

AmBeSim

Filippo Falezza

Theoretical Framework Current Sta Primary Generator Emerging Neutrons Model Comparison Conclusion

Simulation of a 241 Am $-^{9}$ Be neutron source using Geant4

Filippo Falezza, J. Bishop, Tz. Kokalova, C. Wheldon, S. Pirrie, N. Curtis University of Birmingham, UK

24th April 2025

²⁴¹Am-⁹Be Neutron source

AmBeSim

Filippo Falezza

Theoretical Framework Current Stat Primary Generator Emerging Neutrons Model Comparison Conclusion Long half life and stable flux over a 10 - 15 year working life Plethora of uses:

- Metrology
- Education environment
- Neutron Activation Analysis for identification of unknown materials
- Calibration (dosimeters and detectors)
- Industrial (e.g. well logging via ${}^{1}H(n,\gamma){}^{2}H$)

No accurate simulation from first principles

Reaction of Interest

AmBeSim

Filippo Falezza

Theoretical Framework

Current Status

Primary Generator Emerging

Model

Conclusion

Mixture of AmO₂ and ⁹Be powder. >99% ²⁴¹Am Stainless-steel casing ²⁴¹Am α emission:

Energy (keV)	Intensity (%)	
5388	1.66	
5442.80	13.1	
5485.56	84.8	
5511.5	0.225	
5544.5	0.37	

Fast Neutron reaction: Q value: 5.702 MeV ${}^{9}\text{Be}(\alpha, n)^{12}\text{C}^*$ γ

 ^{12}C can be either in ground, $1^{\text{st}},\,2^{\text{nd}}$ (Hoyle) excited depending on incoming energy

Source drawing, AmBe mixture (red) encased in steel [Raims Ltd]

Reactions of interest

Fast reaction

Current status

AmBeSim

- Filippo Falezza
- Theoretical Framework Current Status
- Primary Generator Emerging Neutrons Model Comparison Conclusion

- Geant4 has built in example in extended/hadronic/NeutronSource
- Simulates ²⁴¹Am α -decay
- Lacks differential cross sections and crucial features

Geant4 extended/hadronic/NeutronSource example

Implementation

AmBeSim

Filippo Falezza

Theoretical Framework Current Statu

Primary Generator

Emerging Neutrons Model Comparison Conclusion Aim: make the simulation as accurate as possible while reducing inefficiencies

- Simulate *n* and ¹²C directly
 - High activity sources $\Rightarrow 2.27 \times 10^6$ fast neutrons/s/Ci Simulate one fast neutron per event vs one neutron every ≈ 17000 events using α decay method
- Rejection sampling techniques
- Integrated and differential cross section from 1970 and 1975 Geiger and Van Der Zwan for ⁹Be(α, n)¹²C

Kinematic Lines

AmBeSim

Filippo Falezza

Theoretical Framework Current Stat

Primary Generator

Emerging Neutrons Model Comparisor Conclusion

Differential cross-section contribution

AmBeSim

Filippo Falezza

Conclusion

Initial neutrons: without differential cross-sections model

Initial neutrons: with differential cross-sections model

Disadvantages

Filippo Falezza

Theoretical Framework Current Stat

Primary Generator

Emerging Neutrons Model Comparison Conclusion Differential and Integrated cross section of beryllium-9 break-up not available

- ${}^{9}\text{Be}(\alpha, \alpha')$ scattering
- ⁹Be* angular decay information
- Other break-up channels more suppressed at interaction energy (< 5 MeV) e.g. ${}^{9}\text{Be}^{*} \rightarrow \alpha + {}^{5}\text{He}$

Emerging Neutrons

Neutrons emerging from source casing

AmBeSim

Filippo Falezza

Theoretical Framework Current Sta Primary Generator

Emerging Neutrons Model Comparison Conclusion

Fission Neutrons

AmBeSim

Filippo Falezza

Theoretical Framework Current Stat Primary Generator

Emerging Neutrons Model Comparison Conclusion

Fission neutrons as produced inside the source material

AmBe secondary γ s

AmBeSim

Filippo Falezza

Theoretical Framework Current Stat Primary

Emerging Neutrons Model Comparison Conclusion

Model comparison

AmBeSim

Filippo Falezza

Theoretical Framework Current Stat Primary Generator Emerging Neutrons Model Comparison

Comparison with AmBe standards

Comparison with Geant4 NeutronSource example

AmBeSim

Filippo Falezza

Theoretical Framework Current Sta Primary Generator Emerging Neutrons Model Comparison

Conclusion

AmBeSim

- Filippo Falezza
- Theoretical Framework Current Stat Primary Generator Emerging Neutrons Model Comparison Conclusion

- Validated AmBe neutron spectrum in Geant4
- Correctly reproduced AmBe signature peaks
- Implemented 1970 and 1975 Geiger-Van Der Zwan Cross sections (not otherwise present in Geant)
- Faster execution than full ²⁴¹Am α -decay chain recreation
- Useful for analysis of flux and neutron moderation in various media
- Future analysis of neutron moderation in water bath

Thank you for listening

AmBeSim

Filippo Falezza

Primary Generator flowchart

AmBeSim

Filippo Falezza

Investigation of water bath

AmBeSim

Filippo Falezza

- Source neutron spectrum is known
- Source is at centre of 1 m tall, 1 m diameter water tank. The moderation profile is unknown

Two group model

AmBeSim

Filippo Falezza

Does it actually agree with the two-group neutron moderation model? Two group model:

$$\Phi_{T} = \frac{SL_{T}^{2}}{4\pi r \overline{D} (L_{T}^{2} - \tau_{T})} (e^{-r/L_{T}} - e^{-r/\sqrt{\tau_{T}}})$$

describes thermal neutron diffusion and fast to thermal neutron moderation.

- $\tau_T \rightarrow$ (Fast) neutron age
- $L_t \rightarrow$ Thermal diffusion length

Equivalent Dose - Preliminary

AmBeSim

Filippo Falezza

Calculated dose for outgoing γ and neutrons from the water bath and verified against experimental Sampling over 0.2 s spectrum

Particle	Experimental $[\mu Sv/h]$	Simulated [μ Sv/h]
γ	1.54	8.05
n	0.8	1.68

Notes:

- Neutrons measured with Nuclear Enterprises NM-2 dose monitor (BF_3)
- Gammas measured with dose monitor calibrated in the 59-1332 keV range