

Radiochemistry at the National Ignition Facility: The first doped capsule cross-section

D. Pitman-Weymouth¹, J. Benstead¹, D. Shaughnessy², J. Despotopulos², W. Kerlin², K. Thomas², J. Jeet² ¹ Atomic Weapons Establishment ² Lawrence Livermore National Laboratory

> Slide 1 of (Ministry of Defence © Crown Owned Copyright 2025//

 \times

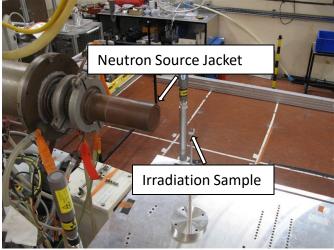
Daniel Pitman-Weymouth

Document reference:

OFFICIAL

Energy

The first doped capsule crosssection

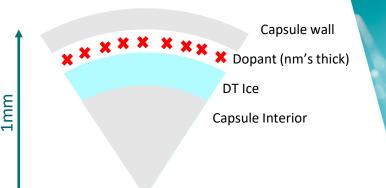

⁸⁹Y(n,2n)⁸⁸Y A well-known case to prove the method.

Slide 2 of 22 IK Ministry of Defence © Crown Owned Copyright 2025/AWE

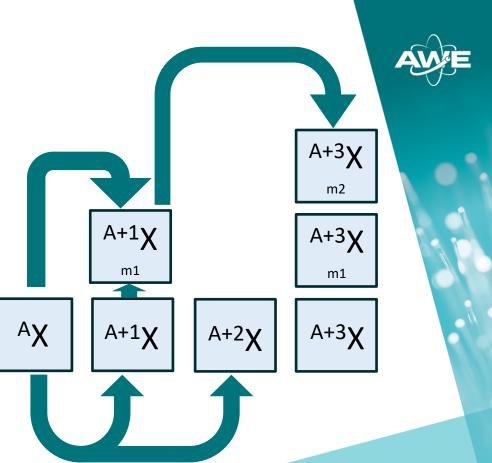
Document reference:

Methods

- Accelerator Approach
 - D beam is accelerated.
 - Impacts upon T target.
 - T(D, n)⁴He reaction occurs releasing 14.1 MeV neutrons.
 - Irradiation samples are ≈ 0.5-2g of material and φ: 12mm, ||: 1mm



ASP: AWE capability for neutron irradiation

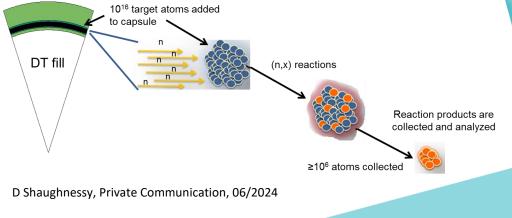

Methods

- Laser Driven Approach
 - Doped target capsule.
 - DT ice fuel inside the capsule.
 - Capsule isotropically compressed.
 - Dopant areal density ≈2.5E¹⁶ atoms/cm².
 - 0.2 ns pulse of up to1E¹⁷ 14.1 MeV n⁰.

Methods

- Laser Driven Advantages
 - Smaller sample quantity.
 - Potential for 2nd order reaction studies.
 - Potential for isomeric studies.
 - Opportunities to use an ignition platform.

Reaction Product Detection


SRC Collectors

- Vanadium discs φ=2"
- 12 can be deployed simultaneously.
- 0.768% solid angle coverage.

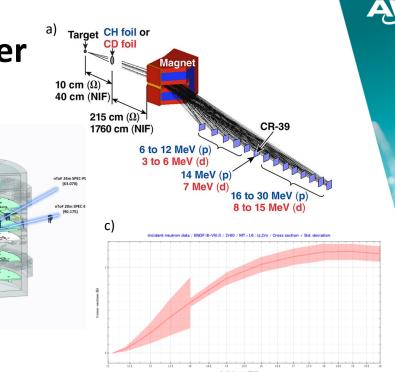
- P-Type Coaxial detectors
- Varying sample heights

Neutron Detection

Magnetic Recoil Spectrometer

b)

nToF 20m SPEC-A


• Absolute yield.

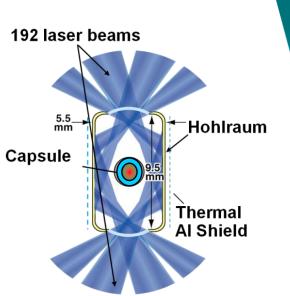
Scintillator nToF

- Spectral shape.
- 5 lines of sight.
- 18-24m long.

• WELL-NAD

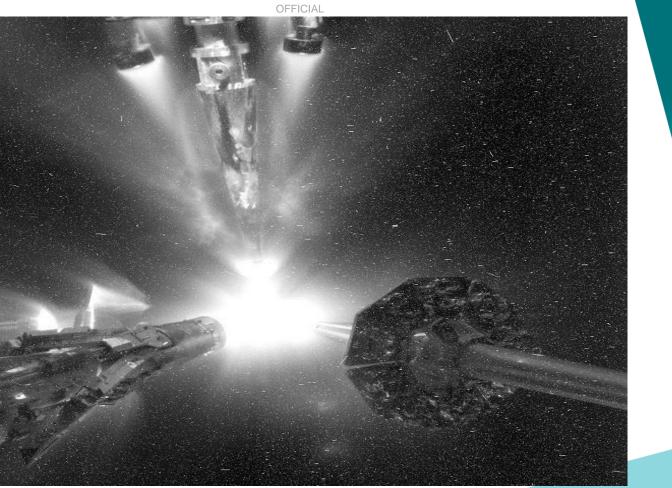
 Zr activation foils using DT peak threshold reaction ⁹⁰Zr(n,2n)⁸⁹Zr.

a, b) D Shaughnessy, Private Communication, 06/2024 c) 90Zr(n,2n)89Zr cross-section from ENDF/B-VIII.0 accessed via JANIS on 10/06/2024.


OFFICIAL

ToE 21m SDEC.

⁸⁹Y(n,2n)⁸⁸Y


Experiments

- Two shots were fired
 - July 2023 (2.8×10^{14})
 - January 2024 (6.1×10^{14})
- Doped capsules (¹⁶⁹Tm, ⁸⁹Y, ¹⁵²Eu).
- Cryo-cycled DT fuel.
- 192 beam indirect compression.
- Debris collected with SRCs.
- γ spectra taken with P-type HPGe detectors using Ortec DSPec MCAs.
- Spectra pre-processed by GAMANAL.

K. J. Moody *et al.,* Fractionation of copper activation products in debris samples from the National Ignition Facility, Applied Radiation and Isotopes, 143 (2019) 163-175.

Document reference:

D Shaughnessy, Private Communication, 06/2024

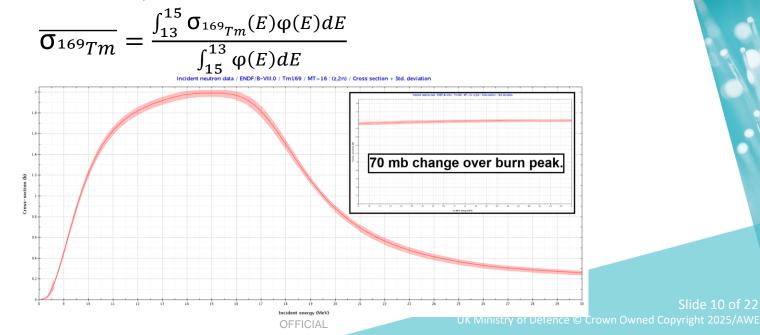

⁸⁹Y(n,2n)⁸⁸Y

Analysis

- Reaction products ⁸⁸Y and ¹⁶⁸Tm, and collection tracer ¹⁵²Eu quantified γ–ray spectrometry.
- Corrected by collection efficiency to get total production, N(⁸⁸Y) and N(¹⁶⁸Tm).

Reaction Product: TM 168
Atoms calculated:
SRC V315: 4.432E+07
SRC V324: 1.512E+07
SRC V286: 5.437E+06
SRC V325: 3.563E+07
Summed TM 168 atoms: 1.005E+08 ± 7.826E+02
EU 152 atoms calculated:
SRC V315: 3.814E+10
SRC V324: 1.957E+10
SRC V324: 1.957E+10
SRC V286: 6.932E+09
SRC V325: 3.213E+10
Summed collection tracer atoms: 9.676E+10 ± 1.5e+03
Collection Efficiency over the above SRCs: (2.88 ± 4.5e-08) %

Efficiency Corrected Reaction Product Atoms inc systematic errors: 3.50E+09 ± 1.05E+08


Document reference:

OFFICIAL

UK Ministry of Defence © Crown Owned Copyright 2025/AWE

⁸⁹Y(n,2n)⁸⁸Y

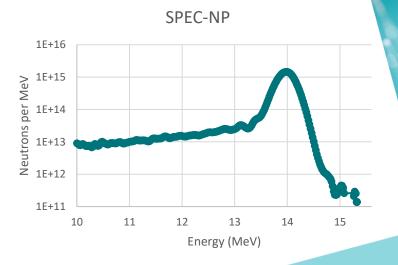
- Analysis
 - Evaluated σ 's of ⁸⁹Y and ¹⁶⁰Tm, 50 keV intervals.
 - Average reference σ,

Document reference:

⁸⁹Y(n,2n)⁸⁸Y

• Analysis

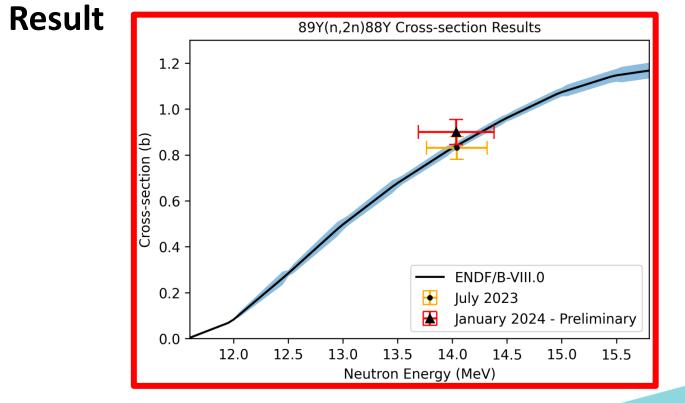
Document reference:


• Activation fractions,

$$F_{\chi} = \frac{\int_{13}^{15} \sigma_{\chi}(E) \varphi(E) dE}{\int_{0}^{\infty} \sigma_{\chi}(E) \varphi(E) dE}$$

• Cross-section Scaling,

Reactions in burn peak


$$\overline{\sigma_{89_Y}} = \overline{\sigma_{169_Tm}} \left(\frac{F_{89_Y} N_{89_Y}}{F_{169_Tm} N_{169_Tm}} \right)$$
Reaction ratio

Slide 10 of 22 K Ministry of Defence © Crown Owned Copyright 2025/AWE

⁸⁹Y(n,2n)⁸⁸Y

AME

lacksquare

Upcoming Measurements

Reaction	T _{1/2}	Notes
¹⁷³ Lu(n,2n)	8.24 hrs	Shot Awarded
⁸⁸ Y(n,2n)	106.6 days	Repeat Measurement (Sept 2025)

Slide 11 of 22 IK Ministry of Defence © Crown Owned Copyright 2025/AWE

Summary

- Two ⁸⁹Y doped capsule shots took place on the NIF.
- (n,2n) reaction products were observed in both shots.
- Cross—section results for both shots agree with the ENDF/B-VIII.0 evaluation.
- Future work is planned to apply this method to poorly constrained cross-sections.

Thanks to Collaborators

LLNL

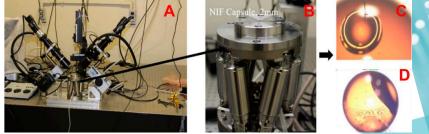
- D. Shaughnessy
- J. Despotopulos
- K. Kmak
- J. Jeet
- J. Escher
- C. Yeamans
- K. Thomas
- E. Monzon
- C. Cerjan

AWE

- J. Benstead
- J. Read
- M. Cornock
- T. Gaines
- A. Stott

Capsule Doping

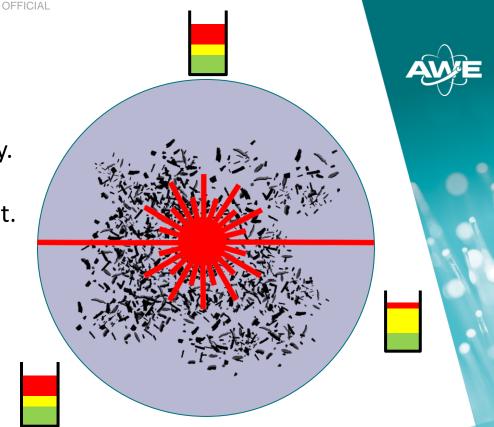
• VORCAN


- Vacuum based system.
- Simple and fast to use.
- ~10-30% of solution doped into capsule.
- 3-10 μL of solution can be injected.

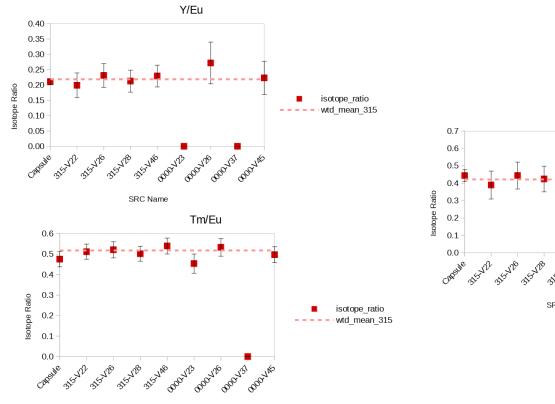
ANDARIST

- Direct injection into capsule.
- 100% of solution doped into capsule.
- < 1 μ L of solution can be injected.
- Clean solution, injection capillary is easily clogged.

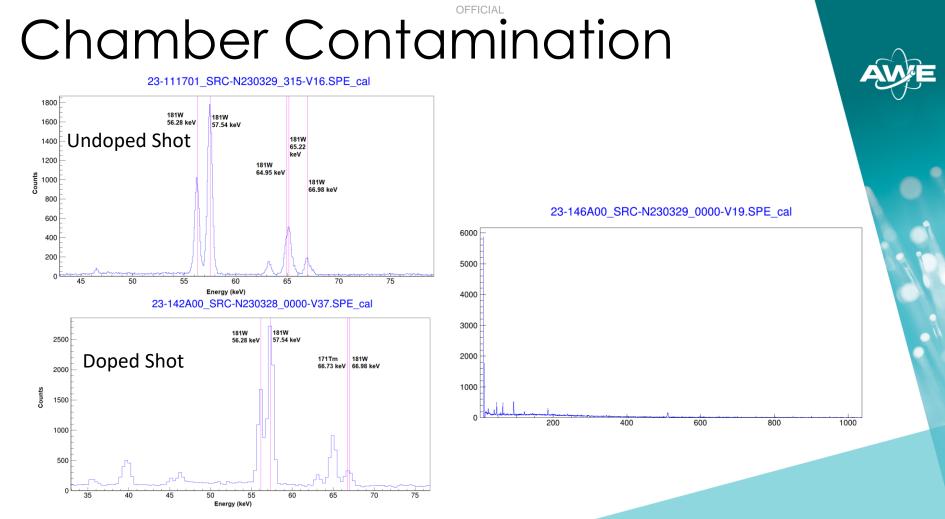
OFFICIAL


NIF Shot Debris

Chamber Considerations


- Fusion reaction emits isotopically.
- Lasers are highly directional.
 - $P \approx 0.006 \text{ kg m s}^{-1}$ into target.
- Debris directionality.

Target Considerations

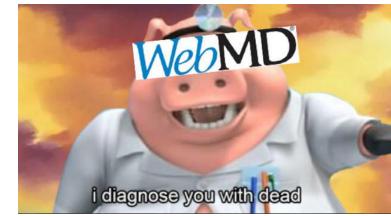

- Phase change.
- Fractionation of dopants
- Unrepresentative data.

Fractionation Study

SRC Name

Document reference:

OFFICIAL


UK Ministry of Defence C Crown Owned Copyright 2020/AWE

Diagnostic opportunities

- Solid RadChem
 - Alternative types of collector.
- Gaseous RadChem
 - RAGS System

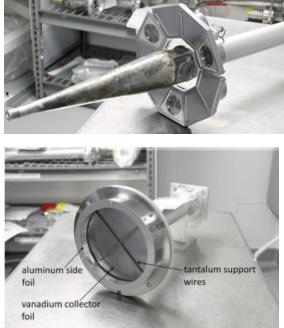
Sample Activations

- Tree-Frog
- TOAD
- H-TOAD
- Bullfrog

Imageresizer.com accessed on 11/06/2024

Slide 12 of 22 K Ministry of Defence © Crown Owned Copyright 2025/AWE

Diagnostic opportunities

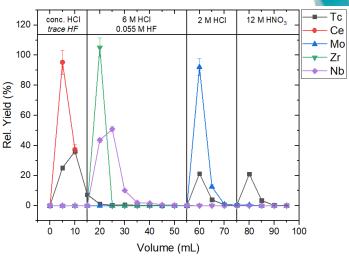

Solid RadChem

• VADER

- Vanadium trapezoids or $\phi=2''$ discs
- Up to 1.74% solid angle coverage.
- Compatible with x-ray camera.

• LASR

- Vanadium discs φ=20 cm
- Up to 2% solid angle coverage.
- Compatible with x-ray camera.


Diagnostic opportunities

Solid RadChem

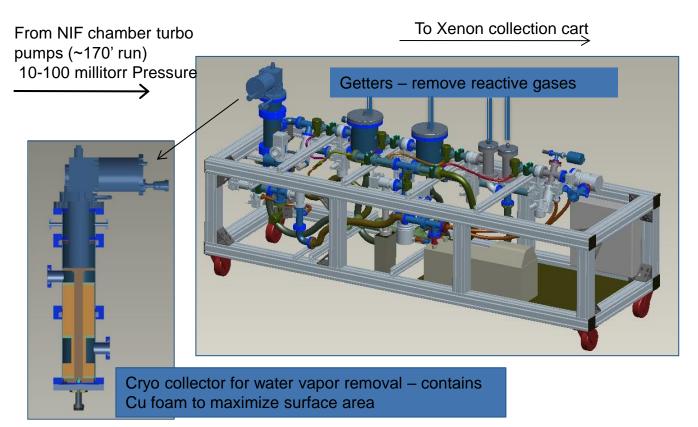
- Collectors can be directly measured with standard HPGe's or low-background detectors.
- α and β counting also available.
- Foils can be leached, and reaction products chemically separated.

D Shaughnessy, Private Communication, 06/2024 Document reference:

D Shaughnessy, Private Communication, 06/2024

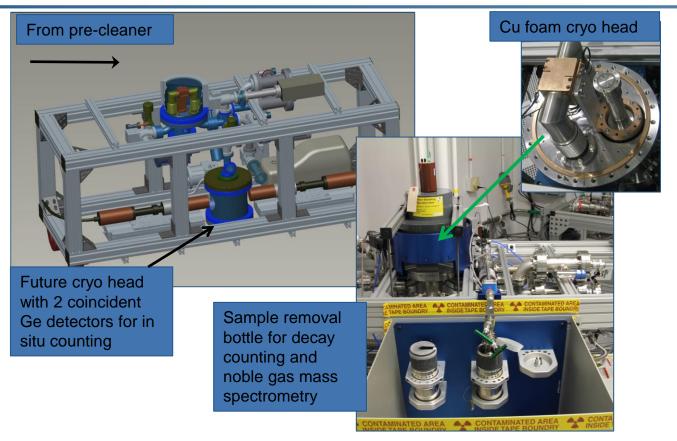
Radiochemical Analysis of Gaseous Species (RAGS)

The Collector Cart: Xe/Kr Trap and Sample Collection Bottle


HPGe Detector Quadrupole Mass Spectrometer The Filter Cart: Water Trap and Getters 3 LaBr₃ Detectors

RAGS has a very high collection efficiency - >95% of target chamber gases are pumped

* This presentation is being recorded


Slide 16 of 22

Gas from the NIF chamber will first go through a precleaner to remove water and reactive gases

NIF

Xenon collection and detection cart

NIF