantum computing

SAT Catapult: Quantum communication, Satellite QKD

Quantum startups:Element6, Redwave Labs, Nu Quantum, Infleqtion, Finchetto, Applied Quantum Computing, Open Quantum, TreQ, Quantopticon, QuERA

Testbeds delivery partners

The Quantum Cluster: mission and goals

Mission: Advance the development and adoption of quantum technologies for socio-economic growth

Goals:

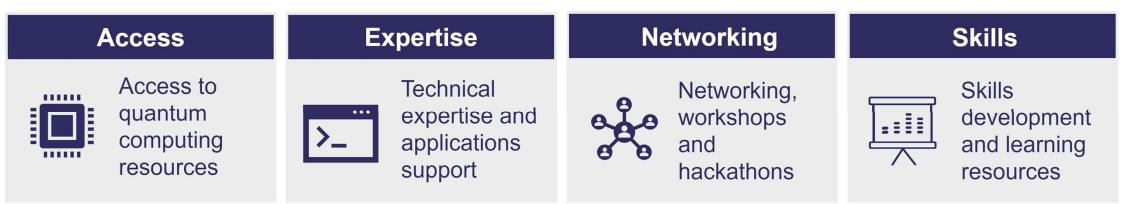
- Convening stakeholders and building meaningful collaborations around quantum technologies
- Developing useful applications of quantum technologies
- Supporting businesses and technology scale up.

Innovation Clusters The National Quantum Computing Centre

Science minister unveiling the NQCC Plaque in October 2024

• Collaborative programme between EPSRC and STFC:

£93m initial 5-year investment(2020)


£41m programme acceleration(2023)

- Addressing the challenges of scaling quantum computing
- Driving user adoption and economic value through the SPAR**Q** programme

SPARQ Programme

- Support the discovery and development of use cases and applications for quantum computing
- Enhance quantum computing literacy and programming skills
- Build a UK quantum computing user community through knowledge exchange and networking

- The International Year of Quantum
- Quantum initiatives around the world
- The UK quantum landscape
- Harwell Campus: A hub for quantum innovation
- Challenges and opportunities for quantum in the UK

Scaling quantum technology

Scaling quantum technology: why does it matter?

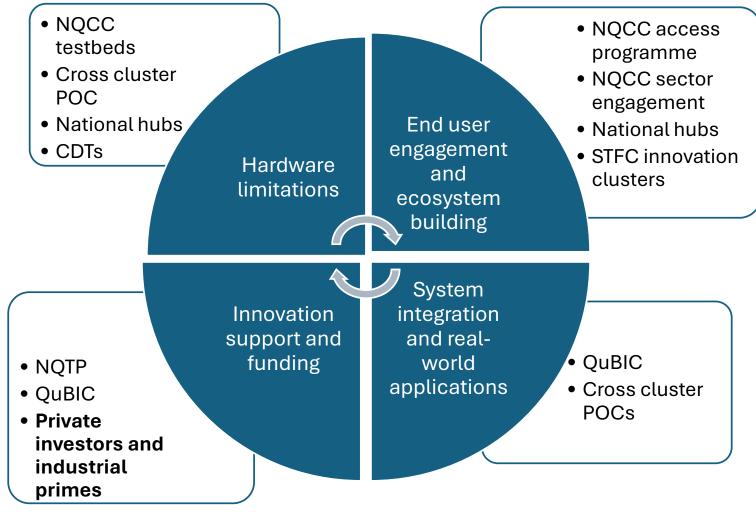
- Enabling complex quantum science for real-world applications.
- Bridging the gap between theoretical potential and practical utility.
- Supporting advancements in industries like healthcare, energy, and space

Photo credit NQCC

Scaling quantum technology: the key challenges

Addressing hardware limitations

Innovation support and funding


Bridging the gap between system development and integration in real world applications

National Quantum Computing Centre

Innovation Clusters Scaling quantum technology: The quantum cluster

Opportunities for quantum in the UK: What's next?

- The national missions in computing, sensing and computing
- Addressing key challenges to tech scalability
- Exploring cross-sector opportunities
- Training schemes to build hand on skills for quantum technologies

